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Basic notation and conventions

All considered commutative rings are assumed to have an identity element.
The morphisms between them are required to preserve the identity elements.

Given a positive integer n, we will denote by [n] the set {1,2,...,n}.

For a positive integer n and an abelian group A the additive group of n x n
matrices over A will be denoted by M, (A). We adopt the convention of
writing M (i, j) for the (i, j)-entry of M € M, (A).

We reserve the symbol I, for the n x n identity matrix. Given i, j € [n] we
denote by e;; the n x n matrix having only one non-zero entry, which is 1
at the (i, j)-th place.

Let F,G be functors between categories D and €. If & : FF — G is a
natural transformation then for A € Ob(D) we denote the induced map
F(A) - G(A) by ®4. Moreover, in case £ = Sets we say that ® is injective
(surjective) if and only if ® 4 is injective (surjective) for every A € Ob(D).

If G, H are topological groups then CHom(G, H) := {f € Hom(G, H) |
f continuous}.






Introduction and an overview
of the main results

General introduction

Group representations

One of the most commonly studied algebraic structures is that of a group.
Many groups have a “geometric flavour” and occur as groups of transforma-
tions of vector spaces. The dihedral, orthogonal and general linear groups
serve here as examples. Representation theory deals with the problem of
presenting abstract groups in such a geometric way.

Choosing a coordinate approach, one can say that representation theory
aims at presenting abstract groups in the form of matrices with coefficients
in a chosen field. More precisely, given a group G and a field k, by an
n-dimensional group representation of G over k we understand a group
homomorphism G — GL, (k).

Deformations of group representations

In this thesis we work with profinite groups and their continuous represen-
tations over finite fields. Every such representation can be “deformed” to
representations over certain type of rings.

More specifically, suppose R is a complete, local and noetherian ring
with finite residue field k and denote by 7m : R — k the reduction modulo
the maximal ideal of R. For n € N, we denote by the same symbol the re-
duction 7 : GL,(R) — GL, (k). Given a profinite group G and a continuous
representation p : G — GL,(k), we define a Iift of p to R as a continuous
group homomorphism p : G — GL,,(R) such that p = 7o p (Definition 2.8).

3
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¢ aL.k)

A deformation is a lift up to a conjugation by a matrix in the kernel
of m (Definition 2.9).

Motivation

The described setup originates from number theory, where one studies rep-
resentations of Galois groups (“Galois representations”) over finite fields and
their deformations (“Galois deformations”) to, for example, p-adic represen-
tations. Such techniques were used by Andrew Wiles in his famous paper
proving the Fermat’s Last Theorem. However, in this thesis we work in
a purely abstract setting, with groups and representations not necessarily
coming from number theory.

Functoriality

The complete, local and noetherian rings with a given finite residue field k
form a category, which we denote by C (cf. Definition 1.2). Associating

to R € Ob(C) the set Def;(R) of all deformations of p to R we obtain the
deformation functor Def : C — Sets.

It is a basic fact of deformation theory that under some mild assump-
tions Defj is representable (in the sense of category theory), cf. Proposi-
tion 2.23. If this is the case, the object representing it is called the universal

deformation ring of p.

The inverse problem

The question that is central in this thesis is the so called inverse problem
for universal deformation rings of group representations:

For which R € Ob(é) does there exist a profinite group G and a con-
tinuous group representation p : G — GL, (k) such that R is the universal

deformation ring of the resulting deformation functor?
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This problem originates from a question asked by Matthias Flach, who
wondered whether the universal deformation rings need to be complete in-
tersections ([Chi]). This question can be motivated by the fact, that the
universal deformation rings occurring in the context of Galois representa-
tions and arithmetic geometry in many cases do satisfy this condition (see
for example results of Bockle in [Boe2, Boe3)).

The question of Flach was settled by Bleher and Chinburg ([BC1, BC2])
with a counterexample Zo[X]/(X?2,2X), for which Byszewski gave an al-
ternative argument in [By|. The explicit formulation of the problem is due
to Bleher, Chinburg and de Smit ([BCdS]|), who also generalized the men-
tioned counterexample. Namely, they showed that, denoting by W(k) the
ring of Witt vectors over the finite field k, the ring W (k)[X]/(X?2,p"X) is
a universal deformation ring of a group representation for every n € N. An-
other interesting class of universal deformation rings that are not complete
intersections was obtained by Rainone: Zy[[X]]/(p",p"™X), for p > 3 and
n,m € N, 1 < m < n (JRa]). This construction has also disproved some
other conjectures on the structure of universal deformation rings.

The status of the problem at the beginning of the author’s PhD project
was as follows. On the one hand, no example of a ring R € Ob(C) that is not
a universal deformation ring was known. On the other hand, techniques for
producing a representation with a given deformation ring were very limited.

As we will see in Chapter 5, actually every R € Ob(C) can be realized
as a universal deformation ring of some profinite group representation. The
proof of this fact relies on a careful analysis of some natural representations
of special linear groups. This is the most important result of the thesis.

A modification of the inverse problem

In this thesis we also discuss a variant of the inverse problem in which we
wonder which rings occur as universal deformation rings of groups that are
finite. The second most important result of the thesis is a non-trivial neces-
sary condition for such rings of characteristic zero, presented in Chapter 6.

Content of the thesis

The first two chapters are almost exclusively devoted to recalling definitions
and standard facts. The original contribution of the thesis is presented in
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the subsequent four chapters and its core are the results of the last two of
them. We briefly describe now the content of each of the chapters.

Chapter 1

For the reader’s convenience, we introduce the category C and discuss prop-
erties of its objects and morphisms. We also discuss category theoretic
results related to functors C — Sets and the problem of their representabil-
ity.

A reader familiar with these topics will find the content of this chapter
very standard, but should at least take a look at Theorem 1.16 and the
following remarks, which seem to appear in the literature less frequently.

Chapter 2

In the second chapter we concentrate on deformation functors of group
representations and introduce all basic notions needed in the rest of the
thesis. Also the content of this chapter is rather standard, but, compared
to other authors, we avoid making some customary finiteness assumptions
(see section 2.3.2). We also devote slightly more attention to the concept of
a versal deformation ring. For instance, we comment on some inconsistency
of definitions used by different authors (section 2.3.1) and present examples
of versal deformation rings that are not universal (Lemma 2.37).

Chapter 3

We vastly generalize the construction of the two-dimensional representation
considered by Rainone in [Ra, Chapter 5] and analyze its deformation func-
tor. The main result of the chapter is Theorem 3.11 from which we can
conclude, among others, that for k # Fo,F3, m € N and arbitrary positive
integers ko, k1, ..., kn, the ring

Ry = WE)[X1, ..., Xnll/G%, 0" X1, ... p"™ X)

can be obtained as a universal deformation ring of a finite group repre-
sentation (Corollary 3.14). This result links Chapter 3 with Chapter 6.
Furthermore, some other results (see Remark 3.6) find their application in
Chapter 5.
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Chapter 4

This chapter does not contain a main result, but consists of a collection
of several results that can be useful when studying the deformation rings;
some of them will be applied in Chapter 5. The problems which we address
in this chapter include the following questions:

e Given a deformation functor with a universal deformation ring R,,
how can one determine quotients of R, without knowing this ring?

e How does the universal deformation ring change when passing to rep-
resentations of subgroups or to representations of quotient groups?

A more detailed discussion of the obtained results can be found at the
beginning of Chapter 4.

Chapter 5

This is the most important chapter of the thesis and it contains a solution
to the inverse problem. Namely, we show that every R € Ob(C) can be
obtained as a universal deformation ring of some group representation.
More precisely, given R € Ob(é) and n > 2 we consider the special
linear group G := SL,,(R) together with its representation p: G — GL, (k)
induced by the reduction R — k. Our analysis of the resulting deformation

functors may be summarized as follows:

Theorem (Theorem 5.1). Under the above assumptions, R is the universal
deformation ring of p if and only if (n, k) ¢ {(2,F2), (2,F3), (2,F5), (3,F2)}.

We also identify some universal deformation rings occurring in the ex-
ceptional cases, not covered by the above theorem (Proposition 5.17, Propo-
sition 5.19). We conclude the chapter by discussing deformations of analo-
gous representations of the closed subgroups of GL,,(R) containing SL,,(R)
(Proposition 5.24, Corollary 5.25).

Chapter 6

In the last chapter we address a modification of the inverse problem and
ask which rings occur as universal deformation rings of representations of
finite groups.
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It is relatively easy to observe that this problem has a different answer
than the general inverse problem. We show that every finite é—ring can
be obtained as a universal deformation ring of a finite group representation
(Observation 6.2) and that some, but not all, infinite C-rings can be obtained
in this context as well (see section 6.1). Hence, the interesting part of the
problem is to distinguish the infinite rings that are universal deformation
rings of finite group representations from the ones that are not. We do not
solve this problem completely, but provide the following partial result.

A~

Theorem (Theorem 6.30). Let R € Ob(C) be of characteristic zero and
a uniwersal deformation ring of some finite group representation. Then
R/\ 7, Annp” is reduced and has Krull dimension 1.

In particular, the power series rings W(k)[[X1,..., Xm]], m > 0, over
the ring of Witt vectors W(k) do not occur as universal deformation rings
in the new setup.

It is interesting to note that while the initial inverse problem was solved
using more group theoretic methods, our analysis of the second inverse
problem is based on commutative algebra results.



Chapter 1

Complete noetherian local
rings

The aim of this chapter is to recall several standard facts from commutative
algebra and category theory that will be crucial for the rest of the thesis.
We introduce the basic definitions, set the notation and recall the main
properties that can be found in the literature. Proofs are omitted for brevity
of the exposition.

1.1 Categories C and C

1.1.1 Definitions

The rings that are of main interest in this thesis are the complete, noetherian
and local ones. Moreover, we will require their residue fields to be finite.

Notation 1.1. The following notation will be widely used throughout the
thesis:

o we reserve the symbols k and p for a finite field and its characteristic,
e the symbol W (k) stands for the ring of Witt vectors over k.

o whenever an element of some ring is denoted by €, it is assumed that
e # 0 and &2 = 0. In particular, kle] = k[X]/(X?).
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Definition 1.2. Let k be a finite field. We will denote by C the category
of all complete noetherian local commutative rings with residue field k.
Morphisms of C are the local ring homomorphisms inducing the identity
on k.

Definition 1.3. By C we will denote the full subcategory of artinian rings
in C.

In what follows we will refer to the objects and morphisms of the cat-
egory C shortly as “C-rings” and “C-morphisms” (and analogously for the
objects and morphisms of C).

Remark 1.4. It is easy to check that, due to the finiteness of k, the category
C coincides with the category of all finite C-rings.

Example 1.5. The ring W(k) is an object of CA,Abut not of C. The rings k
and k[e] are examples of objects of both C and C.

The ring k[e] can be seen as a particular case of the following construc-
tion.

Example 1.6. We can identify the category U of finite dimensional k-
vector spaces with a full subcategory of C. If V' € U, then we introduce the
ring structure on the k-vector space k[V] := k@ V by requiring V2 =
and obtain an object of Ob(C). Moreover, for every V, W € U there is a
bijective correspondence f < id@f between k-linear maps f: V — W and
morphism k[V] — k[W] of C.

Notation 1.7. Let R be a C-ring. We will use the following notation:
e mp denotes the maximal ideal of R,

e R* denotes the multiplicative group of R and RZ, denotes its subgroup
1+ mg,

e nr denotes the set {x € R | x7*~1 = 1} of multiplicative representa-
tives of the non-zero residue classes modulo mp,

o T kX — ug denotes the Teichmdiiller lift of k™ to R.

Remark 1.8. Note that, using the introduced notation, we have R* =~
pr x RZ;.
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The existence of the Teichmiiller lift is a consequence of the following
general and very useful property of complete rings.

Theorem 1.9 (Hensel’s lemma). Let R be a ring that is complete with
respect to an ideal I and let f € R[X] be a polynomial. If a € R is such
that f'(a) is invertible and f(a) = 0 (mod I), then there exists a uniquely
determined b € R such that f(b) =0 and b= a (mod I).

Proof. See |Ei, Theorem 7.3]. O

In some of our arguments we will also use the following easy and well-
known result.

Lemma 1.10. Every surjective endomorphism of a noetherian ring is an
automorphism.

Finally, since we will very often be working with reductions modulo
ideals and with quotient rings, we also introduce the following convention.

A~

Notation 1.11. For R € Ob(C) and a proper ideal I < R the symbol mp will
denote the reduction homomorphism R — R/I.

Remark 1.12. Note that w7, defined as above, is always a é—morphism.
Indeed, it is clear that R/I is a local noetherian ring and that 7 induces
an isomorphism on the residue fields. It is only less obvious that R/I is

complete. Observe that its mpr-adic completion R/I is isomorphic to R/f

(|[Ei, Lemma 7.15]) and that T = I follows from Krull’s intersection theorem.

L

Hence, R/I = R/I is complete.

1.1.2 Structure theorems

The structure of complete noetherian local rings (with arbitrary residue
fields) was studied by I. S. Cohen already in 1940’s in his paper [Coh].
For the reader’s convenience we quickly present here the most important
implications of Cohen’s results for C-rings. We refer to the original paper,
but an interested reader can learn this topic also from popular books on
commutative algebra, like [Mat| or [Ei].

~

Theorem 1.13. Every R € Ob(C) is a quotient of a power series ring in
finitely many variables over W (k). Moreover, it contains precisely one ring
that is a homomorphic image of W (k).
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Proof. See |Coh, Theorems 9 and 10.(b)] for the case char R = p and [Coh,
Theorems 11, 12 and 13] for the case char R # p. O

Note that Remark 1.12 implies a statement converse to the first claim:
every quotient of a power series ring in finitely many variables over W (k) is
in Ob(C).

Corollary 1.14. All (f—rmgs have a natural W(k)-algebra structure and
C-morphisms coincide with local W (k)-algebra homomorphisms.

Remark 1.15. For a given R € Ob(C), the structure map W(k) — R takes
pw(ky to pr. In some applications we will find it useful to identify these
two groups, cf. for example Definition 3.2.

We will also need the following result, which can be interpreted as an
analog of E. Noether’s normalization theorem.

Theorem 1.16. Let R € Ob(C) be such that either char R = 0 and ht pR =
1 or char R = p. Then there exists a subring Ry of R such that Ry is
isomorphic to a power series ring over W(k)/(char R) and R is a finite
Ry-module.

Proof. See |Coh, Theorem 16|. O

Remark 1.17. The condition ht pR = 1 is satisfied for example when p is
not a zero-divisor in R (this is a consequence of Krull’s “Hauptidealsatz”).

Remark 1.18. Suppose R and Ry are as in Theorem 1.16 and let d :=
dim R be the Krull dimension of R. By the properties of integral extensions,
dimR = dim Ry, so Ry = k[[X1,...,X4]] in the case char R = p and
Ry = W(k)[[X1,...,X4-1]] in the case char R = 0.

The structure of é—rings can also be better understood using the follow-
ing observation connecting categories C and C.

Lemma 1.19. Every R € Ob(C) is an inverse limit of C-rings.
Proof. For every r € N the ring R/mf, is artinian and R = lim _ R/m}%. O

Remark 1.20. Note that the converse statement is not true, i.e., not every
limit of an inverse system of C-rings is a C-ring. Indeed, such inverse limit
need not be noetherian.
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Corollary 1.21. Every R € Ob(C) is a profinite ring.
Proof. Combine the above lemma with Remark 1.4. O

Corollary 1.22. For every R, S € Ob(C) we have

Homg(R,S) = lim Home(R/mf, S/myg).
reN

Proof. Tt is sufficient to combine the following two facts: Homs(R,S) =
lim _ Homs(R,S/my) and Homp (R, S/m§) = Home(R/mp, S/mY) for ev-
ery re€ N. O
1.1.3 Some categorical constructions

Fiber products

Definition 1.23. Given two (f—morphisms m Ry — Sand mg : Ry — S
let us define

R1 Xg R2 = {(’r’l,T‘g) S R1 X R2 | 7'(‘1(’/“1) = 7T2(7“2)}.

We will consider this set with the subring structure inherited from the ring
Ry x Re. For i = 1,2, the canonical projections R; xg Ry — R; will be
denoted by p;.

R1 x5 Ra

ISR
R R

1 2
7'1'1\‘ /‘(’2
S
Example 1.24. If V., W € U then k[V] x; k[W] = k[V & W].

Lemma 1.25. Consider the setup of Definition 1.23 and set R := Ry x g Ry.
Then:

(i) If Ry, Ry € Ob(C) then R e Ob(C).

(ii) If w1, m are surjective then R e Ob(C).
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(iii) If R e Ob(C) then it is the fiber product (in the category C) of 1 and
mo. If Ry, Ry € Ob(C) then it is the fiber product of w1 and ma also
in C.

Sketch of the proof. Let m := mp, x mp, and m := m N R. We see that
R/m ~ k, so m is a maximal ideal of R. It is actually its only such ideal,
since R\m c (Ri\mg, x Ry\mg,) n R = R*. Moreover, as a closed subring
of the m-adically complete ring Ry x Ry, the ring R is m-adically complete.
We conclude that R is in Ob(C) if and only if it is noetherian.

If Ry and Ry are artinian, hence finite, then so is R (see also Remark 1.4).

Suppose now that m; and my are surjective. Then so are p; and ps. Let
K; :=kerp; (i = 1,2) and observe that K; n Ky = {0}. Since R/Ks = Ry is
a noetherian R- module, so is its submodule (K7 + K2)/Ky = Kl/Kl NnKy =
K. We conclude that both K7 and R/K1 >~ R are noetherian R-modules,
so R is noetherian as well.

The above arguments prove the first two claims. The last one can be
easily deduced from the following facts. Firstly, R is the fiber product of
R: and R, in the category of rings. Secondly, p; and ps are C-morphisms

(C-morphisms in case Ry and Ry are artinian). O

Remark 1.26. In general Ry x g Ry need not be an object of C. For example,
Mazur presents in [Mazl, p. 270] the following example, accredited to Brian
Conrad:

m o k[[X, Y]] 29 k[[X]], me o ko K[[X]].

The resulting ring k[[X, Y]] xpx)) k¥ = k + YE[[X, Y]] is not noetherian.
Indeed, its ideal (Y, Y X, Y X2, ...) is not finitely generated.

Coproducts

Let Ry, Ry € Ob(C) be given. Tt is known that, given a ring R, the coprod-
uct in the category of commutative R-algebras is described by the tensor
product. One can therefore expect the coproduct of By and Rs in C to be
related to Ri ®w() R2. Since this last ring does not necessarily belong
to Ob(C) (for example: it need not be complete), we make the following
definition.
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Definition 1.27. We define the completed tensor product Rl@)w(k)Rg of

Ry1, Ry € Ob(C) as the completion of Ry ®wx) R2 with respect to the
maximal ideal mp, ® R2 + R1 @ mp,.

Lemma 1.28. For every ﬁl, Ry € Ob(C) the completedA tensor product
R1®W(k)R2 is an object of C and the coproduct (in category C) of R and Ra.

Sketch of the proof. One can check that R1®W(k)R2 has also the following
alternative descriptions (cf. [Mazl, §12]):

o Ri®we R i=1limy o (Ri/mp, ®wy Ro/mi,),

o If Ry = WE)[[X1, ..., Xull/(f1,.- - fs), Re = W(k)[[Y1,..., Y]]/
(g1,---,9r) then:

R1®W(k)R2 = W(k‘)[[Xl, e, XY, ,Ym]]/(fl, ces fsr g1,y ,gr).

It is clear from the definition that R1®W(k)R2 is complete and local with
residue field k®w i)k = k. The second of the above alternative descriptions
shows that Ri1®w(x)R2 1s noetherian, while the first one, combined with
Corollary 1.22, can be used for proving that Ri®wy)Re is the coproduct
in category C. O

1.1.4 Tangent space

Definition 1.29. We define the cotangent space to R € Ob(C) as the k-
vector space t% 1= mp/(m%, p) and the tangent space as tg := Homy(t%, k).
Given a C-morphism R — S we denote by t;i : th — t§ the k-linear map
induced by f.

Remark 1.30. Note that R/(m%,p) = k @t} = k[t%].

One reason why this notion turns out to be very useful in the study of
complete noetherian local rings is the following lemma.

Lemma 1.31. A C-morphism f : R — S is surjective if and only if %
tR — t§ is surjective.
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Proof. (cf. [Sch, Lemma 1.1]) Observe that f is surjective if and only if
mg € im f, which by Nakayama’s lemma holds true if and only if mg S
(im f, m%) Using the fact that p € mg and p € im f we see that f is

surjective if and only if the composition R ERY-N S/(m%,p) is surjective.
It is sufficient to observe that this map factors via R/(m%,p) and apply
Remark 1.30. O

As a consequence of Lemma 1.31, we can determine the minimal number
of variables needed in the presentation described in Theorem 1.13.

Corollary 1.32. A ring R € Ob(C) can be presented as an epimorphic
image of the ring W(k)[[ X1, ..., Xq]| if and only if d > dimy, t};.

Proof. The tangent space to W(k)[[X1,...,Xq]] is d-dimensional, so d >
dimy, t}, holds for every quotient ring R of W(k)[[X1,..., X4]] -

By Nakayama’s lemma, dimy, mR/m%% is equal to the minimal number of
generators of the ideal mpg, so dimy, ¢}, is the minimal number of generators of
its image in R/(p). We conclude that for d > dimy, t}; there exist z1,...,24 €

mp such that mpg = (21,...,24,p). Lemma 1.31 implies then that the map
Xi—ﬁl?i

Wk [[X1, ..., X4]] == Ris a well-defined surjective C-morphism. [

1.2 Set valued functors on C

This thesis addresses several questions related to the problem of repre-
sentability of some specific functors ¢ — Sets, namely, the functors of defor-
mations of group representations. Before introducing them (which will be
done in the next chapter) we want to recall some standard results concerning
the representability of (covariant) functors C — Sets in general.

To learn more about this topic, we recommend the paper [Sch| or [Maz1,
§14- §20]. The reader might also find useful the short introduction on this
topic contained in [By2, Chapter 1].

1.2.1 Tangent space

Definition 1.33. If F is a functor F : C — Sets then we define its tangent
space as tp := F(kle]).
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Remark 1.34. This definition and the definition of the tangent space to a
C-ring are closely connected. Namely, for R € Ob(C), the tangent spaces tg
and tyom ,(r,—) may be identified. See [Mazl, Proposition on p. 271].

We note that under some additional assumptions on F' a natural k-vector
space structure can be introduced on tr ([Mazl, §15|).

Notation 1.35. Let k|e| xk[e] denote the fiber product of two copies of the
reduction map 7 : k[e] — k. We introduce the operation + : k[e] xj, k[e] —
kle| defined by (x4 y1e, x +y2e) — x+(y1 +y2)e. Moreover, given o € k
we will denote by aq the C-morphism k[e] — k[e] sending x + ye to z + aye.

Lemma 1.36. Let us use the above notation and conventions introduced in
Definition 1.23. Suppose F : C — Sets is a covariant functor such that:

(1) F(k) is a one-element set.

(2) The map ® := (F(p1), F(p2)) = F (k[e] x k[e]) — F(k[e]) x F(k[e])

1s a bijection.
Then the following operations:

o scalar multiplication k x tp — tp defined as (o, &) — F(aq)(§),

e addition tp x tp — tp defined as (&1,&2) — F(+)(® (&1, 6)),
define a structure of a k-vector space on F(k[e]).
Proof. See [Mazl, §15] or [Sch, Lemma 2.10]. O

Remark 1.37. Note that this structure is natural, in the sense that for
every natural transformation ® : F — G of functors F' and G satisfying
properties (1) and (2), the map @y : F(k[e]) — G(k[e]) is k-linear with
respect to the introduced structure.

Remark 1.38. Assuming that F' satisfies the following slightly stronger
assumption:

F(E[V] 3, k[W]) = F(k[V]) x F(k[W]) for every V, W € 0,

we obtain for every V' € U a canonical k-vector space structure on F(k[V]),
such that F(k[V]) 2 tr®, V.
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1.2.2 Continuous functors

The functors in which we will be interested are continuous in the following
sense.

Definition 1.39. A functor F : C — Sets is called continuous if and only
if for every R € Ob(C) the canonical map F(R) — lim F(R/m!) is an
isomorphism.

Since continuous functors are completely determined by their restric-
tions to C, we could see them simply as functors defined on C. Note that
this subcategory has, for example, the advantage of being closed under
fiber products, while C does not have this property (see Lemma 1.25 and
Remark 1.26).

On the other hand, there is a good reason to work in the full category C.
Namely, we are interested in representability problems (see the next section)
and a continuous functor that is representable in C may restrict to a functor
that is not representable in C.

1.2.3 Representable functors and versal hulls

Notation 1.40. Given a C-ring R, we will denote the functor Homs(R, —) :
C — Sets by hp.

Definition 1.41. A functor F' : C — Sets is called representable if and only

if there exists R € Ob(C) representing it, i.e., R € Ob(C) such that there
exists a natural isomorphism hrp — F.

Note that if a functor is representable and a natural isomorphism as in
Definition 1.41 is fixed, then the object representing it is uniquely unique,
i.e., unique up to a canonical isomorphism (this is a consequence of Yoneda’s
lemma). Observe also that hr or, more generally, representable functors are
continuous.

We introduce next a slightly weaker notion.

Definition 1.42. Let F and G be functors C — Sets. A natural trans-
formation F' — G is called smooth if for every surjection B — A in C the
induced map

F(B) — F(A) xg4) G(B)

is surjective. It is called étale if it is smooth and bijective on k[e].
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Remark 1.43. Suppose F' and G are continuous functors. Then the above
definition is equivalent to the one in which we require the surjectivity prop-
erty only for every surjection B — A in C.

Remark 1.44. Suppose functors F, G : C — Sets are such that F(k) and
G(k) are one-element sets. If ® : F© — G is a smooth transformation,
then @ is surjective on every é—ring R. Indeed, it is sufficient to apply the
surjectivity property of Definition 1.42 to the reduction morphism 7y, :
R — k.

A~

Definition 1.45. We say that a ring R € Ob(C) is a versal hull for a functor
F : C — Sets if there exists a natural transformation hp — F' that is étale.

Observe that if R represents some functor, then it is also its versal hull;
the converse implication does not hold in general. The versal hull, if it
exists, is uniquely determined up to isomorphism which, however, may be
not canonical.

We finish this subsection showing how the notion of a tangent space can
be useful in representability problems.

Proposition 1.46. If R, is a versal hull of a functor F', then R, can be
presented as a quotient of W(k)[[X1, ... Xq]] if and only if d > dimy tp.

Proof. Combine Corollary 1.32 with the definition of a versal deformation
ring, by which ¢F and ¢p, are isomorphic. O
1.2.4 Schlessinger criteria

The continuity assumption is very useful, since it allows us to use the criteria
developed by Schlessinger in his paper [Sch].

Theorem 1.47 (Schlessinger Criteria). Let F be a continuous functor
C — Sets satisfying the following property (HO): F(k) is a one-element set.
Observe that for every C-morphisms' 7 : Ry — S, mp : Ry — S we obtain
an induced map

v F(Rl XS RQ) —>F(R1) XF(S) F(Rg)

and let us define the following conditions:

"Let us emphasize: morphisms of C, not C. Recall that C is not closed under fiber
products.
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H1) VU is surjective whenever o 1S a surjection.

(H1)
(H2) ¥ is bijective whenever ma is the reduction kle] — k.
(H3) dimy tp is finite.

)

(H4) V is bijective whenever my = 1 is a surjection.

Then F has a versal hull if and only if it satisfies properties (H1)-(H3)
and is representable if and only if it satisfies properties (H1)—(H4).

Proof. See |Sch, Theorem 2.11]. O

Remark 1.48. Compared to Schlessinger’s original formulation, there are
some minor changes in the statement of this theorem. Firstly, the theorem
was originally stated for functors C — Sets. Secondly, Schlessinger requires
the properties described in conditions (H1) and (H4) only for the so called
“small surjections” ([Sch, Definition 1.2]). However, it is easy to check that
these formulations are equivalent. See also [Sch, Remark 2.14]. Finally,
Schlessinger does not require the residue field to be finite.

Remark 1.49. Property (HO) coincides with condition (1) of Lemma 1.36
and property (H2) implies condition (2) of the same lemma (it even implies
the stronger condition of Remark 1.38), which makes the symbol dimy tp
appearing in property (H3) well-defined. Alternatively, to avoid recurring
to the definition of the vector space structure on tp, we could phrase (H3)
simply as “tp is finite”, relying on the fact that k is finite.



Chapter 2

Deformation functors

In this chapter we introduce the deformation functors of group representa-
tions and present all fundamental definitions necessary to understand the
rest of the thesis. This way we also provide a concrete example showing
how the theory and notions introduced in the previous chapter can be used.

A more detailed introduction to deformations of group representations
can be found in [Go|, [Mazl]|, [Maz2|, [Ble] or [Boel]. A characteristic fea-
ture of our exposition is that we try to make clear relations between the
Schlessinger criteria appearing in Theorem 1.47 and certain widely used
assumptions on groups and representations (see our discussion in section
2.3.2). In particular, opting for greater generality, we do not require our
groups to satisfy the so called p-finiteness condition (see Definition 2.27).
We also pay a bit more attention to the concept of a versal deformation ring:
we comment on some apparent inconsistency of its definitions used by differ-
ent authors (section 2.3.1) and present an example of a versal deformation
ring that is not a universal deformation ring (Lemma 2.37).

2.1 Deformations of group representations

We recall that here and elsewhere in the thesis we use Notation 1.1. In
particular, k£ stands for a finite field of characteristic p.

21
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2.1.1 Group representations

Let G be a group and R be a ring. The term “an n-dimensional represen-
tation of G over R’ is used in the literature for two slightly different, but
related concepts. It can refer to either of the following:

e a group homomorphism G — GL,(R), or
e an RG-module V that is free and of rank n over R.

To make a clear distinction, we refer to V' as in the second definition as to a
“representation module” (“representation space”, in case R is a field). Note
that a representation module can be equivalently defined as a free R-module
of finite rank over R, equipped with an R-linear action of G.

The relation between the two definitions is as follows. A representation
space can be seen as a pair consisting of a free R-module V of rank n and a
group homomorphism G — Autg(V). Choosing an R-basis, one identifies
V with R" and G — Autr(V) with G — GL,(R). Since the basis can be
chosen in different ways, representation modules correspond to equivalence
classes {KpK~|K € GL,(R)} of representations p : G — GL,(R). Con-
versely, it is easy to find a representation module corresponding to a group
representation. We will use the following notation.

Notation 2.1. Given a group representation p : G — GL,(R), we denote
by V, the R-module of n x 1 column vectors over R, on which g € G acts
via multiplication by p(g).

By Ad(p) we mean the free R-module M,(R) on which g € G acts via
conjugation with p(g). Thus Ad(p) = Endg(V,). By Ad(p)® we denote the
submodule of G-invariants.

When G is a topological group and R is a topological ring, it is natural
to focus on representations that are continuous. The corresponding rep-
resentation modules can be relatively easily characterized if G and R are
profinite. Note that this extra assumption is always satisfied in this thesis,
since we only study representations of profinite groups over objects of ¢
(which are profinite by Corollary 1.21).

Definition 2.2. Given a topological ring R and a profinite group G, we
define the completed group algebra R[[G]] as the inverse limit of usual group
algebras R|G/N|, where N ranges over all open normal subgroups of G.
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Remark 2.3. If G is finite then we have R[[G]] = R[G].

One checks that equivalence classes of continuous finite dimensional rep-
resentations of a profinite group G over a profinite ring R correspond bi-
jectively with topological R[[G]]-modules that are free and of finite rank
over R.

2.1.2 Basic definitions

We present two ways of defining deformation functors, corresponding to the
discussed two points of view on group representations.

The module-theoretic approach

Let G be a profinite group and V' be a topological k[[G]]-module that is of
finite dimension over k.

Definition 2.4. We define a lift of V to R € Ob(C) as a pair (W, ¢),
where W is a topological R[[G]]-module, free, of finite rank over R and
¢ k®r W — V is an isomorphism of topological k[|G]]-modules.

We will say that two lifts, (W7, ¢1) and (Wa, ¢2), of V to R € Ob(C)
are isomorphic if and only if there exists an isomorphism ® : W; — Ws of
topological R[[G]]-modules such that ¢ o (idy ® ®) = ¢1, i.e., such that the
following diagram commutes:

idy @ @

kE®@r Wi k®@r Wa
NP
Vv

Definition 2.5. A deformation of V is, by definition, an isomorphism class

of lifts of V. Given R € Ob(C), we define Defy (R) to be the set of defor-
mations of V to R.

Definition 2.6. Let a é—morphism f : R — R’ be given and denote by ¢
the canonical isomorphism k ®g (R’ ®r V) = k ®r V. We define Defy (f)
as the map Defy (R) — Defy (R’) that takes (W, ®) to (R’ ®r W, P o).

Observe that using the above definitions we obtain a covariant functor
Defy : C — Sets, the deformation functor of V.
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The matrix approach

Let G be a profinite group and p : G — GL,(k) be a continuous repre-
sentation (where k and, consequently, GL,, (k) are considered with discrete

topology).

Notation 2.7. For a C-morphism f : R — S and A € M,(R) let fA €
M, (S) be the matriz obtained applying f to every entry of A. We denote
the continuous group homomorphism GL,(R) 3 A — fA € GL,(S) either
by the same symbol f or, if this might lead to confusion, by GL,(f).
Definition 2.8. We define a lift of 5 to R € Ob(C) as a continuous group
homomorphism p : G — GL,(R) such that p = GL;,(my) © p. The set of
all lifts of p to p will be denoted by Lift;(R).

7TmR

Definition 2.9. We call p,p’ € Lift;(R) strictly equivalent if and only if
there exists K € ker GL,,(mn,) such that o' = KpK~!. The set of resulting
equivalence classes will be denoted by Def;(R) and any of its elements will
be called a deformation of p to R.

Notation 2.10. The strict equivalence class of p € Lift5(R) will be denoted
by [p]-

Observe that every morphism f : R — S of € induces a map Lift;(R) 3
p — GL,(f) o p € Lift;(S), which we will denote by Lift;(f). Since this
map preserves strict equivalence classes, we also obtain an induced map
Defs(f) : Defs(R) — Def5(S).

Observation 2.11. The above definitions define covariant functors Lift;
and Def; from C to Sets, the lift and deformation functor of p.
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The interplay between the definitions

Suppose G is a profinite group. Let V be a topological k[[G]]-module, n-
dimensional over k. Choosing a k-basis ey, ..., e, we identify V with k™ and
obtain an associated continuous group homomorphism p : G — GL, (k).

If (W, ¢) is alift of V to R € Ob(C), we can choose an R-basis fi,..., f,
of W that lifts ey, ..., ey, i.e., such that ¢(1 ® f;) = e;. The corresponding
continuous group homomorphism p : G — GL,(R) is a lift of p. The defi-
nition of p depends on the choice of vectors fi,..., f,, but its deformation
class does not. Hence, the deformations of V' and the deformations of p
can be identified. It is easy to conclude that we obtain an isomorphism of
functors Defy =~ Def.

Remark 2.12. The definition of a deformation functor given in the module-
theoretic setting seems to be more elegant and better motivated. However,
in the rest of the thesis we will work with the second definition, which we
find more convenient for explicit computations.

Remark 2.13. The lift functor can be interpreted in the module-theoretic
setting as the framed deformation functor, see [Boel, § 1.1].

2.2 Basic properties of deformation functors

We assume that G is a profinite group and p : G — GL, (k) is a continuous
representation.

Proposition 2.14. The functor Def; is continuous (in the sense of Defi-
nition 1.89) and satisfies properties (HO)-(HZ2) of Theorem 1.47.

Proof. See [Maz2, Proposition 1| or a more detailed discussion in [Go,
Lemma 2.3, Lemma 3.4, Lemma 3.6]. O

The lift functor plays for us only an auxiliary role, but we briefly com-
ment also on its properties.

Proposition 2.15. (i) The functor Lift; is continuous and satisfies prop-
erties (HO), (H1), (H2) and (HY).

(it) Property (H3) is satisfied by Lift; if and only if it is satisfied by Defp.

(iit) The canonical natural transformation Lift; — Defj is smooth.
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Proof. We only comment on part (ii), the other claims can be verified by a
straightforward check. Of course finiteness of Lift;(k[e]) implies finiteness
of Def;(k[e]). The converse statement follows from the fact that, since k[e]
is a finite ring, every deformation class of p to k[e] contains only finitely
many lifts. O

2.2.1 Tangent space

Proposition 2.14 and Remark 1.38 (see also Remark 1.49) imply that for
every V € U there is a natural k-vector space structure on Def;(k[V]). We
present now a cohomological interpretation for the tangent space tpef, =
Def;(k|e])-

Observe that Def;(k[e]) is non-empty, since we obtain a lift of p com-
posing it with the inclusion k — k[g]. We will denote the resulting lift by
the same symbol p.

Notation 2.16. If G is a profinite group and M is a discrete G-module
then we will use the symbol H" (G, M) to denote the continuous cochain
cohomology group. Similarly, Z" (G, M) stands for the group of continuous
cocycles (see [Se?2, §2] for definitions).

Lemma 2.17. Given p € Lift;(k[e]), let f, : G — M,(k) be such that p =
(In+ef,)p. Then for every p € Lift p(k[e]) we have that f, € Z*(G, Ad(p))
and

toet, 2 [p] = [f,] € H'(G,Ad(p))

s an isomorphism of k-vector spaces.

Proof. See [Mazl, §21]. O

Remark 2.18. We easily deduce from Lemma 2.17 the following slightly
more general result: The functors U — Vecty defined by V — Def;(k[V])
and V — HY(G,Endy(V)) are naturally isomorphic.

2.3 Representability of deformation functors

We assume that G is a profinite group and p : G — GL, (k) is a continuous
representation.
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2.3.1 Versal and universal deformation rings

Definition 2.19. If Def; is representable, then the object representing it
will be called the universal deformation ring of p. If Def; has a versal hull,
then it will be called the versal deformation ring of p.

Working out the definitions and using Yoneda’s lemma, one sees that
representability of Def; is equivalent to the following statement:

There exists R, € Ob(C) and p, € Lift;(Ry) such that for every

R € Ob(C) each element of Def;(R) is of the form [f o pu], for a uniquely
determined f € Homgs(Ry, R).

GL,(Ry)

-
’
P,
e ™
s
’

G — GLy (k)

Definition 2.20. Suppose R, is a universal deformation ring of p. Every
pu € Liftz(R,) for which the map f — [f o p,] defines an isomorphism
hr = Def, will be called a universal lift of p. Similarly, if R, is only a
versal hull and p, is such that the mentioned transformation is étale, we
will say that it is a wversal lift of p.

Remark 2.21. Remark 1.44 shows that, given a versal lift of p, of p,
the transformation hg,(S) 3 f — [fpu] € Def;(S) is surjective for every
S € Ob(C).

This observation is actually used by some authors to define the versal
deformation ring in the following, seemingly less restrictive way.

Definition 2.22. (Alternative definition of a versal def. ring) We will say
that R, is a versal deformation ring of p if there exists a natural transfor-
mation hg, — Def; that is surjective on every C-ring and bijective on k[e].

It is clear that a versal ring in the sense of Definition 2.19 is also a
versal ring in the sense of Definition 2.22. The converse implication is also
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true, but not completely trivial, as shown in Example 4.14. Both definitions
appear often in the literature, the first one for example in [Mazl, By, Gol,
the second one for example in [Ble, BCdS, Maz2|, but the author has never
seen any cominent on this apparent inconsistency of definitions. We fill this
small gap in the literature in section 4.1.3, see Corollary 4.13.

2.3.2 Existence of versal and universal deformation rings

Proposition 2.23. (i) The versal deformation ring of p exists if and only
if Def; satisfies property (H8) of Theorem 1.47.

(it) The universal deformation ring of p exists if and only if Def, satisfies
properties (H3) and (H4).

(iii) Property (H3) of Defj is implied if CHom(ker p, Z/pZ) is finite.
(iv) Property (H4) of Def; is implied if Ad(p)® = kI,, holds.

Proof. Part (i) and (7i) is a direct consequence of Theorem 1.47 and Propo-
sition 2.14. For part (iii) see the argument of [Go, Lemma 3.7] and for part
(iv) see [Go, Lemma 3.9] or prove the claim using Lemma 4.39. O

Remark 2.24. (1) Using Property 2.15 we conclude that Def; has a versal
hull if and only if Lift; is representable.

(2) In Remarks 2.31 and 2.36 we show that implications converse to those
presented in parts (i4i) and (iv) of Proposition 2.23 do not hold true.
On the other hand, in Proposition 2.33 we present a necessary condition
for property (H3).

(3) The condition Ad(p)“ = kI,, holds when j is absolutely irreducible (see
[Maz1, §4, Corollaryl).

It is worth noting that the sufficient condition appearing in Proposi-
tion 2.23.(4i7) can be formulated in several equivalent ways using the lemma
below.

Definition 2.25. Given a profinite group G, the symbols GP and GP
stand for the pro-p (abelianized pro-p) completion of G, i.e., lim G/N,
with the limit taken over all open normal subgroups N such that G/N is a
p-group (an abelian p-group).
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Lemma 2.26. Let G be a profinite group and define I' := G®P_ Then
CHom(G,Z/pZ) is finite if and only if any of the following equivalent con-
ditions is satisfied:

o GP is topologically finitely generated.
o I' is a finitely generated Z,-module.
o I'/pI is finite.

Proof. See [Go, Lemma 2.1]. O

The finiteness condition

Parts (i) and (ii7) of Proposition 2.23 motivate the following definition.

Definition 2.27. We say that G satisfies the “p-finiteness condition” (®,)
if and only if for every open subgroup J < G, the set CHom(J, Z/pZ) is
finite.

Note that finiteness of CHom(G, Z/pZ) alone does not imply (®,) .

Example 2.28. Suppose p # 2, let H := liilneN(Z/pZ)” and define G :=
Cy x H, with the action of Cy = (&) defined as Vh € H : e.h = —h. Then
G is a profinite group and G is trivial, but for the open subgroup H we
have that CHom(H,Z/pZ) is infinite.

If a group G satisfies the condition (®,), it follows from Proposition 2.23
that every continuous representation of G has a versal deformation ring. We
note that also the converse statement holds (a hint: if U < G is an open
subgroup of G for which CHom(U,Z/pZ) is infinite, consider the [G : U]-
dimensional representation of G induced from the trivial one-dimensional
representation of U and use Lemma 2.29).

A comment on the usage of the introduced conditions in the lit-
erature

Almost all authors writing on deformations of group representations for-
mulate their results only for profinite groups satisfying (®,). This is quite
understandable, since the theory has originally been developed in order to be
applied to representations of Galois groups, which automatically satisfy this
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condition (cf. [Go, Theorem 1.6 and Problem 1.26], [Boel, Examples 1.2.2]).
On the other hand, such a restriction turns out to be an obstacle and an
unnecessary complication, weakening the results when working in a fully ab-
stract setting (as we do in this thesis). consciously avoid assuming condition
(®p), in contrast to other authors.

The reader should be aware of this difference and keep in mind that
we often refer to standard results which, formally speaking, have only been
proved in the literature for groups satisfying (®,). However, in such a
situation the reader will easily check that the proofs to which we refer are
valid in a fuller generality.

Similarly, we note that some results are stated in the literature only
for p satisfying the condition Ad(p)® = kI, (or even: only for absolutely
irreducible p), whereas their proofs go through in any case in which the
universal deformation ring exists.

2.3.3 Non-noetherian setting

We would like to comment also on our choice to work in the noetherian
setting. It is naturally motivated, sufficient for many applications (like
Galois deformations) and simplifies many arguments. Its big advantage is
that it allows us to use the Schlessinger criteria and structure theorems
presented in the first chapter.

On the other hand, we have to admit that it sometimes turns out to
be an unnatural obstacle. This will be seen for example in the awkward
formulations of Proposition 2.30, Proposition 4.40 or Corollary 5.25.

The reader will observe that many times we obtain results regarding
representability not using the existence criteria provided by Schlessinger,
but explicitly determining or constructing the universal deformation ring
(cf. for example the proof of Theorem 5.10). Looking closer, the reader will
notice that some of our proofs hold true (or can be easily modified to hold
true) for arbitrary inverse limits of artinian rings, also the non-noetherian
ones (cf. Remark 1.20).

We would like to mention that some authors have approached the prob-
lem of representability of deformation functors Def; in a category of (not
necessarily noetherian) local W(k)-algebras, arising as inverse limits of ar-
tinian rings. Tt is worth noting that the condition Ad(p)® = kI,, appearing
in Proposition 2.23.(iv) guarantees representability of Defs in this larger
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category, by an object which is noetherian if and only if dimy tpef, < 0.
For details, see for example [dSL|, [Hi, §2.3] or |Go, Appendix 1].

2.4 Examples

We present various examples with the aim of illustrating the introduced
notions and properties. Some of the results presented here will also serve
us in the next chapters.

2.4.1 One-dimensional representations

Let G be a profinite group and p : G — GL, (k) be a continuous represen-
tation. In this subsection we will assume that n = 1. Since for every ring R
we can identify GL;(R) with R*, this means p will simply be a continuous
character G — k*. This is the easiest case to consider and it has been
worked out in [Maz2, §1.4] or, in greater detail, in [Go, Proposition 3.13|.
However, note that these authors work with the assumption that G satisfies
the p-finiteness condition (®,) of Definition 2.27.

Lemma 2.29. If n =1 then:

(i) Def; depends only on the group G and not on the character p. More
precisely, the functors Defp, Lift; and R — CHom(G, RX,) are natu-
rally isomorphic.

(1t) Def; satisfies property (H3) if and only if CHom(G,Z/pZ) is finite.
(iit) Defy satisfies property (H4).

Proof. (i) The fact that functors Def; and Lift; coincide is an easy conse-
quence of the commutativity of GL1(k) = k*. Observe that for every
Re Ob(é) there exists at least one lift of p to R, namely pg := Tro p.
Every lift of p to R is therefore of the form X - pg, where A : G — RZ,

is a continuous group homomorphism.

(ii) By the first claim, tpe, = CHom(G, k[€]Z,). The multiplicative group
kle]Z; is isomorphic to the additive group of k, which (due to the
finiteness of k) is isomorphic to (Z/pZ)™ for some m € N. It follows
that CHom(G, k[¢]Z,) = CHom(G, (Z/pZ)™) is finite if and only if
CHom(G,Z/pZ) is finite.
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(731) The claim follows from the first one and Proposition 2.15. O

We conclude, using Proposition 2.23, that either CHom(G, Z/pZ) is fi-
nite, in which case Def}; is representable, or p does not even have a versal

deformation ring. It is also clear that property (®,) implies finiteness of
CHom(G,Z/pZ).

Proposition 2.30. Suppose CHom(G,Z/pZ) is finite and define T := GP.
Then Ry, := W(K)[[T']] is an object of C and the universal deformation ring
of p. Denoting the Teichmiller lift k* — W(k)* by 7 and the image of
ge G in T by g we have that

G> g 7(plg) -lg] € R}
is a untversal lift of p.

Proof. See the argument of [Go, Proposition 3.13] (the result to which we
refer is actually stated for groups satisfying (®,), but its proof uses only
the fact that I is finitely generated as a Z,-module). O

Remark 2.31. Using the notation from Example 2.28, consider the one-
dimensional continuous representation defined as the composition p: G —

Cy 22D, k%, In this case G does not satisfy (®,), but property (H3)
holds. Moreover, since kerp = H and CHom(H,Z/pZ) is infinite, we
see that the sufficient condition for property (H3), described in Propo-
sition 2.23.(7i7), is not a necessary one. On the other hand, p|x is a repre-
sentation for which (H3) does not hold.

Remark 2.32. Observe that requiring the universal deformation ring to
be noetherian is in this subsection only a complication (cf. our remarks in
section 2.3.3). As one can check, if I'/pI" is not finite, the ring W(k)[[I']]
is not noetherian. However, working not in C, but in a bigger category
comprising also non-noetherian inverse limits of local artinian rings we could
simply say in Proposition 2.30 that Def} is represented by W(k)|[[I']].

An application: twisting by one-dimensional representations

Let us remark that one-dimensional characters occur naturally also when
studying higher dimensional representations, mainly due to the following
observation.



2.4. FExamples 33

Let G be a profinite group and p : G — GL, (k) be a continuous rep-
resentation, with n not necessarily equal one. If p; : G — GLy(k) = k* is
the trivial map then Lift; =~ Defj;, is a group functor acting on Lift; as
follows:

VS eOb(C): Lifty (S) x Lift;(S) 3 (A, p) = X p € Lift;(S).

This action is, in particular, faithful for every S € Ob(C). We also obtain
the induced action of Lift; on Def;. This fact has some consequences for
the structure of universal deformation rings, which we shall not discuss here
— see for example [Maz2, §1.4] and [Go, Problem 6.6]. Instead, we present
the following corollary, giving a necessary condition for property (H3).

Proposition 2.33. If p has a versal deformation ring then CHom(G, Z/pZ)
is finite.

Proof. If p has a versal deformation ring then Lift;(k[e]) is finite by Propo-
sitions 2.15 and 2.23. In view of the above observation, Lift, (k[¢]), acting
faithfully on Lift;(k[e]), is finite and the claim follows from Lemma 2.29. [J

2.4.2 Projective modules

Proposition 2.34. If G is finite and p is such that the kG-module V; is
projective then W (k) is the universal deformation ring of p. In particular,
this applies to every representation of a finite group G of order coprime to p.

Proof. Let R, be the versal deformation ring of p (it exists, since G ob-
viously satisfies (®,,) ). Since Vj is kG-projective, Ad(p) is kG-projective
as well, hence cohomologically trivial. The tangent space H'(G,Ad(p)) to
Dj is therefore zero-dimensional and so R, is a quotient of W (k) by Corol-
lary 1.32. Hence, there is at most one deformation of p to every S € Ob(é);
in particular: R, is universal. On the other hand, by Prop. 42, §14.4 in
[Se|, the kG-module V; can be lifted to a W(k)G-module that is free over
W (k). This implies that R, = W(k). In case G is finite and p { #G, every

kG-module of finite k-dimension is projective by Maschke’s theorem. O

Example 2.35. Let G be the cyclic group Ce with generator g and define
p: G — GLy(k) by p(g) = (94). Then V5 = kG and, by Proposition 2.34,
W (k) is the universal deformation ring of p. Note that here we do not
require |G| to be coprime to p.
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Remark 2.36. Proposition 2.34 provides an easy way of constructing a
representation p satistying (H4), for which Ad(p)® = kI,, does not hold.
For instance, consider a trivial non-one-dimensional representation of an
arbitrary group of order coprime to p.

2.4.3 Trivial representations

In this subsection we want to provide an example of a representation for
which the versal deformation ring of p exists, but is not the universal de-
formation ring. According to Proposition 2.23, this is precisely the case
when property (H3) is satisfied, but (H4) is not. Other examples with this
property can be constructed using Lemma 3.9.

Lemma 2.37. Let G be a profinite group and p be its trivial n-dimensional
representation p : G — {I,} — GLy (k). Then:

(i) The canonical natural transformation Lift; — Defj is étale.

(i) The functor Lifts is representable if and only if CHom(G,Z/pZ) is
finite.

(1it) If CHom(G, Z/pZ) is finite and the canonical map Lift; — Defj is
not as isomorphism then p has a versal deformation ring which is not
universal.

Proof. (i) The transformation is smooth by Proposition 2.15. If p €
Lift;(k[e]) then im p € I, + €M, (k), so for every K € I, + M, (k) we
have KpK~! = p. This implies that the canonical map Lift,(k[e]) —
Def5(k[e]) is an isomorphism.

(i) By Proposition 2.15 and Theorem 1.47, the functor Lift; is repre-
sentable if and only if Lift;(k[e]) is finite. Here we have Lift;(k[e]) =
CHom(G,1 + eM,(k)) =~ CHom(G, M,,(k)). Due to the finiteness of
k, the additive group M, (k) is a product of a finite number of copies
of Z/pZ, so CHom(G, M, (k)) is finite if and only if CHom(G, Z/pZ)
is finite.

(731) Suppose that both listed conditions are satisfied. Part (i) implies
that Lift; is representable. Due to part (i), the object R representing
Lift; is also a versal hull for Def;. On the other hand, R does not
represent Def, since Lift; — Def}; is not an isomorphism. O
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We present an easy application of Lemma 2.37:

Example 2.38. For every n € N5, the trivial n-dimensional representation
of G := Z, has a versal deformation ring R, which is not universal.

It is actually easy to describe R, (defined in the above example) explic-
itly, namely: R, = W(k)[[Xij]]1<i,j<n. Indeed, if A € M,,(R,) is the matrix
with (7, j)-th entry equal to Xj;;, then the continuous group homomorphism
p: Z, — GL,(R,) that is uniquely defined by p(1) = I,, + A, is a versal lift
of p.






Chapter 3

A generalization of Rainone’s
construction

In this chapter we analyze deformations of some particular two-dimensional
representations, defined in Definition 3.2. The presented construction gen-
eralizes the one considered by Rainone in [Ra, Chapter 5| and has several
interesting features. The main result of the chapter is Theorem 3.11 in
which we simultaneously obtain:

e 3 family of versal, but not universal, deformation rings;

o for every finite field k # Fo,F3, a way of realizing every ring of the
form

W(k‘)[[Xl, e ,Xm]]/(ao, ale, ceey ame),

where m € N, ag,...,a, € W(k), as a universal deformation ring of
some group representation.

In particular, we show in Example 3.13 that for every finite field k # Fo, F3
and every natural r the power series ring k[[X1,...,X;]] is a universal
deformation ring of some finite group representation. As we will discuss in
section 6.6.4, this observation contrasts the main result of Chapter 6.

We also note that the analysis performed in this chapter will be used in a
particular case considered in Chapter 5 — see Remark 3.6 and Theorem 5.14.

37
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3.1 The construction

In what follows we use the notation introduced in Chapter 1.

Notation 3.1. We denote by M the category of topological profinite W (k)-
modules (i.e., inverse limits of finite W(k)-modules) and continuous homo-
morphisms.

For example, every R € Ob(C) considered as a topological W(k)-module
is an object of M. Note that for k = F, the category M coincides with the
category of abelian pro-p groups. We will be mainly interested in the mod-
ules that are finitely generated over W(k), to which we devote Lemmas 3.7
and 3.8.

Definition 3.2. Let M € Ob(M) be given and let us write p for ).

u

e We will denote by x : p x g — g the homomorphism x : (u,v) — %.
The same symbol will stand also for the homomorphism u x y —
Aut (M) sending g € 1 x p to the automorphism M s CLNy V3

o We define Gy := M x, (% 1) and for R € Ob(C), a € Hom (M, R)
we denote by p, the representation

Gu 3 (m, (u,0)) - <(1) O‘({”)> <g 2) e GLa(R).

(note that here and later in this chapter we identify the groups )
and pg, cf. Remark 1.15).

It is easy to check that every group Gy defined as above is profinite and
every p, is a well-defined continuous representation. This chapter is devoted
to studying deformation functors of representations of this particular type.
The original example of Rainone corresponds to the case M = Z/p"Z &
Z/jp"Z,1 <m <n,and a: M — F, defined by a(a,b) = a (mod p).

3.2 Lifts and deformations of M-morphisms

Mimicking the definitions of lifts and deformations of group representations,
we define similar notions for M-morphisms. These ad hoc definitions are
not used in the literature and we introduce them only in order to facilitate
our analysis of the described deformation functors.
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Definition 3.3. Let M € Ob(M) and o € Homp(M, k) be given. For

R € Ob(C) we define:
o if 3,y € Hompz (M, R) then f ~ v & Jue R : f=uy,
o Lift,(R) := {5 € Homam (M, R) | Ty 0 B = a},
e Def,(R) := Lifto(R)/ ~.

R

2
’

’
s
’

’
’

M—2

Tmp

One extends these definitions in an obvious way and obtains functors
Lift,, Def, : C — Sets. We note that they are connected by the following

property.

Lemma 3.4. If M € Ob(M) and o € Homn (M, k) then the canonical
transformation Lift, — Def,, is smooth.

Proof. Pick a (f'—surjection m: B — A. We have to prove that the induced
map Lift,(B) — Lifta(A) X per,(a) Defo(B) is surjective. Let 3 € Lift, (A)
and v € Lift,(B) be such that [5] = [ o]. By definition, there exists u €
AZ, such that 8 = u(mo~). Choose any v € m (u~1). Then vy € Lift,(B)
is such that 7(vy) = f and [vy] = [v]. O

The connection between the introduced deformation functors and the
deformation functors of group representations described in Definition 3.2 is
explained in the following proposition.

Proposition 3.5. Let M € Ob(M) and o € Hompag(M, k) be given. If
a = 0, assume that p > 3, otherwise assume k # Fo,F3. Then the cor-

respondence [B] — [pg] defines a natural isomorphism between Def, and
Def,, .

Proof. The assumption k # Fo, 5 implies that there exists A € £* such that
A2 # 1. In case p > 3 we can even (and will) choose such A in the prime

~

subfield F,, € k. Given a ring R € Ob(C), we denote by the same symbol X
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the Teichmiiller lift of A to ur. Observe that A> — 1 is then invertible in R
and in case p > 3 we also have that A lies in the image of Z, in R.

We will denote the matrix (6\ fl)) by A. It is easy to check that, for every
R e Ob(C) and M € My(R), the matrices A and M commute if and only if
M is diagonal (for this property it is actually only important that A — 1 is
invertible).

We clearly have a natural transformation Lift, — Lift,, defined by
f + pg. In order to prove that the transformation [3] — [pg] is well-
defined and injective, we verify the following property: if R € Ob(é) and
B,v € Lifto(R) then [pg] = [py] holds if and only if 5 = wy for some
u € R{. Suppose first [pg] = [py]. Then there exists a matrix K € ker mn,,
such that Kp/gKfl = py. Evaluating both sides at A we obtain that K and
A commute, so K is diagonal. If a,b € Ry are such that K = (3 2), then
v = ¢3. Conversely, if v = uf3 for some u € Ry, then (49) pg (¥ (1))_1 = psy.

It remains to check the surjectivity of the transformation. Consider
R e Ob(C) and ¢ € Def,_(R). Since the order of ®> < Gy is coprime to p,
Proposition 2.34 implies that ps,2 has precisely one deformation to R. It
follows easily that & = [p] for some p € Lift,, (R) such that p|,2 = id|,2. In
particular, p (3 9) = (39).

We claim that for every m € M the matrix p(} ™) is upper triangular.
Pick m € M and let a,d € 1 + mpg, b = a(m) (mod mpg), cemR be such
that p(37) = (24). Then p(57) = QD p ) QD™ = (£7)-
We proceed now in two cases.

If « is not trivial: The subset M\ ker o additively generates M, so it
is sufficient to prove the claim for all m ¢ kera. If a(m) # 0, then b is

invertible. Since (§7) and (§ ") commute, so do their images, (2%) and

(;C );lb); in particular: a + Xbc = a + Abc. Consequently, (A2 — 1)bc = 0
and ¢ = 0 because (A\? — 1)b is invertible.

If o is trivial: By our choice, A lies in the image of Z, in R, so there
exists a sequence (f,)nen of integers converging to \. For n € Z, let ay, by,

Cny dn € R be such that p(§™m) = (‘Cl Z)n = (‘CZZ ZZ) . Easy induction on
n € N shows that ¢, = ct,, for some ¢, € R satisfying ¢, = n (mod mg);
this property immediately extends to all n € Z. By continuity,

. af, br.\ .. 1 faom\ (1 dm\ [a X
Jﬂréo(ctf" dfn>_r}£§op<o 1 )70 1)7\ie a)
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so c(ty, — %) converges to zero. For sufficiently large n we have ty, = f, = A
(mod mp), which implies that ¢7, #  (mod mg) and ts, — % is invertible.
Hence, ¢ = 0.

To finish the proof (in both cases), pick m € M and let m := {";. From
the relation p (§7) = [(39).p(§7)] and the fact that p(}7) is upper—
triangular, one Concludes that the diagonal entries of p (7) are identities.

There exists therefore a function 5 : M — R such that p ((1) my) = ((1) B(I”)>

for every m € M. It follows easily that 8 € Lift,(R) and we obtain & = [pg|,
as required. O

z”

We mention a possible generalization of the argument presented in the
proof of Proposition 3.5. It will find its application in Chapter 5 — see
Theorem 5.14.

Remark 3.6. Given « € Homp((M, k) and H < p X p, one can consider
the group Ga,g := M %, H < Gy and its representation po g : pa|GM’H.
If a #£ 0, define Xy := X( I\{£1}, otherwise let Xp := (x(H)\{£1}) nZ,.
If X is non-empty, the analysis carried out in the proof of Proposition 3.5
can be almost entirely applied to studying Def,, ,,. Indeed, one only needs
to alter the proof by substituting (6\ [1)) with an arbitrary element of the set
H n x Y Xg) to conclude: Every deformation class of pa,u to R € Ob(é)
contains a lift p such that p|g = idy; for every p with this property there
ezists a function : M — R such that p(§™) = (1 B(m ) for everyme M.

The only significant difference is that, dependlng on x(H), the condi-
tions imposed on 8 may be different than in the general case (more specif-
ically, in some cases it does not have to be W(k)-linear). However, this

problem does not occur if the ring generated by Z, and x(H) coincides
with W (k).

3.3 Finitely generated W(k)-modules

We are mostly interested in studying the representations introduced in Def-
inition 3.2 in case M € Ob(M) is finitely generated over W (k). Before
proceeding further with our analysis, we present therefore two technical
lemmas related to properties of such modules.

Lemma 3.7. Let M be a finitely generated W(k)-module. Then:
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(i)
(iii)
(iv)

If M € Ob(M) then the topology on M 1is the p-adic one (the one
in which p"M, r € N, forms the base of topology). Conversely, M
together with p-adic topology is an object of M.

If N € M then every W(k)-linear morphism f : M — N is continuous.
There exist e1,...,em € M such that M = @, W (k)e;.

If « € Hompy(M, k) is a non-zero morphism then there exist eq €
1 +kera and ey, ..., ey € kera such that M = @" W(k)e;.

Proof. (i) If M is finitely generated then for every r € N, the module

(i)

(i)

(iv)

M /p" M is finitely generated over W(k)/(p"), hence finite. This proves
that M with the p-adic topology is an object of M. On the other
hand, if M € Ob(M) then for every r € N, the submodule p" M of M
is closed. Since it is of finite index, it is also open. For every open
submodule U of M we have that M /U is a p-group of finite index,
hence p"M < U for some r € N. This shows that p" M is the basis for
the topology on M.

If U is an open submodule of N then p"N € U for some r € N. Hence,
p"M < f1(U), so f1(U) is open.

This is just a direct application of the structure theorem for finitely
generated modules over principal ideal domains.

We use the previous claim to obtain eg,e1,...,e, € M such that
M = @ W(k)e;. The set Z := {eqg,...,em} N (M\kera) is non-
empty and without loss of generality we may assume that eg € Z and
#W(k)eg = min{#W (k)e | e € Z}. Rescaling, we can furthermore
assume that eg € 1 + kerav. If ¢; € Z for some i > 0 then there exists
Xi € W(k) such that e} := e; — \jep belongs to ker . Changing e; to
e; for all such i > 0, we obtain e; with all required properties. O

The following lemma can be seen as an extension of Lemma 2.26.

Lemma 3.8. Given M € Ob(M), the k-vector space Homp (M, k) is finite
dimensional if and only if M is a finitely generated W (k)-module.
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Proof. The “if” part is obvious. For the other implication, suppose that
Hompa(M, k) = Hompa(M /pM, k) is finite dimensional. Then there exist
only finitely many open subspaces of M/pM of codimension one. Since
every open subspace of M /pM is an intersection of such subspaces, we
conclude that M /pM has only finitely many open subspaces, hence is finite
dimensional.

To finish the proof, it suffices to apply the following variant of Nakaya-
ma’s lemma ([Ei, Exercise 7.2]): Suppose that M is a module over a ring
R that is complete with respect to an ideal m. If M is separated (that is:
(Nen ™ M = {0}) and the images of my,...,my, € M generate M/mM,

then my, ..., m, generate M. Note that in our case R = W(k) is complete
with respect to the ideal (p) and M is separated, since it is an inverse limit
of finite W(k)-modules (each of which is separated). O

3.4 Representability

Our goal is to examine the existence of universal deformation rings of the
representations defined in Definition 3.2. In cases in which they exist, we
are also interested in their explicit determination.

Keeping in mind Proposition 3.5, we will look closer at properties of
deformation functors Def, introduced in Definition 3.3. We divide our
analysis into two cases.

Lemma 3.9. If M € Ob(M) and a € Hompn (M, k) is the zero morphism
then:

(i) Lift, coincides with the functor R — Homa (M, mp).
(i) The canonical transformation Lift, — Def, is étale.

(113) Defy(k[e]) is finite dimensional if and only if M is finitely generated
over W(k).

(iv) Suppose M is finitely generated, M = @ W (k)e; (cf. Lemma 3.7)
and a; € W(k), i € {1,...,m}, are such that W(k)e; = W(k)/(a;).
Then

R, :=W(E)[[X1,..., Xn]l/ (a1 X1,. .., amXm)

is the versal hull of Def . However, R, does not represent Def,, unless
M =0.
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Proof. (i) This claim follows directly from definition.

(73) The transformation Lift, — Def, is smooth by Lemma 3.4. The
fact that the tangent spaces to Lift, and Def,, are isomorphic follows
easily from the first part of the lemma and the following observation:
if R = k[e], then uz = x for every u € RZ| and x € mp.

(i7i) By the first two parts of the lemma, Def,(k[e]) = Lift,(k[e]) =
Homa (M, k). The claim follows directly from Lemma 3.8.

(iv) Given R € Ob(C), every € Homyy (M, mpg) is fully determined
by its values on ej,...,en. We obtain thus a natural isomorphism
hgr, =~ Lifty,, defined by assigning to each ¢ € hg,(R) the only
B € Homyy(y) (M, mp) for which B(e;) = ¢(X;). Since the canoni-
cal transformation ® : Lift, — Def, is étale, R, is a versal hull of
Def,,.

To finish the proof, we have to show that ® is not injective when
M # 0. Indeed, choose R for which there exists a non-zero v €
Homa (M, mp), for example: R = W(k)/(pai). Then @ is not injec-
tive on R[[X]]. Indeed, v ~ (1 + X)y and v # (1 + X)~. O

Lemma 3.10. If M € Ob(M) and o € Homp (M, k) is a non-zero mor-
phism then:

(i) For every ey € 1 + ker a we have a natural isomorphism of functors
Def, and R — {f € Lift,(R) | B(eo) = 1}.

(i) The canonical transformation Lift, — Def, is smooth, but not étale.

(iii) Def,(kle]) is finite dimensional if and only if M is finitely generated
over W(k).

(iv) Suppose M is finitely generated, eg € 1 + kera, e1,...,e, € kera
are such that M = @ W (k)e; (cf. Lemma 3.7) and let a; € W(k),
i €{0,...,m}, be such that W(k)e; =~ W(k)/(a;). Then
Ry, = W(E)|[[X1,..., Xn]l/(a0, a1 X1, ..., amXm)

represents Def,.
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Proof. (i) The claim follows easily from the following observation: if eg €

1+ keraw and R € Ob(C), then each § € Lift,(R) is in relation ~ with
precisely one [y € Lift, (R) such that Sy(eg) = 1, namely with @ 5.

(7i) The transformation Lift, — Def, is smooth by Lemma 3.4. However,
the induced map Lift, (k[e]) — Def,(k|e]) is not injective, since it has
a one-dimensional kernel (an easy corollary from the first part of the
lemma).

(13i) Choose eg € 1+ker a. By the first part Def,, (k[e]) = {5 € Lift,(k[¢]) |
B(eo) = 1}. We have M = W (k)eo + ker a and W (k)ep N ker o = pey,
so B € Lifty(k[e]) such that B(ep) = 1 correspond bijectively with
B € Hom g (ker o/ W (k)peg, ke). We conclude, using Lemma 3.8, that
Def,(k[e]) is finite dimensional if and only if ker oo/ W(k)pey is finitely
generated. This is the case if and only if ker « is finitely generated,
which holds if and only if M itself is finitely generated.

(iv) Every f8 € Lifto(R) is uniquely determined by images S(ep) € Ry and
B(e1), ..., B(em) € mp. Using the first part of this lemma and keeping
in mind that {8 € Lifto(R) | B(eo) = 1} is non-empty if and only if
ap = 0 in R, we easily obtain the claim reasoning similarly as in the
proof of Lemma 3.9.(iv). O

3.5 Conclusions

Theorem 3.11. Given M € Ob(M) and a € Homa (M, k), define Gy and
Pa : Gy — GL, (k) as in Definition 3.2.

(i) If M is not finitely generated over W (k) then p,, has no versal defor-
mation ring.

(ii) Suppose o = 0. If M is finitely generated, there exist ay,...,an, €
W(k) such that M = @", W(k)/(a;). Assuming p > 3 we obtain that

Ry = WE)[X1, .., Xm]]/(@1 X1, - -, amXm)

is the versal deformation ring of po; however, if M # {0} then R, is
not the universal deformation ring.
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(i1i) Suppose v £ 0. If M 1is finitely generated, there exist ag,...,am, €
W(k) and submodules My, Ms < M such that M = M; @ Mo,
My = W(k)/(ao), My = @, W(k)/(a;), My & ker o and My < ker a.
Assuming k # Fo, F3 we obtain that

Ry, = W(k)[[X1,..., Xn]l/(a0, a1 X1, ..., amXm)
is the universal deformation ring of pq.

Proof. Combine Proposition 3.5 with Lemmas 3.9 and 3.10 (using also
Lemma 3.7, part (i7i) and (iv), for the statements regarding the structure
of M in case it is finitely generated). O

Example 3.12. When p > 3, a € pW(k), M := W(k)/(a) and « is trivial,
the above construction yields R, = W(k)[[X]]/(aX) as a versal (but not
universal) deformation ring.

Example 3.13. For M := k™! (r e N), a : M — k projection on the first
coordinate, k # Fa,F3, the above construction yields R, = k[[X1,..., X;]]
as the universal deformation ring.

We actually have the following more general corollary.

Corollary 3.14. If k # Fy,Fs then for arbitrary positive integers ko, ki,
.o, kmy the Ting

WE[[X1, ... Xn]]/@™, p" X, .. P Xon)

can be obtained as a universal deformation ring of a finite group represen-
tation.

Remark 3.15. The condition Ad(p,)®™ = kI, is satisfied if and only if
« is non-trivial. It is interesting to observe explicitly how this property
(or its lack) influences the existence of the universal deformation ring in
Theorem 3.11.

It should be also underlined that in this chapter we have obtained rep-
resentability results explicitly constructing versal or universal deformation
rings and not relying on Schlessinger criteria giving their existence a priori.



Chapter 4

Towards determining the
universal deformation rings

This chapter has an auxiliary character. We present here a collection of
various technical results that can be used to gain information about the
universal deformation ring of a given group representation. Our considera-
tions originate from answers to several questions that arose in the course of
preparation of Chapter 5.

The main idea of the first part of this chapter is to identify and look
closer at deformations with particularly interesting properties. We present
now sample results in this direction, which we will apply in the next chapter
(for the proof, see Remark 4.11, Example 4.18 and Lemma 4.19). Here
and below G is a profinite group and p : G — GL,(k) is a continuous
representation.

Proposition 4.1. Suppose p has a unwersal deformation ring R;, let R €

~

Ob(C) and p € Liftz(R) be given and assume that for some i,j € [n] we
have I, + Re;; < im p. Then:

(i) R is a quotient of Rp.
(11) R; =~ R holds if and only if [p] is a universal deformation of p.

(i1i) The ‘natural transformation hp — Def; that associates, gwen S €
Ob(C), the map f € hr(S) with the deformation [f o p| € Def;(S) is
injective.

47
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In the second part we choose a different approach and try to relate
universal deformation rings of different representations. For example, we
obtain the following result, which is a shortened version of Proposition 4.40.

Proposition 4.2. Suppose that N < G is a closed normal subgroup such
that Ad(p)N = kI, and p|n has a universal deformation ring R. Assume
moreover that there exists a universal lift of p|n that may be extended to a
lift G — GL,(R) of p.

If CHom(G/N, Z/pZ) is finite then R[[(G/N)*P]] is a universal defor-

mation ring of p. Otherwise Def; is not representable over C.

Many of our ideas culminate in Proposition 4.29 which links both ap-
proaches and we obtain the following simple corollary (see Example 4.31).

Proposition 4.3. Let R;, R and p be as in Proposition 4.1. Then there
exists a universal deformation ring Ry, of the representation im p — GL,, (k).
Moreover, the fiber product R xj, Ry, is a quotient of R; and a necessary
condition for Rz = R is Ry = k.

The above presented results comprise everything we will need in Chap-
ter 5. On the other hand, rather than proving them in an ad hoc manner,
we prefer to develop a more systematic approach.

Doing this we naturally obtain several further results. Among others,
in Corollary 4.13 we resolve the problem with two definitions of a versal
deformation ring, mentioned in section 2.3.1. Corollary 4.27 is not essential
in the next chapter, but gives a good motivation for our considerations, as
described in section 5.1. We present also some results for which we do not
have an immediate application, but which we believe make our exposition
more complete. Finally, let us note that despite being primarily interested
in universal deformation rings, for greater generality we try to formulate
our results, whenever possible, in terms of versal rings.

4.1 Properties of lifts

Let G be a profinite group and p : G — GL, (k) a continuous representation

~

for which a versal deformation ring Rz € Ob(C) exists. Suppose R is not

known, but a ring R € Ob(C) and a lift p € Liftz(R) are given. What
conclusions about R; can one draw from this fact and which properties
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of p are worth studying? These and related questions will occupy us in the
current section.

Even though we are interested only in deformation functors of group
representations, we find it convenient to analyze our problems first in an
abstract category theoretic setting. In what follows F' will denote an arbi-
trary set valued functor F': C — Sets.

4.1.1 Properties of natural transformations hp — F

~

Notation 4.4. For R € Ob(C) and § € F(R) we will denote by £* the
natural transformation hr — F defined as

VS e Ob(C): hr(S)afm F(f)(E) e F(S).

By Yoneda’s lemma, every natural transformation © : hp — F' is of the
above form. More specifically, © = O(idg)*.

Remark 4.5. Our notation is motivated by the following observation. For

T € Ob(C), F = hr, £ € hr(R) the obtained natural transformation hrp —
hr coincides with the pull-back transformation, standardly denoted by &£*.

We are mainly interested in functors that are representable or at least
have a versal hull. Consequently, we are mostly interested in the case when
&* is a natural isomorphism or at least is étale. However, it is convenient
to introduce also the following weaker properties.

A~

Definition 4.6. Given R € Ob(C) and a natural transformation ® : hp —
F, we define the following potential properties of ®:

(S) @ is surjective on every object of C.

(I) @ is injective on kle].

(SI) @ satisfies (S) and (I).

If, working with the above properties, we will want to emphasize the choice

of the functor, we will add a suitable subscript to their names and, for
example, write: property (Sg), property (I) etc.
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It is clear that if ® is a natural isomorphism, then & satisfies (SI).
The same implication holds true if ® is étale, provided that #F (k) = 1
(Remark 1.44).

We will say that £ € F'(R) has one of the above defined properties if and
only if £* does. Moreover, we will say that R satisfies one of them if and
only if there exists £ € F(R) satisfying it.

Definition 4.7. We will denote by FC the so called category of elements
of F'. The objects of FIC are pairs (R,&gr) of R € Ob(C) and &g € F(R); the
morphisms are defined as

Hom ;s ((R.€R), (S.€s)) == {f € Homy(R, S) such that F(f)(ér) = £s),
for every pair of objects (R, &R), (S, Es).

We will say that (R,€&) € Ob(FC) has one of the properties (S), (I),
(ST) if and only if £ does. Similarly, we will say that (R, §) represents F' (is
a versal hull of F') if and only if £* is a natural isomorphism (is étale).

4.1.2 Relations between properties of different transforma-
tions

Before stating the next lemma, we recall that in category theory a split
monomorphism (or: a section) is a morphism that is a right inverse of some
other morphism. Similarly, a split epimorphism (or: a retraction) is a left
inverse of some morphism.

Lemma 4.8. For a C-morphism ¢ : R — S let ©* : hg — hp denote the
pull-back transformation. Then:

(i) ©* is injective if and only if ‘/’Z[e] 1s injective and if and only if ¢ is
surjective.

(ii) ©* is surjective if and only if ¢ is a split monomorphism in C.

Proof. For part (i) see the proof of [Mazl, Lemma, p. 279|, part (i7) follows
easily from definitions. O

Lemma 4.9. Let f : (R, {r) — (S, &) be a morphism of FC and denote
by f* : hs — hg the pull-back transformation. Then £& = £ 0 f* and we
have the following implications:



4.1. Properties of lifts 51

S) for &s = (8) for &r-

I) for &5 = f surjective.

S) for g and [ is a split monomorphism = (S) for &g.

(
(
(
(

I) for &g and f surjective = (I) for Eg.
hs .
Proof. For every T € Ob(C) and g € Homs(S,T) we have

£5(9) = F(9)(&s) = F(go f)(&r) = ER(f(9)),

which shows that & = &5 o f*. All the claims follow easily from this
observation and Lemma 4.8. 0

Proposition 4.10. If there exists (Rp,&F) € Ob(FC) satisfying (SI) then
for every (R, &) € Ob(FC) we have:

(i) (R,€) satisfies (S) if and only if a surjection (R,&) — (Rp,&F) exists.
If this is the case then every map (R,&) — (Rp,&F) is a surjection.

(i) (R, &) satisfies (I) if and only if a surjection (Rp,&r) — (R, &) exists.
If this is the case then every map (Rp,&r) — (R, &) is a surjection.

(iii) (R,&) satisfies (SI) if and only if an isomorphism (Rp,{r) — (R,€)
exists. If this is the case then every map (Rp,&p) — (R,€) is an
isomorphism.

Sketch of the proof. We use the implications listed in Lemma 4.9 in the
following way:

(1) The “if” part follows from the first implication, the “only if” part and
the additional statement follow from the second implication.

(7i) Similarly, we use the fourth implication for the “if” part and the second
implication for the “only if” part as well as the additional statement.
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(731) The “if” part is obvious. For the other statements we use part (i),
part (i¢) and Lemma 1.10. O

Remark 4.11. In the rest of this chapter we will concentrate on property
(I) rather than property (S). This is motivated by the following arguments:

(1) Testing property (I) is much easier than testing property (S) and can
be performed using some universal criteria. On contrary, arguments
proving property (S) usually depend heavily on the particular case con-
sidered. This will be very well seen in Chapter 5.

(2) We find very useful the following observations following from Proposi-
tion 4.10.(3¢). Let F' be such that #F (k) = 1 and F' has a versal hull.
Suppose we are given (R, &) € FC. If we can show that & has property
(I), we obtain that R is a quotient of the versal hull of F'| even without
having determined the versal hull explicitly. Moreover, in this case we
also conclude using Lemma 1.10 that R is a versal hull of F' if and only if
(R, &) is a versal hull (note that in general such implication is of course
not true).

4.1.3 An application: two definitions of a versal deformation
ring

The following result fills the small gap mentioned in section 2.3.1.

Proposition 4.12. Suppose F : (?A—> Sets satisfies properties (HO)-(H2)
of Theorem 1.47. If (R,&) € Ob(FC) has property (SI), then it is a versal
hull of F.

Proof. If (R,€) € Ob(FC) has property (SI) then ¢ = tg is finite and a
versal hull (R,,&,) of F exists by Theorem 1.47. Since (R,,&,) has prop-
erty (SI) by Remark 1.44, Proposition 4.10.(i77) shows that there exists an
isomorphism (R, &,) — (R,&). This proves the claim. O

Corollary 4.13. Let F be a deformation functor of some group repre-
sentation. As an immediate consequence of Proposition 4.12 and Propo-
sition 2.14, we obtain that Definition 2.19 and Definition 2.22 of a versal
deformation ring are equivalent.

Note that, as the below example shows, property (SI) does not imply
in general that a transformation is smooth.



4.1. Properties of lifts 53

Example 4.14. Given R € Ob(C), set F(R) := mp/(m% A Annp). For
f € Homs(R, S) let F(f): F(R) — F(S) be the induced map. We obtain
a continuous functor F : C — Sets, for which #F (k) = 1.

Denote the functor R — mpg by G. Assigning to = € G(R) its equivalence
class in F(R), we obtain a natural transformation © : G — F that is
surjective and bijective on k[e]. To see that it is not smooth, consider
A = W(k), B := W(k)/(p?). One easily checks that the map G(A) —
G(B) xp(p) F'(A) is not surjective. For instance: (0, ©4(p?)) does not lie in
its image. Using the natural isomorphism hwz[x]) = G, we obtain a non-
smooth natural transformation hywrx7) — F that satisfies property (SIy).

4.1.4 Property (I) for deformation functors

Let G be a profinite group and p : G — GL, (k) a continuous representa-
tion. We specialize our general considerations to the case of F' = Def}; and,
motivated by Remark 4.11, focus on property (I). We want to determine
the deformations of p having this property. The aim of this section is to
present an easy sufficient condition serving this purpose.

A criterion for property (I)
Notation 4.15. Given a subset H € ker p, let us denote by ef){ the ideal

el = ((p(g) = In) (i,5) | g€ H, i,j€[n]) < R

generated by all entries of all matrices of the form p(g) — I, g € H.

~

Lemma 4.16. Let R € Ob(C) and p € Liftz(R) be given. Suppose that
f € hr(k[e]) lies in the kernel of the map [p]z[a] : hr(k[e]) — Defs(k[e]).

Then el;erﬁ C ker f.

Proof. Choose an arbitrary g € ker p and suppose p(g) = I, + A for some
A € M(mpg). Since [f o p] = [p], there exists K € I, + eM,(k) such
that KfpK~! = p. In particular, evaluating both sides at g we obtain
K(I, + fA)K ! = I,. Both K and I, + fA belong to I,, + eM,(k) and
since this is an abelian group, we conclude that fA = 0, i.e., fA(i,7) =0
for every i,j € [n]. O

Proposition 4.17. If p is such that (ex™?,p) = mg then [p] has (I).
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Proof. Tt is clear that p € ker f for every f € hr(k[e]). This observation and
the assumption combined with Lemma 4.16 show that every f € ker[p]z[ 4
coincides with the canonical reduction modulo mp. Hence, ker[p]]’;[g] is
trivial, [,0],’;[6] is injective and [p] has (I).

Example 4.18. If for some i, j € [n] we have I, + Re;; € im p then ey ? =
mp. Consequently, [p] has property (I).

Actually, the condition considered in Example 4.18 has even stronger
consequences.

Lemma 4.19. If for some i, j € [n| we have I, + Re;; € im p then [p]* is
imjective.

Proof. Let S € Ob(C) be given and consider f, g € hr(S) with [fop] = [gop].
By definition, there exists X € I + M,,(mg) such that fop = X (g op)X 1.
In particular, for all » € R we have I, + f(r)e;; = X(I + g(r)e;;) X!
or, equivalently, f(r)e;; = g(r)Xe; X ! Substituting 7 = 1 we obtain
ei;j = Xe;j X1 so we conclude that f(r)e;; = g(r)e;; holds for all r € R.
Hence, f = g. O

Property (I) and fiber products

Proposition 4.17 can be seen as a special case of the following more general
result, which in turn is a preparatory step for Proposition 4.29. Let m :
Ri — S, mo : Ry — S be surjective C- morphisms and denote by R; xXg Ra
the corresponding fiber product (cf. Lemma 1.25). Given deformations
[pi] € Defs(R;) with the same reduction to S, it is easy to see that there
exists [p] € Defz(Ry xg Rg) such that [p;] = [pi o p] for i = 1,2. One can
wonder whether it is possible to conclude from properties of [p;] that [p]
has property (I).

>GL R1 ><5R2

Ay
TN A

Ry)
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Proposition 4.20. Define R := Ry x5 Ry and let p € Lift;(R) be a lift
projecting to p1 € Lift;(R1) and po € Lift;(R2). Suppose |p2]| has property
(I) and kermy < (eﬁ‘frm,char Ro) holds. Then [p] has property (I).

Proof. Let f € kerpj . Observe that T2 5 {0} C ehTP S0 e x
{0} < ker f, by Lemma 4.16. Moreover, since p = (p,p) € ker f, we also
have that (char Rs,0) € ker f. The assumption implies now that ker ps =
ker m x {0} € ker f. Hence, f factors via R and using the assumption that
[p2] has property (I), it follows that f is trivial. We conclude that [p] has
property (I). O

Remark 4.21. In the special case Rp = S = k, p2 = p we obtain Proposi-
tion 4.17.

4.2 Relations between different universal deforma-
tion rings

As mentioned in the introduction, our aim for the second part of this chapter
is to investigate relations between deformation rings of different represen-
tations. This is done in Proposition 4.25, devoted to representations of
quotient groups and Propositions 4.34 and 4.40, devoted to representations
of subgroups. The most elaborate Proposition 4.29 links the approach of
this section with the approach of the first part of the chapter.

4.2.1 General setup

Let G1, Gy be profinite groups and « : G; — G2 be a continuous group
homomorphism. Consider a continuous representation ps : Go — GL, (k)
and let p; := pg o a. Then p; : G; — GLy(k) is continuous and if both
p1 and ps have versal deformation rings, we want to study how they are
related. As in the preceding section, we will first analyze the problem in
a more general setting, basing on the observation that o induces a natural
transformation ©, : Def;, — Def;,, defined as follows:

V¥S € Ob(C) : Def,(S) 3 [p] — [p o a] € Defy (S).
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poa ..o

4.2.2 Relations between different functors

Let F, G be covariant functors C — Sets such that there exist (Rp,&r) €
Ob(FC) and (Rg,£q) € Ob(GC) with properties (SIp) and (SIy), re-
spectively. Suppose moreover that we are given a natural transformation
O : F — G. We want to check how the existence of © and its properties
relate Rrp and Rq.

Our assumptions lead to the following setup. We obtain the diagram

hr, hrg
3 €&
©
F G

which we want to complete by adding an arrow between hg, and hg.
(corresponding, clearly, to a C-morphism between Rp and Rg). In the next
lemma we discuss the two possibilities for doing this.
Lemma 4.22. Let ¢ : Rg — Rp and ¢ : Rp — Rg be é—morphisms.
(i) The first diagram below commutes if and only if G(¢)(€g) = O(&R).
(i) The second diagram below commutes if and only if O(F (¢)(&r)) = &a.
(i5i) If ¢ and v satisfy conditions listed in parts (i) and (i1) then Yy €

Auts(Rg). If & is moreover a natural isomorphism, even 1o = idg,
holds true.
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Proof. (i), (1) In both cases we apply Yoneda’s lemma, due to which it
is sufficient to check where the identity maps are taken by different com-
positions of maps. In the first case we obtain (O o &5)(idp) = O(&p)
and (&% o ¢*)(idrp) = G(¢)(&e)- In the second case: &f(idg) = &¢ and
(@0 &f) oy*(idg) = O(F(¢)(&r)). In each case the diagram commutes if
and only if the two presented expressions are equal.

(7i1) If G(p)(&a) = O(&r) and O(F(v)(€r)) = &a hold, then using the

definition of a natural transformation we obtain:

G(p)(§a) = G()(O¢r) = O(F (V) (EF)) = &a-

Hence, {5 (o) = €5(1dR). If £ is a natural isomorphism then ¢ = idg,
and we are done. In general, property (SI) of ¢ and Proposition 4.10.(7i7)
imply that 1y is an automorphism of Rg. O

Observe that property (S¢) of g implies that there exists at least one
GC-morphism ¢ : (Rg,&q) — (Rp, ©(&r)), i-e., ¢ satisfying the first condi-
tion given in Lemma 4.22.

Proposition 4.23. Let a GC-morphism ¢ : (Rg,éq) — (Rr,O(Er)) be
given. Then:

[ 1s surjective if and only if O is injective.
¥ [e]
(i) The following conditions are equivalent:

(a) ¢ is a split monomorphism,

(b) © is surjective,

(C} fG Eim@RG,

(d) there exists ¢ : Rp — Rg satisfying the condition given in
Lemma 4.22.(i1).
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Proof. (i) By Lemma 4.8, ¢ is surjective if and only if Prle] 1S injective.
Since (£&)k[e) and (£f)x[e) are isomorphisms and the first diagram in
Lemma 4.22 commutes, wZ[g] 1s injective if and only if Oy, has this
property.

(7i) (a) = (b): By Lemma 4.8, ¢ is a split monomorphism if and only if
@™ is surjective. If this is the case, then © is surjective as well, given
that &, is surjective and the first diagram in Lemma 4.22 commutes.

(b) = (c): This implication is obvious.

(¢) = (d): By assumption, there exists £ € F(Rq) such that ©(&) =
&a. By property (Sp) of £&¢ we obtain a map ¢ : Rp — Rg such
that & = F(¢)(¢r) and this 1 satisfies the equivalent conditions of
Lemma 4.22.(i1).

(d) = (a): Follows from Lemma 4.22.(ii1). O

Representability and existence of versal hulls

Note that in the setup considered above, in some cases representability
or existence of a versal hull of one of the functors implies the analogous
property of the other functor. For example, we have the following result.

Lemma 4.24. Assume that F and G are continuous functors satisfying
properties (HO)-(H2) of Theorem 1.47.

(i) Suppose Oy is surjective. If F' has a versal hull then G has a versal
hull as well.

(i3) Suppose Oy, is injective. If G has a versal hull (is representable) then
F has a versal hull (is representable) as well.

Proof. (i) By Theorem 1.47, F has a versal hull if and only if F' satisfies
(H3), i.e., if and only if dimy tp < 0o. Surjectivity of Oy : tr — tg
implies that dimy t¢ < oo. Hence, G satisfies (H3) and has a versal
hull as well.

(ii) The proof in the case of versal hulls is analogous to the previous one.
If (Rg,&q) represents G, we obtain that there exists a versal hull
(Rp,&r) of F. In order to prove that it represents F, assume that

~

for some S € Ob(C) and f,g € hg,(S) we have 5(f) = £5-(g). By
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Proposition 4.23, the map ¢ : (Rg,€q) — (Rr,O({r)) is surjective.
We obtain

§a(fow) = G(fop)éa) = G(N)(OEr)) = OF (/) (Er)) = OEr(S))

and, similarly, £&(go¢) = O(£r(g)). Hence, £5(fop) = £5(fop) and
we conclude using injectivity of {7 that f oy = gop. By surjectivity
of ¢, this implies f = g¢. O

Note that in the first case G need not be representable even if F' is. For
example: consider the surjective transformation Lift; — Def; corresponding
to an arbitrary group representation p having a versal deformation ring that
is not, universal.

4.2.3 Representations of quotient groups

We return to the general setup described in section 4.2.1 and specialize the
above results to the case ' = Def;,, G = Def; and © = 0,. We will
analyze first the special case of a surjective.

Proposition 4.25. If a: Gy — G2 is surjective then:
(i) The natural transformation ©, : Def;, — Defj, is injective.

(it) If p1 has a versal deformation ring Ry, then ps has a versal defor-
mation ring Rp,, which is a quotient of Rs . If R; is a universal
deformation ring of p1, then Ry, is a universal deformation ring of po.

A~

Proof. (i) If R € Ob(C) and [p], [¢] € Defs,(R) are such that [poa] =
[¢ o a] then by definition there exists K € I, + My (mpg) for which
poa = K(poa)K 1. Since a is surjective, we conclude that p =
K¢K~! and, hence, [p] = [¢].

(ii) The claim follows from the first part of the lemma and Proposi-
tions 4.23, 4.24. ]

Example 4.26. Let G be a profinite group and p : G — GL, (k) a continu-
ous representation. Suppose R € Ob(C) and p € Lift;(R) are given. Define
G :=imp, let ¢ be the inclusion G — GL,(R) and set p := my,¢. If p has

a versal (universal) deformation ring R, then:
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GLn(R)

Tmp

G

(i) The representation p has a versal (universal) deformation ring R
which is a quotient of Rj.

(i1) If R =~ R; and [p] is a universal deformation of p then R; =~ Rj.

The first statement follows directly from Proposition 4.25. In the particular
case considered in the second statement, Def; — Def; is also surjective by
Proposition 4.23.(i).

The result presented in the second part of Example 4.26 has the following
interesting consequence for studying the inverse problem. We will comment
on it more in Section 5.1.

A~

Corollary 4.27. If R € Ob(C) is a universal deformation ring of some
representation, then it is also a universal deformation ring of some repre-
sentation for which the universal lift is injective.

We shall not use the following fact, but we mention that it is actu-
ally easy to describe the relation between R; and Rj;, in Proposition 4.25
precisely.

Lemma 4.28. In the setling of Proposition 4.25, suppose [py] is a versal

deformation of p1 to Rp,. Then Rp, = Rﬁl/elgim.

Proof. We have an isomorphism of topological groups Gi1/kera =~ ima =
G2 (note that this statement is not true for arbitrary topological groups;
we use here the fact that G; and Go are profinite, hence compact), so lifts
of pa can be identified with lifts of p; mapping ker « trivially. Hence, given
S € Ob(C), deformations of py to S can be identified with deformations
[f © py] obtained for all f € Homgs(Rp,,.S) for which (f o py)|kerq is trivial.
The last condition is equivalent to eﬁim C ker f and it is easy to conclude

that Rﬁl/eiﬁfm is a versal deformation ring of ps. O
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Quotient groups, fiber product and property (I)

We refine now the result presented in Example 4.26 and link it with the
approach of the first part of this chapter. A concrete motivation for our
considerations comes from Chapter 5, see Remark 5.20.

Proposition 4.29. Let G be a profinite group and p : G — GL, (k) be a
continuous representation having a versal deformation ring R;. Moreover,
assume that R € Ob(C) and ¢ € Defs(R) with property (I) are given and
choose a lift p € &.

For every proper ideal I < R we define Gy := im(mrp) and let pr : G —
GL, (k) be the composition of the inclusion vr : Gr — GLy(R/I) with the
reduction Ty, . We also define ay : G — Gy as the unique map for which
Trop=1Lyoqj.

AL ~

GL,(R;1) » GL,, (Rp;)

5 GLy(R) — Y GLW(R/I)
P lr LY
G o Gr " QL (k)

Under these assumptions, for every proper ideal I < R:
(i) There exists a versal deformation (Rp;,&1) of pr.

(i1) For every morphism ¢ : (Rp,&r) — (R/I,[u1]), the fiber product
Rry = R xpr Rs; of w1 and ¢ is a C-ring.

(i) Given &5 and ¢ as above, there exists a versal lift pr € {1 such that
popr = 1. For this pr we obtain a lift p := (p, proay) : G -
GLn(RI,QO) Of ﬁ

(iv) If elger(mOp) = I then [p] has property (I). In particular: Ry, is a
quotient of R;.
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Proof. (i) The claim follows from Proposition 4.25, cf. Example 4.26.

(i)

(i)

By Lemma 1.25, it is sufficient to prove that ¢ is surjective. This in
turn follows from Proposition 4.10.(é7), once we check that [¢7] has
property (I). If f, g € Homgs(R/I, k[€]) are such that [forr] = [gos]
then also [f oy o p] = [g o 7 o p]. Hence, by property (I) of [p], we
obtain fom; = go s and, consequently, f = g. This proves that [¢1]
indeed has property (I).

Choose an arbitrary lift p, € {;. Since @ o &5 = [if], for some X €
In + My(mp/r) we have X(p o py,)X 1 = 7. By surjectivity of ¢,
there exists Y € M, (Rp;) such that ¢(Y) = X and it is sufficient
to set p; := Yp,Y !, The second statement follows easily, since

Trop=troay=@goproaqy.

We apply Proposition 4.20, with Ry = R, p1 = p and Ry = Rj,
p2 = proaj. Firstly, we check that [p;oar] has property (I). Indeed,
if f,g € Homs(Rp,, k[e]) are such that [foproar] = [goproas] then,
by surjectivity of ay, we also have [f o pr] = [g o pr]. Since [pr] is a
versal deformation of py, we conclude that f = g. Secondly, since ¢f
is injective, py is injective as well and hence ker(py o af) = kerag =
ker(c; o ar) = ker(7r o p). By assumption,

eher(proa) _ gkertxion) _  — ker ;.
We see that assumptions of Proposition 4.20 are satisfied, so [p] has

property (I). The fact that Rj . is a quotient of R; follows from
Proposition 4.10.(47). O

Corollary 4.30. Let us use the notation of Proposition 4.29. If for some
proper ideal I < R condition el,jer(mo’)) = I holds then R;, =~ R/I is a neces-
sary condition for R; = R.

Proof. By Proposition 4.29, if R; = R then there exists a surjection ¢ :
Rp; — R/I such that the fiber product R xp/; Rz, of 7 and ¢ is a quo-
tient of R. On the other hand, R clearly is a quotient of R xp/; Rp,. By
noetherianity (cf. Lemma 1.10), it must be R xr); R, = R, which holds if
and only if ¢ is an isomorphism Rj;, = R/I. O
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Example 4.31. Let G be a profinite group, p: G — GL, (k) a continuous
group representation having a versal deformation ring R;. If R € Ob(C),
p € Lift;(R) are such that for some 4, j € [n] we have I,, + Re;; < im p then
p has property (I) by Example 4.18 and elger TP = T holds for every proper
ideal I <1 R; in particular: also for I = mpg. Denoting by R the versal
deformation ring of imp — GL,(k), we conclude from Proposition 4.29
that R xj Ry is a quotient of R;. Hence, a necessary condition for R; = R
is that Ry =~ k.

Remark 4.32. In what follows we use the notation of Proposition 4.29.

(1) For I = (0) all resulting rings Ry, are isomorphic to R; considered in
Example 4.26.

(2) In Proposition 4.29 we introduce definitions which depend on many
choices we make. We want to note that in case Def; is representable,
the resulting ring R x/; R, is (up to isomorphism) determined only
by the deformation class £ € Def;(R) and ideal 1.

Firstly, G and pr depend on the choice of p € &, but the corresponding
deformation functors Def;, are pairwise isomorphic and can be iden-
tified. If Def; is representable, Proposition 4.25 shows that Def;, is
representable as well. Due to Proposition 4.10.(¢i7), the universal de-
formation (Rp,;,&,) is uniquely defined up to a C-isomorphism. Finally,
since the deformation &, is universal, the map ¢ is uniquely determined
(note also that it depends only on & and not on the particular represen-
tative p € ). We conclude that in this case we can simply talk about
the uniquely determined (up to isomorphism) ring Ry := R xg/; R5;,
corresponding to £ and I.

(3) If condition elger(mo’)) = I holds for more than one ideal I, one may be
interested in comparing the resulting rings Ry ,. We have the following
result:

If el,jer(mo”) =1 and J < I then for every ¢ : (Rp;,&r) — (R/I,[ur])
there exists v : (Rp,,&5) — (R/J,|v1]) such that Ry, is a quotient
Of RJ71/}.

Sketch of the proof. Since p has property (I), so does ¢ (this has been
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shown in Proposition 4.29.(i7)) and one checks that

elbqu(WI/JOLJ) _ el;er(wlop)/J _ I/J
Hence, we can apply Proposition 4.29.(iv) to R := R/J, I := I/J,
p:= pyand p:= ¢y and for every ¢ : (R5,,&r) = (R/1,[tr]) we obtain
a surjective C-homomorphism (¢, f) : Rz, — R/J xpg/ Rz, onto the
fiber product of 77,7 and ¢. We easily conclude that

R XR/J (R/J XR/I Rﬁ[) ~ R XR/I lej = RL@
is an epimorphic image of Rjy = R xg/j Rj,. U

Assume Defj is represented by R; and define X, := {I < R,I # R |
el;er(m = [ }. Using the convention introduced in part (2) we obtain
the family Y, := {R; | I € X,}. If we order the proper ideals of R by
inclusion and (isomorphism classes of) é—rings by the relation of being
a quotient (i.e., R < S < R is a quotient of S), the main results of this

subsection may be summarized as follows:

The map X, 31— Ry €Y, is order-reversing. The family Y, contains
the greatest element, which is R; defined in Example 4.206, has an upper
bound R; and a lower bound R. In particular, a necessary condition for
R; =~ R is that Y; = {R}.

4.2.4 Representations of subgroups

Suppose that, in the setting of section 4.2.1, « is injective. We may identify
G'1 with the closed subgroup H := im «a of G := G2 and « with the inclusion
H — G (note that, similarly as in the proof of Lemma 4.28, we use here
compactness of profinite groups). We will denote py simply by p. The
representation pj in this special case is just the restriction p|g. Moreover,
we will suppose that p and p|y have versal deformation rings Rg and Ry,
respectively.

Remark 4.33. In contrast to the case of representations of quotient groups
(see Proposition 4.25), there is no unique pattern for the relation between
Ra and Ryg. To observe this, consider the extreme case in which H is the
trivial subgroup. Proposition 2.34 implies that Ry =~ W(k), regardless of p.
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As we will show in the next chapter, Rg can be an arbitrary é—ring. Hence,
depending on p, a map Ry — Rg may be injective, as well as surjective, or
not have any of these properties at all.

Keeping the above observation in mind, we present some criteria only
for selected properties of maps Ry — Rg.

Proposition 4.34. Suppose [pc] € Def;(Rg), [pu] € Defy, (Ru) are
versal deformations and consider a Defp, C-morphism ¢ : (R, [pu]) —

(Ra, [(pa)|u])-

(i) ¢ is surjective if and only if the restriction map H'(G,Ad(p)) —
H'(H,Ad(p)) is injective.

(ii) ¢ is a split monomorphism if and only if pgr may be extended to a lift
of p, i-e., if and only if py = p|u for some p € Lift;(Ry).

Proof. Both claims follow easily from Proposition 4.23. In the first case
we also make use of the cohomological interpretation of the tangent spaces
Def;(k[e]) and Def,, (k[e]) as H'(G,Ad(p)) and H'(H,Ad(p)), respec-
tively (cf. Lemma 2.17). It is easy to check that the map Defs(k[e]) 2
[p] — [plu] € Defy,, (k[e]) corresponds in this interpretation with the re-
striction map of cohomology groups. O

The following corollary is an extended version of [Ra, Lemma 3.1.4] in
which the same result was stated, but only for finite groups and universal
deformation rings. As it is customary (cf. [Se2, §1.3]), when working with
profinite groups the subgroup index [G : H] should be understood as the
supernatural number lem{[G : U] | H € U,U < G open}. In particular: the
notion of being “prime to p” appearing in the next corollary is well-defined
also when the index of H in G is not a finite number.

Corollary 4.35. If H < G is a closed subgroup of index coprime to p then
Rg is a quotient of Ryy.

Proof. We have the following general result: if H is a closed subgroup of a
profinite group G, of index coprime to p, then for every ¢ = 0 and every
discrete G-module A the restriction map HY(G,A) — HY(H, A) is injec-
tive on the p-primary component of H?(G, A) ([Se2, §2, Proposition 9 and
following Corollary|). Hence, the claim follows from Lemma 4.34.(7). O
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Note that Rg may be a quotient of Ry also when [G : H] is divisible
by p. This is the case, for example, when H is trivial and p has k as its
universal deformation ring.

Corollary 4.36. Suppose that the injection H — G 1is split. Then ¢ :
R — Rg is a split monomorphism.

Proof. If + +: H — G is split and 7 : G — H is such that m o = idy
then every lift p of p|g extends to a lift p o7 of G. The claim follows from
Lemma 4.34.(ii). O

Example 4.37. The representation considered in [BCdS, Theorem 4.1] is
of the above type. The authors construct there groups K, G, ' = K x G
and a representation of I with universal deformation ring Z,|[[t]]/(p"t, t?).
The universal deformation ring of its restriction to G is Zj, hence: indeed
a retract of Z,[[t]]/(p"t, t?).

It is worth noting that it may be the case that there exist surjections or
split monomorphisms ¢ : Ry — R¢, but that none of them is of the type
considered in Lemma 4.34, see example below. In particular: injectivity of
the restriction map H'(G, Ad(p)) — H'(H, Ad(p)) is only a sufficient, but
not a necessary condition for Rg being a quotient of Ryy.

Example 4.38. Consider R € Ob(C) and ¢ € Ends(R) that is injective, but

neither surjective, nor split (for instance, R := W(k)[[X]], ¢: R XX R)

and define G := SL4(R), H := ¢(G).

In the next chapter we prove that the injection ¢ : G — GL4(R) is a
universal lift for the representation p := my, ot : G — GL, (k). Denote by
v : H — G the inverse of the isomorphism ¢ : G — H. Then [to ] is a
universal lift for p|g and Ry =~ Rg =~ R, but the corresponding map ¢ :
(R, [to]) = (Ra, [t]) coincides with ¢. Due to Proposition 4.10.(#ii), the
maps corresponding to other choices of universal deformations are obtained
composing ¢ with automorphisms of Rg and Rpy. Hence: none of them
defines an isomorphism between Ry and Rg.

4.2.5 Representations of normal subgroups

We present a special case of Lemma 4.34.(i4), in which the relation between
the universal deformation rings can be precisely described.
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Lemma 4.39. If Ad(p)¢ = kI, and p is a lift of p to R € Ob(C) then
Ad(p)¥ = RI,.

Sketch of the proof, cf. [Go, Lemma 3.8]. Let X € Ad(p)“. Tt suffices to
show inductively that for every [ > 1 matrix X is scalar modulo mlR. For
[ = 1 this is assumed in the lemma statement. In the inductive step we
have X = A, + Y, where A € Rand Y € Mn(mgl). Let W be the k-
vector space mlgl/mﬂ,% and d its dimension. Then M, (W) =~ Ad(p)? as
kG-modules and M, (W)% =~ (Ad(p)))¢ = (kI,)?. Clearly Y € Ad(p)Y, so
its image modulo mk, lies in M, (W)Y. It follows that Y, hence also X, is a
scalar modulo mlR. O

Proposition 4.40. Let G be a profinite group and p : G — GLy (k) a con-
tinuous representation. Suppose that N < G is a closed normal subgroup
such that Ad(p)N = kI, and p|y has a universal deformation ring R. As-
sume moreover that there exists a universal lift of p|n that may be extended

to a lift $ : G — GL,(R) of p.

~

(i) For every S € Ob(C) and £ € Def;(S) there exist unique f € hr(S)
and A € CHom(G, S7°) with N € ker X such that & = [X- (f o ¢)].

(i) If CHom(G/N,Z/pZ) is finite then R[[(G/N)™P]] is a universal de-
formation ring of p. Otherwise Def; is not representable over C.

Proof. (i) Consider S € Ob(C) and & = [p| € Def;(S). Restricting to N we
obtain the unique f € hr(S) such that [p|n] = [(f © ¢)|n]- Replacing p by
a strictly equivalent lift (if necessary) we will assume that p|y = (f o ¢)|n-
In what follows, for brevity we denote f o ¢ by ¢y.

Let g € G and n € N be given. Since N is normal, we have ¢¢(gng™!) =
plgng™') = p(g)ds(n)p(g)~". Consequently, ¢5(g) ' p(g) commutes with
all ¢¢(n), n € N, and is therefore a scalar matrix by Lemma 4.39. Let
A G — S be such that p(g) = AMg)¢s(g). Then X is a continuous
group homomorphism factoring via G/N. Conversely, given f € hr(S) and
A € CHom(G, S7°) factoring via G/N, the map ¢7x : g — Ag)ps(g) is a
lift of p. Moreover, if [Qﬁf)\] = [¢f’,X] then ¢\ = ng)f/,)\/X_l for some
X € GL,(R) and restricting to N we see that X is scalar by Lemma 4.39;
consequently: ¢r = ¢y, ie., f= A= N,

(73) Consider the trivial one-dimensional representation py : G/N — k*.
It is easy to conclude from the first part of the lemma that we have a natural
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isomorphism Defz = Defj, x Defj . The claim follows from Lemma 1.28,
Proposition 2.30 and the observation that R@W(k)W(k)[[(G/N)“b’p]] =
R[[(G/N)*7]]. O

Remark 4.41. (1) Working not in C, but in a bigger category, we could
simply state that Def, is represented by R[[(G/N)®P?]] (cf. our remarks
in section 2.3.3).

(2) The condition Ad(p)N = kI, in Proposition 4.40 is crucial. For in-
stance, consider G and p as in Example 2.35 and let N < G be the

trivial subgroup. By Proposition 2.34, the universal deformation ring
of both p|x and p is W(k), whereas W(k)[[(G/N)®P]] = W(k)[Cs].



Chapter 5

The special linear group and a
solution to the inverse problem

This chapter contains the most important results of the thesis. Namely,
we show that every é—ring R can be realized as the universal deformation
ring of a continuous linear representation of a profinite group. The example
we use for this goal is the special linear group G := SL,,(R) together with
the natural representation (induced by the reduction R — k) in GL,(k),
with the assumption n > 4. This is the main result of the chapter. We
moreover discuss similar representations for n = 2,3 and the results of our
considerations may be summarized as follows:

Theorem 5.1. Let R be a complete noetherian local ring with a finite
residue field k, n = 2 and consider the natural representation p of SL,(R)
in GLy (k). Then R is the universal deformation ring of p if and only if
(n? k) ¢ {(27F2)a (27F3)a (27F5)a (37F2)}

We conclude the chapter generalizing our considerations to the closed
subgroups G of GL,(R) that contain SL,(R). We consider analogous rep-
resentations p of G (coming from the reduction R — k) and discuss the
problem whether, given GG, the corresponding p has R as its universal de-
formation ring. Our results show, in particular, that this is not the case
for G = GL,(R), unless R = k and (n,k) ¢ {(2,F2),(2,F3),(3,F2)}. On
the other hand, for G = {4 € GL,(R) | (det A)**~! = 1}, we obtain
R as the universal deformation ring of the corresponding p if and only if
(n,k) ¢ {(2,F2),(2,F3), (3,F2)}. We also show that, in contrast to the case

69
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G = SL,(R), for some choices of G and R a universal deformation ring of
the corresponding p even does not exist.

This chapter is a modified version of author’s preprint [Dor]. Compared
to the preprint, there are several changes in notation, order of exposition and
even some of the proofs, but the mathematical content remains almost the
same. The only improvement worth mentioning is presented in Remark 5.20,
to which we would like to draw reader’s attention. It is a corollary of results
discussed in the preceding chapter.

Remark. Similar results have been obtained independently by Eardley and
Manoharmayum in their preprint [EM], published at almost the same time
as the first version of [Dor|. However, the methods of both papers are
different. The reader is encouraged to get familiar also with the approach of
Eardley and Manoharmayum, which is based on cohomology computations.
We present a more elementary and self-contained approach treating also
some cases (n = 2; n =4, k = [Fy; the general linear group) that [EM| does
not cover.

5.1 Motivation

We begin describing and motivating a general framework in which we will
be working in this chapter.

One often studies some naturally occurring group representations in or-
der to understand better the structure of a given group. In our case, since
we focus on the inverse problem, we are free to choose groups and repre-
sentations the way it is convenient for us. Corollary 4.27 shows that it is
sufficient to restrict to representations with an injective universal lift. Such
a lift gives us a way of identifying the represented group with a subgroup
of a general linear group and we naturally arrive at the following setup.

Let R € Ob(C), n € N be given and suppose G is a closed subgroup
of GL,(R). Then it is a profinite group and the inclusion g : G —
GL,(R) is a continuous representation of G, lifting the residual representa-

tion pg = Tmxzla.
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GLn(R)
g Tmpg
G 2 GL, (k)

We are interested in finding a group G such that (g is a universal lift of
pc- The first and most obvious candidate to consider would be the group
GL,,(R) itself. Note that Rainone has studied the deformations of the iden-
tity map GLy(F,) — GL2(F,) in [Ra] and obtained F, as the universal
deformation ring for all p > 3. However, one quickly notices that in general
the condition described in Proposition 2.33 may not be satisfied (see Exam-
ple 5.23), so Def;, may even not be representable over C. And even if it is,
then not necessarily by R, as we will show at the end of this chapter.

The described problems with G = GL,(R) are some of the reasons why
we turn our attention to the group G = SL,(R). A big advantage of this
choice is that the special linear group has a nice set of generators satisfying
many interesting properties (described in the next section), which will play
a key role in our considerations.

5.2 Structure of the special linear group

In this section R denotes a commutative ring and n an integer. Moreover,
we assume n = 2.

Notation 5.2. Let a,b € [n], a # b. We introduce the following notation
for some of the elements of GL,(R).

ot =1, +rey, forr e R.

e d(ry,...,ry), where r; € R*, is the diagonal matriz with consecutive
diagonal entries r1,...,Ty.

o d'y :=d(r1,...,m), where r € R* and rq =1, 1y :=1r"1 r;:=1 for
1 # a,b.

o oy i=1Ip —eqq — epp +Teqp — r~ley,, for r e RX.
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This notation suppresses n and R, but that should not cause any problems
as n will usually be fixed and R easily deducible from the element r used.

Lemma 5.3. The following relations hold for a,b,c,d € [n], a # b:

(R1) If r,seR then ty, to, =t/°,
(R2) If r,se R andc+#a,b then  [toy, ti.] = toe,

(R3) If r,s€e R and {a,c} n{b,d} =& then [tl,,t3,] =1

R7

(R4) If re€ R, D=d(\,...,\),\i € R then Dty D' = tasﬁT
(R5) If ueR™ then o =t% t;a% £
(R6) If ueR™ then dY = oot
(R7)

If weR*,r,seRandu=1+rs  then djy, = tgbtiata%b Lo

Sketch of the proof. These identities follow directly from definitions and
straightforward computations in which one uses the fact that egpecq = Ipe€ad
(0pe being the Kronecker delta symbol). O

Lemma 5.4. Given an ideal a I R let Uy := SL,(R) n (I, + My,(a)) and
Vo i= (!, € GLy(R) | 7 € a). If R is local then Up < Vo < Us. In
particular, Ur = SL,(R) is generated by all the elements of the form t,.

Sketch of the proof. The inclusion V,; € U, is obvious. For the other inclu-
sion, let M € Uy2. Observe that multiplying M by ¢!, amounts to adding
a multiple of one of its rows or columns to some other. We claim that per-
forming such operations on M we may obtain a diagonal matrix lying in
Ugz. If a is contained in the maximal ideal m of the ring R then all the
diagonal entries of M are invertible and we may simply cancel all other
entries proceeding row by row. In case a = R every row contains an invert-
ible element (since det M ¢ m), so each diagonal entry either is invertible
or becomes such after one of the described operations. We proceed as fol-
lows: make M (n,n) invertible, cancel all other entries in the n-th row and
column, repeat the procedure recursively on the leading (n — 1) x (n — 1)
submatrix.

Every diagonal matrix in U,2 may be decomposed as a finite product of
matrices of the form d’,, r € (1+a®) A R*. To finish the proof, we show that
each of them is generated by some elements of the form ¢,, r € a. If a = R,
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the claim follows from relations (R5) and (R6) described in Lemma 5.3. If
a € m we use relation (R7) together with the observation that every element
of 1+a? is a finite product of elements of the form 1+rs, where r, s € a. [

Lemma 5.5. Assume R is local with residue field k.

(i) Using the notation of Lemma 5.4 we have that for every proper finitely
generated ideal a < R there exists r € N such that the commutator
subgroup U}, contains Ugr.

(11) If either n > 3 or k # Fo,F3 and n = 2 then SL,(R)" = SL,(R).

Sketch of the proof. (i) Suppose first that n > 3. Then relation (R2) from
Lemma 5.3 implies that V2 € V; and hence, using Lemma 5.4, we obtain
Ua S Ué.

If n = 2 and a proper ideal a < R is given, define b := (2% — 22 |
x € ay < R. Due to relation (R4) from Lemma 5.3, for every =, y € a we

have ((1) (;1:2_1233)9) = [dg*f)’tlﬁ] € U} and, analogously, <($2_12x)y (1)) e U..

Hence, Vpq S UL Observe that {23 | x € a} S b. Indeed, for every x € a
we have 23 = 222 = 42 (mod b) and 4z = (2 + 22) — (z? — 2z) € b. If
a is finitely generated and [ € N is the cardinality of some finite set of its
generators then it is easy to observe that a?*! < (2% | € a). Hence,
a?*2 C ba and we conclude (using also Lemma 5.4) that Us+s  Viaiee C
Vba € U

(i) Tt is sufficient to show that generators of SL,,(R) lie in SL,,(R)". To
this end use Lemma 5.4 and suitable relations from Lemma 5.3: (R2) in
case n = 3 or (R4) in case n = 2, k # Fy, Fs. O

Lemma 5.6. If M € M,(R) commutes with all t, € GL,(R) then M is a
scalar matriz.

Proof. The claim follows from the observation that tclbe =M tcllb is equiv-
alent to e M = Meg,, which holds if and only if M(a,a) = M(b,b) and
Vae#a,y#b: M(z,a)=M(y,b) =0. O

5.3 The special linear group and deformations

Let us fix a finite field & and work in the resulting category C. The following
assumption will be made for the whole of this section.



74 Chapter 5. The spec. lin. group and a solution to the inv. problem

~

Assumption 5.7. Let R € Ob(C) and n = 2 be given, define G := SL,,(R)
and consider the representation p : G — GLy (k) induced by the reduction
R — k. We will denote by v the inclusion G = SL,(R) — GL,(R) and by
J the set {(a,b) € [n] x [n] | a # b}.

As a closed subgroup of GL,(R), the group G is profinite and p is
continuous. We are interested in the following question: is Def; represented
by R?

5.3.1 General observations

Recall that, according to Notation 4.4, we will denote by [¢]* : hr — Defj

the natural transformation that, given S € Ob(C), associates with f €
Hom (R, S) the deformation [f o ¢] € Def5(S).

Lemma 5.8. (i) There exists a universal deformation ring of p.
(it) G satisfies the p-finiteness condition (®,).

(i4i) The ring R is the universal deformation ring of p if and only if v is a
universal lift of p.

(tv) The map []* : hr — Defj is injective.

Proof. (i) By Proposition 2.23, it is sufficient to show that Defj satisfies
properties (H3) and (H4). The latter follows from Lemma 5.6 and part
(iv) of Proposition 2.23. For the former, we use part (ii7) of the same
proposition and Lemma 5.5. More precisely, we have ker p = Uy, and want
to check that CHom (U, Z/pZ) is finite. This holds true since Uy, . is open
in G (and hence the abelianization Ug’ is finite) by Lemma 5.5.

(i4) Similarly as above, for every r € Ny the group CHom(Unr,, Z/pZ)
is finite, due to the finiteness of U2% . Since {Uny, | r € N} forms a basis
of open neighbourhoods of G, the claim follows.

(#i1), (iv) Follow from Proposition 4.1. O

We would like to point out that the first claim of Lemma 5.8 has only
a motivating character. According to the last two claims of the lemma, in
order to conclude that R is a universal deformation ring of p, it is enough
to prove that [¢]* is surjective. As the reader will observe, our arguments in
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the next sections will not use the existence of a universal deformation ring
of p, but will rather reprove it.

Preparing for the main argument, we present the following auxiliary
result.

Lemma 5.9. Let S € Ob(C). If & € Def;(S) then & € im [c|& holds if and
only if there exists a lift p € € satisfying the following condition:

() V(a,b)eJ,re R Ic,eS: pth,) =t

Proof. Every lift of p of the form GL,(f)o¢, f € Homs(R, S) obviously satis-
fies (). Conversely, consider p satisfying ({) and suppose first that n > 3.
Conjugating with the diagonal matrix d(1,cls,...,cl,) € I, + My (mg) we
obtain a lift p strictly equivalent to p. It satisfies (<)) as well and in addition
Vi e [n]\{1} : ﬁ(t%j) = t%j, due to Lemma 5.3, (R4). We may thus suppose
without loss of generality that c}j =1 for all j € [n]\{1}. Lemma 5.3, (R2)
implies then that V(j,k) € J, 7,k # 1: cjlk = c%k/c%j = 1. Furthermore, for
every j € [n]\{1} there exists k € [n]\{1,7}, s0 ¢j; = ¢} /c; = 1 as well.
We conclude that V(a,b) € J: ¢!, = 1.

Due to Lemma 5.3, (R1) and (R2), the following relations are satisfied
for all r, s € R and pairwise distinct a, b, ¢ € [n]:

{ Cop " = CoptCly

CZ‘Z = Cgb Cic

Substituting in the second relation firstly » = 1, then s = 1, we see that the
value ¢}, with a fixed € R does not depend neither on a, nor on b. Denote
this common value by ¢(r). We have obtained a function ¢ : R — S,
which is additive by the first relation and multiplicative by the second one,
satisfies ¢(1) = 1 and for which ¢(r) and r have the same image in k, i.e.,
@ € hgr(S). Since G is generated by the elements of the form ¢/, (Lemma 5.4)

*®

we conclude that p = GL,(¢) o ¢ and so [p] = [¢]&(¢p) € im [¢].

Suppose now n = 2. We may similarly assume that cl, = 1. Define
0,9 R — S by ¢o(r) =y and g(r) := c4;. We claim that ¢ = ¢ and
¢ € Homg(R, S), which clearly implies that [p] = [¢]§(p) € im [¢]§. Since ¢
is additive by the relation (R1) of Lemma 5.3, ¢(1) = 1 and for all r € R
the images of ¢(r) and r in k coincide, we only need to check that ¢ is
multiplicative. Furthermore, it is sufficient to check multiplicativity only
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on R*, because of additivity of ¢ and the fact that every non-invertible
r € R is a sum of two invertible elements (e.g. 7 = (r — 1) + 1). Similarly,
it is sufficient to check that g(r) = ¢(r), for r € R*.

Let r € R*, a := ¢(r), b := g(—r~!) and o, := (—79*1 o). Applying
relation (R5) of Lemma 5.3 twice, we get t], t;ll/r Uy =0y = t;ll/rtﬁt;ll/r,
hence:

GG =pler)=(17) (61 (47)

14ab 2a+a?b ) _ _ 1+ab a
( b l+ab ) =ploy) = (2b+ab2 1+ab

It follows that a 4+ a?b = 0, so ab = —1, since a is invertible. This means
o(r)g(r~!) = 1 and p(o,) = (790(2)_1 @g‘)) Relation (R6) implies now

p((" 1)) = ploy)plor) ! = (QP(T) go(r)—1>' As R* 37— (" -1)is agroup
homomorphism, we conclude that ¢ is multiplicative on R*. In particular,
@o(r)g(r~') = 1 implies that g(r—1) = ¢(r~!), s0 g = ¢ on R*. This finishes
the proof. ]

5.3.2 Main result

Theorem 5.10. If n = 4 then v is universal.

A~

Proof. Let S € Ob(C). By Lemma 5.8, we only need to show that [.]§
is surjective, i.e., that every lift of p to § is strictly equivalent to py :=
GL,(f)|g for some f € Homs(R,S). Moreover, we may restrict to the case
S € Ob(C), since all rings in C are inverse limits of artinian rings.

For S € Ob(C) let n(S) be the smallest j € N such that m%, = 0. We
proceed by induction on n(S). For n(S) =1, i.e., S = k, the statement is
obvious. For the inductive step consider S with n(S) > 2, a lift p : G —
GL,(S) of p and set [ := n(S) — 1. By the inductive hypothesis, we may
suppose (considering a strictly equivalent lift if necessary) that p reduced
to S/mk is induced by a morphism g : R — S/mk. For every r € R choose
pr € S such that p, = g(r) mod mfg; for r = 1 we choose p; = 1. This way

V(a,b)eJ,reR: p(th,) =t0 + M2, ,  for some Ml € Myxn(mb).

We will analyze the structure of the matrices M/, proving a series of claims.
In the calculations we use the fact that J := M, x,(mk) is a two-sided ideal
of M,(S) such that mgJ = J% = 0.
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Claim 1. If a,b,c,d € [n] are such that {a,c} n {b,d} = & then for all
r,s€ R:
ps(Mgpeca — €caMgy) = pr(Migeas — eanMzy)

Proof. Since t, and t°; commute (Lemma 5.3, (R3)), so do their lifts. De-
noting ¢ := 7, M := M, z :=t"5 N := M$, we obtain:

ab’ ab?

(t+ M) (z+N)=(z+N) (t+ M)
tz + tN + Mz=2t + zM + Nt
Mz—2zM = Nt —tN
M(In + pseca) — (In + pseca) M = N(In + preay) — (In + preay) N
ps(Mapeca — ecalgy) = pr(Mgear — €arMy) O

Claim 2. VY(a,b) e J,re R: M} (i,j) =0 when i #a, j #b and i # j.

Proof. 1f we fix r € R and (a,b) € J then given j € [n]\{b} we may choose
d € [n]\{a,b,j} (here we use the assumption n > 4). Such a,b, j, d satisfy
the assumptions of Claim 1, so we obtain Me;q — ejqM., = pr(Mjldeab —
eaijld). If i € [n]\{a, j} then a comparison of the (i, d)-entries of both sides

of the relation shows that M, (i,j) = 0. O
Claim 3. V(a,b) e J,re R: trM), =0.

Proof. Lemma 5.5 implies that det p(t!,) = 1, while det p(¢/,) = [ [}, (1 +
M7, (i,i)) = 1+ tr M7, by Claim 2, O

Claim 4. V(a,b) e J,re R: M}, (i,i) = 0 for i e [n]\{a,b}.

Proof. Consider » € R and (a,b) € J. If ¢ € [n]\{a,b} then since n > 4
we may choose d € [n|\{a,b,c}. Let U, := {A € GL,(S) | Vx € [n]\{c} :
A(z, ¢), A(c,x) € mk}. Tt is easy to see that U, is a group and x : U. — S*,
A+ A(e,c) a group homomorphism (due to the fact that (mk)? = 0).
Moreover, p(t",), p(tL.), p(t7,) € U, and since [tL,,¢7,] = 7, by Lemma 5.3,
(R2), we have that x(p(t7,)) = [x(p(tL,) . x(p(t))] = 1. We conclude
that M7, (c,c) = 0. O

Claim 5. V(a,b) e J,re R: M} (a,a) = =M, (b,b).

Proof. This is an immediate consequence of Claim 3 and Claim 4. O
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Claim 6. Ifa,b,c,d € [n] are such that {a,c}n{b,d} = & and (a,b) # (c,d)
then for all r,s € R:

{ psMgb(a7c) = _pTMCSd(ba d)a
ps Mg (d,b) = —prMg(c, a).

Proof. Thanks to Claim 2 and Claim 4 the formula of Claim 1 reduces to
po(Miy(a,c)eaa — €aMp(d,b)) = pr(Miyle.alea — eaaMiy(b,d)),

If (a,b) # (c,d) then the coefficients at e,y (resp. eq) on both sides must
be equal. O

Claim 7. There exists X € M, (mk) such that ¥(a,b) € 3,7 € R 3¢’ € mk:

Mz:b = pr(eabX — Xeab) + czbeab.
Proof. Let (a,b) € J and ¢, d € [n]\{a, b}. The quadruple (a, b, a, d) satisfies
the assumptions of Claim 6, so M}, (a,a) = —M},(b,d) (the first relation).
Combining with Claim 5 we obtain MY (b,b) = M1,(b,d), so Maly(b, y) is
independent of the choice of y € [n]\{a}. We will denote this common value
by Y(b,a). Analogously, using the quadruple (a,b,c,b) and the second
relation of Claim 6 we prove that the value of M}, (z,a), with z ranging
over [n]\{b}, is constant. We will denote it X (b, a).

Setting X (a,a) := Y(a,a) := 0 for all a € [n] we obtain well defined
matrices X,Y € M,(mk). Since M}, (a,a) = —M}, (b,b) by Claim 5, we
have X (b,a) = =Y (b,a) for all (a,b) € J, hence X = —Y.

Consider (a,b) € J and ¢ € [n]\{b}. Then it is possible to find d € [n]
such that a, b, ¢, d satisfy the assumptions of Claim 6 (if a = ¢ choose any d €
[n]\{a, b}, if a # c let d := b; note that this argument relies only on the fact
that n > 3). The first relation gives Vr € R : M, (a,c) = —p, M} (b,d) =
prX(b,c). Similarly, Vd € [n|\{a},7 € R : M},(d,b) = —p,X(d,a). We
conclude that M, = p,(eqp X — Xegqp) + M), (a,b)eqp. d

Let X be as in the last claim and consider the representation p := (I, +
X)p(I, + X)7L. Tt follows that F(t7,) = 7 + M7, + X% — 75 X = 00007,
where ¢qp(r) := pr + ¢}, The lift p, strictly equivalent to p, satisfies thus
(¢) and Lemma 5.9 finishes the proof of the theorem. O
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A~

Corollary 5.11. Every R € Ob(C) can be obtained as a universal deforma-
tion ring of a continuous representation of a profinite group satisfying the
condition (®p) .

5.4 Lower dimensions

In this section we continue working under Assumption 5.7 and discuss the
possibility of extending Theorem 5.10 to the cases n = 2 and n = 3.

5.4.1 Casen=3

Theorem 5.12. Suppose n = 3, k # Fa. Then ¢ is universal.

Proof. A closer look at the proof of Theorem 5.10 shows that assuming
Claim 2 and Claim 4 the rest of the argument would hold also for n > 3.
We provide thus a different argument for both of the claims in case n = 3
and k # Fo (this second assumption is actually needed only for proving
Claim 4). In what follows, we assume [n] = {a, b, ¢}.

A proof of Claim 2: Considering (a,b) € J, r € R we need to show that
M (i,7) = 0 for (i,7) € {(b,a),(c,a),(b,c)}. We see that the fact that ¢},
and t!. commute implies M7, (i,a) = 0 for i # a, just as in the case n > 4.
Similarly, the fact that ", and t!, commute implies M, (b, j) = 0 for j # b.

A proof of Claim 4: Let (a,b) € J, r € R and define U, x just as in the
case n > 4. We need to show M, (c,c) = 0. Making use of the assumption
k # o we choose A\ € RTsuch that A # 0,1 mod mp and consider the

elements d := d),, t := t), '. According to Lemma 5.3, relation (R4), we

ac?

Ar -7
have [d,t] =t} "t} = t7,. Since p(d), p(t), p(t.,) € Ue, evaluating x at
p(tl,) we conclude that M}, (c,c) =0, just as in the case n > 4. O

As the following lemma shows, the case k = Fy must really be excluded
in Theorem 5.12.

Proposition 5.13. Assume n =3 and k = Fa.

(i) There ezists a lift po of p to Zs.

(i) There is no R € Ob(C) for which ¢ is universal.
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Proof. (i) Since im p € SL3(F2), it is enough to prove the claim for R = k.
There exists an irreducible 3-dimensional representation of SL3(F2) over the
ring Z|w], w = _l%ﬁ, defined in [ATL] by

1 10 1 w —-1-w 010 010
A:=10 1 0]~ [0 -1 0 , B =10 0 1]~ 10 0 1
0 01 0 O -1 1 00 1 00

In order to check that a representation of SL3(IFy) = (A, B) may be defined
this way recall that SL3(IF2) is known to be isomorphic to PSLy(F7), which
has an abstract presentation (S, T | ST = T? = (ST)3 = (S*T)* = 1) due to
Sunday ([Su]). One checks directly that the defining relations are satisfied
both by T := A, S := BA and their proposed images. We obtain py by

sending w to the root of X2 + X + 2 that lies in 1 + 2Zs.
(7i) The first part of the proposition implies the claim in case R = k. In
the general case, the claim follows from this observation and Proposition 4.3.
O

5.4.2 Casen=2
Theorem 5.14. Suppose n = 2 and k # Fo, F3, F5. Then ¢ is universal.

Proof. Let S € Ob(C) and £ € Def;(S) be given. According to Lemma 5.8
we only need to show that £ € im [¢]%.

Define H := {(",~1)|u € pr}, M := R and let o : M — k be the
reduction modulo mg. Due to the assumption k # Fy, F3, F5 there exists
a € ug such that a? # 1. Using the notation of Remark 3.6 we obtain
(* 1) € Hx Y(Xpg). Therefore, restricting p to the subgroup Gy g of
SLa(R), we conclude from Remark 3.6 that there exist pe £ and f: R — S
such that p|g = idg and p(t}y) = t{ér) for every r € R. Considering the
representation (§3) p(9{) we similarly obtain from Remark 3.6 that there

exists g : R — S such that p(th;) = t“ggr) for every r € R. We see that lift p
satisfies condition (<) of Lemma 5.9, hence £ = [p] € im [¢]%. O

Proposition 5.15. Assume n =2 and k € {Fy,F3,F5}.
(i) There exists a lift po of p to, respectively, Zo, 73 or Zs[\/5].

(i) There is no R € Ob(C) for which ¢ is universal.
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Proof.
SLQ(FQ
e — (
(|Cox,

i) It is enough to prove the claim for R = k. One easily checks that
= (1) x (), where 7 := (1), e := (9}), and that 7 — (_§ _7),
§) defines a lift of SLy(F2) to Zs. In case p € {3,5} it is known
7.6]) that SLy(IF)) has presentation

~— o~

wn —O

(A,B,C | AP = B> = C? = ABC) = (A,C | AP = (A7'C)3 = C?),

realized for example by the following choice of generators: A := (j _(1]),
C:= (7(1) (1)) . Using this fact and defining ¢ € Z3 by t*> = —2, t = 2(mod 3)
it is easy to check that

1
(21 =56 o (0) = (L0)

extends to a lift of SLy(F3) to Zz. Similarly, defining i,¢ € Zs[v/5] by

i? = —1,i=2(mod 5) and ¢ := ”27‘/5 we have that

_ 1 (o
(CE D o5 (e Ha ) L ()~ (L9)

extends to a lift of SLa(F5) to GLa(Z5[v/5]).
(73) The claim follows from (i) and Proposition 4.3, similarly as in Propo-
sition 5.13. O

Corollary 5.16. Combining Theorems 5.10, 5.12 and 5.1} with Proposi-
tions 5.13 and 5.15 we obtain Theorem 5.1 stated in the introduction to this
chapter.

5.5 Special cases

It would be interesting to know what are the universal deformation rings
of pin the cases not treated by Theorem 5.12 and Theorem 5.14. We present
a complete answer in case R = k.

Proposition 5.17. The universal deformation ring of p for n = 3 and
R = FQ 18 ZQ.

Proof. Tt is sufficient to check that the tangent space to Def; is zero di-
mensional. Indeed, this implies that a versal deformation ring R; of Def;
exists (Proposition 2.23) and is a quotient of Zs (Proposition 1.46). By
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Proposition 5.13, it can not be a proper quotient of Zs, so it will follow that
R; = Zs. This last condition implies also that R is a universal deformation
ring of p.

We have to check that every deformation of p to S = Fs[¢] is induced by
a C-morphism R — S. This can be done modifying the argument used in the
inductive step of the proof of Theorem 5.10, in the special case S = Fa[e],
R =T5. In Theorem 5.10 we have assumed that n > 4, but, as mentioned in
the proof of Theorem 5.12, this condition is crucial only for proving Claims 2
and 4; the rest of the argument uses only a weaker assumption n > 3.
Moreover, in Theorem 5.12 we have presented an alternative argument for
Claim 2 that holds in case n = 3. Therefore, the only difficulty lies in
finding a different argument for Claim 4, which asserts that given (a,b) € J
and r € R, we have M, (i,i) = 0 for all i € [n]\{a,b}. In our case, since
n = 3, there is only one such ¢ for given a and b. Moreover, since R = Fy,
the only non-trivial case is r = 1.

Suppose [n] = {a,b,c} and set tq, := tl,, M := M}, We need to check
that M (c,c) = 0. Note that ¢, is of order 2 and so is its lift p(tep) = tap+ M.
Using the fact that char.S = 2, we compute:

Iy = (tap + M)? = I, + toy M + Mty = I, + eqyM + Megy,.

In particular, comparison of (a,b)-entries yields: M (a,a) + M(b,b) = 0.
Since M (a,a)+ M (b,b) + M(c,c) = tr M = 0 by Claim 3, we conclude that
M(c,c) = 0. O

Lemma 5.18. Lel polynomials f,, € Z|X] be defined recursively by fo = 0,
fi=1, fos1 = X fn — fno1. Consider a commutative ring R and a matriz
M € My(R) such that det M = 1 and at least one of its off-diagonal entries
s not a zero divisor. Ifn = 2k+1 is an odd positive integer then M™ = —1I,
holds if and only if t := tr M is a root of the polynomial fri1 — fr-

Proof. By Cayley-Hamilton, M? = tM — 1 and it is easy to check that
Vn>=1: M" = f,(t)M — fr_1(t)I,. Tt follows that M™ = —1I,, if and only
if f,(t) =0 and fr—1(t) = 1. If I,, = (fn, fn—1 — 1) is the ideal of Z|X]
generated by f, and f, 1 — 1, then one easily proves by induction on [ that
Vie{0,....n—1}: I, = (fn1— f1, fa—1—1 — f1+1). In particular, for [ = k
we obtain I, = (fr+1 — fx)- O
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Proposition 5.19. Assume n = 2 and k € {F,F3,F5}. The universal
deformation rings of p for R = k are, respectively: Zo, Z3[X]/(X3 —1) and
Zs[V/5].

Proof. For G = SLy(F2) we observe that the FoG-module Vj is projective.
Indeed, for a field k of characteristic p and a finite group G with p-Sylow
subgroup S, a kG-module V is projective if and only if V is projective as a
kS-module ([Alp, p. 66, Corollary 3]). In this case S = {(({)) = Cs (cyclic
group of order 2) and Vj, = Fa[Cs] is even a free FoS-module. The claim
follows now from Proposition 2.34.

The case G = SLg(FF3) can be approached via Proposition 4.2. It follows
from the discussion in [Cox, §7.2, §7.6] that G =~ G' x C5, where G' =
{(13),(94)) is isomorphic to the quaternion group of order 8. Since G’
has order coprime to p = 3, it follows from Proposition 2.34 that Zg is the
universal deformation ring for p|gs. Proposition 5.15 shows that there exists
a universal lift of p|os that may be extended to G. Moreover, it is easy to
check that Ad(p)¢ = kI,. Thus, given that G/G' = C3, the universal
deformation ring of p is Z3[Cs] = Z3[X]/(X3 - 1).

In case R = F5 we will simply check that the lift described in Propo-
sition 5.15 is universal. Consider S € Ob(C), ¢ € Def;(S) and let A :=
(j 7(1))7 C = (7(1)(1)) € SLy(R); we moreover identify C' with (7(1)(1)) €
SL2(.S). Since H :=(C) is of order 4, it follows from Proposition 2.34 that
there is precisely one deformation of p|g to S. Hence, £ has a representative
p € € satisfying p(C) = C. We claim that there is precisely one p € £ sat-
isfying this condition and such that the diagonal entries of p(A) are equal.
Indeed, if p(A) = (2%) and X € I, + M,(mg) is a matrix commuting
with (91 (1)) then there exist u,v € S such that X = (%, ) and writing
t:=v/u € mg we obtain

(5o (es) (s )= 1 (a+ct+bt+dt2 b+dtfatfct2)
1+ t2 c—at+dt—bt? d—bt—ct+at?

The equation a + ct + bt + dt? = d — bt — ct + at? is equivalent to t?(d —
a) + 2t(b+ ¢) + (a — d) = 0 and has precisely one solution ¢t € mg, due to
Hensel’s lemma.

Since A and C' generate G, a lift p is uniquely determined by p(A) and
p(C). Note that det p(A) = det p(C') = 1 due to Lemma 5.5. Using all the
above observations and the presentation of SLy(F5) introduced in the proof
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of Proposition 5.15, we see that deformations of p to S correspond bijectively
with matrices M = (20) € M,(S) such that (¢?) = (21 %) mod mg,
det M =1 and M5 = (M—C)* = —1,.

By Lemma 5.18, the last condition is equivalent to tr M = 2a being
aroot of f3 — fo = X? — X — 1 and tr(M 'C) = b — ¢ being a root of
fo—fi = X — 1. If (2a)2 = 2a + 1 then solving the quadratic equation
b(b—1)+1—a? = 1—det M = 0 we obtain that b = *=0=29) with 2 = —1.
We conclude that the full set of conditions imposed on a, b, ¢ is as follows:
a=%b= w, c=0b—1, where > = ¢ +1, p = —2 mod mg and
i? = —1, i = 2 mod mg. It follows that every deformation of p to S is
induced by a morphism Zs[+/5] — S applied to the universal lift defined in

the proof of Proposition 5.15. O

Remark 5.20. In view of Proposition 4.3, the results of this chapter provide
a valuable information about the exceptional universal deformation rings in
general. More precisely, we have that the universal deformation ring of p
has, depending on the case, R xp, Za, R xp, Z3[X]/(X?—1) or R xp, Z5[/5]
as its quotient.

Remark 5.21. The above results obtained for n = 2 seem to be not en-
tirely new. For example, Rainone in [Ra| has considered the case k = Fy
and Mazur mentions the case k = F5 in [Maz2, §1.9] though without giving
a proof. Also Bleher and Chinburg obtained analogous results for an alge-
braically closed field in [BC3]. However, there does not seem to be an easy
and complete treatment of all the cases in the literature.

Remark 5.22. It is worth noting that even though in case k = Fy we have
obtained the same universal deformation ring for n = 2 and n = 3, the
kG-module Vj is not projective when n = 3. Indeed, it is known ([Alp, p.
33, Corollary 7]) that if a kG-module V is projective then the order of the
p-Sylow subgroup S of G divides dimy, V. Here |S| = 8 and dimy, V; = 3.

5.6 The general linear group

Concluding this chapter, we turn back to the more general picture sketched

in Section 5.1. Let R € Ob(C) be given. We will consider the family

§ = {G < GL,(R) | G closed and SL,(R) < G}
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and the corresponding representations pg, defined as in Section 5.1. In par-
ticular, we want to analyze what results would be obtained in the preceding
sections if we considered the general linear group instead of the special linear
one.

All elements of § are clearly profinite groups. Note that the determinant
map gives a bijective correspondence between § and closed subgroups of R*.
In particular, every G € § is a normal subgroup of GL,(R). As mentioned
in Section 5.1, not every G € § satisfies the necessary condition presented
in Proposition 2.33.

Example 5.23. Let R := F,[[X]]. One may check that R} =~ ZE. Using

the determinant map and isomorphism R* = pur @ R} we obtain that
CHom(GL,(R),Z/pZ) is infinite.

Consequently, Def;, need not be representable over C. If it is, we will
denote an object representing it by R, (G).

Proposition 5.24. Let G, H € § be such that H < G and Def;,, is rep-
resented by R. If CHom(G/H,Z/pZ) is finite then Defy, is represented by
R[[(G/H)P]|. Otherwise it is not representable over C.

Proof. Tt is an immediate consequence of Proposition 4.2 and Lemma 2.26.
O

We conclude that Rainone’s results about GL,(k), mentioned in Sec-
tion 5.1, generalize much better and in a more natural way to the group
1Ly (R) defined below than to the group GL,(R):

Corollary 5.25. Suppose (n, k) ¢ {(2,Fq),(2,F3),(2,F5),(3,F2)} and let
P = PGL, (k)

(i) Either R,(GLn(R)) = R[[R;]] or Def; is not representable over C.
In particular, R represents Def; if and only if R = k.

(ii) Let uL,(R):={A € GL,(R) | det A€ ur}. The set & of all G € § for
which Defs,, is represented by R coincides with the set {G € § | G <
pLn(R)}.

Proof. (i) By Theorems 5.10, 5.12 and 5.14 we have R,(SL,(R))

= R, so
we may apply Proposition 5.24 with G = GL,,(R) and H = SL,(R). Si

nce
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G/H =~ R* =~ ur @ RY, ug is of finite order coprime to p and R{ is a
pro-p group, we have that (R*)P =~ R{. Hence, the first claim follows.

(71) A similar reasoning as in part (i) shows that elements of & cor-
respond (via the determinant map) with these closed subgroups of R* =
pr @ Ry that have a trivial pro-p completion. Since R} is a pro-p group
and pp finite of order coprime to p, every closed subgroup of up @ R;
is a product A @ B of closed subgroups A < ur and B < Rlx. Moreover,
(A® B)P = B, so the elements of & correspond with subgroups of pug. O

Remark 5.26. For (n,k) € {(2,F2),(2,F3),(3,F2)} there exists a lift of
GL, (k) to Zp. Indeed, in case k = [y we have GL,(k) = SL,(k), so we
already know it; for n = 2, k = [F3 see [Ra] (it is also not difficult to check
it directly, knowing that SLo(F3) lifts to Zgz). This fact and a reasoning as
in Proposition 5.13 show that in these cases R does not represent Def;,, for
any G € §.

If n =2, k = F5 then R,(SL,(R)) # R, but R, (11Ln(R)) = R. This can
be proved using the proof of Theorem 5.14 with only a small modification.
Namely, instead of H = {(*“ ,~1) | u € ur} we consider H := {(" ) |u € ur}
and instead of a € k* satisfying the condition a* # 1, we choose a such
that o # 1. Then (*,) € Hnx~(Xp) and a combination of Remark 3.6,
Lemma 5.9 and Lemma 5.8 proves the claim. As a corollary, we conclude,
using Proposition 5.24, that the first part of Corollary 5.25 holds also in the
case n = 2, k = Fs.



Chapter 6

The inverse problem restricted
to finite groups

Let k be a finite field and let us consider the category C. As we already know,
every é—ring can be realized as a universal deformation ring of a continuous
representation of a profinite group. This leads to a new question: does the
same result hold if we restrict to representations of finite groups?

We show that, unlike in the general case, there exist some rings which
do not occur as universal deformation rings in the restricted setting. The
main result is Theorem 6.30 and its reformulation in Theorem 6.31 in which
we present a non-trivial necessary condition for characteristic zero universal
deformation rings of finite group representations.

6.1 Initial remarks and a cardinality argument

Definition 6.1. By 4 we will denote the class of all R € Ob(C) for which
there exists a finite group G and a representation p : G — GL, (k) such
that R is the universal deformation ring of p.

Formally speaking, in this chapter we are interested in determining the
class 4. To begin with, our earlier considerations lead to the following
conclusion.

Observation 6.2. Every finite ring R € Ob(C) belongs to L.

87
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Proof. If R € Ob(C) is finite then for every natural n the group SL,(R) is
finite and by results of Chapter 5 we have R € 4l. 0

Moreover, note that we have already encountered examples of infinite rings
in 4L

e W(k), obtained for representations of groups of order coprime to p
(see Proposition 2.34);

e Rings of the form
W) X1, X /X =1, X2 = 1), muky,... km €N,

obtained for one-dimensional representations of finite groups (see Pro-
position 2.30);

e Zs5[+/5], obtained as the exceptional universal deformation ring in
Chapter 5;

e In case k # [Fo,F3, rings of the form
W(k)[[Xl) ceey Xm]]/(pkoaplelv cee )pkam)a k;07 kla ey km € N+,
obtained in Corollary 3.14.

Finally, let us observe that a cardinality argument shows that contrary
to the general case, there exist rings which can not be obtained as universal
deformation rings in the new setting.

A~

Proposition 6.3. The class Ob(C) is uncountable.

Proof. For every o € W(k) denote by R, the following C-ring:
Ro = W(EK)[X,Y]/((X,Y)° + (X%, Y= X?V? — aX?Y))

We will prove that R, =; Rg if and only if « = £3. Since W(k) is
uncountable, this will imply that we can choose an uncountable family of
pairwise non-isomorphic rings of the form R,,.

Given a € W(k) we will denote by z,y the images of X, Y in R, and
by I, the ideal that they generate. Note that I, = nil R,,.
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If F'e Homg(Ry, Rp) is an isomorphism then F(nil R,) = F'(nil Rg), so
it must be F(x), F(y) € I3. Suppose a,b,c,d € W(k) are such that

F(z)=ax +by (mod [g)
F(y) =cx +dy (mod IE)

(az + by)* (mod Ig), but since IE = 0, we simply obtain

Then F(z*) =
= (0. Let us expand the left hand side:

(ax + by)*

(az + by)? = 4(azx)3by + 6(ax)?(by)? + daz(by)® + (by)?
= (4a3b + b*B) 23y + (6a%b* + bH)2%y? + 4ab3xy?
It must be thus (4a3b 4 b*B) = (6a%b? + b*) = ab = 0, which is possible if
and only if b = 0. Note that this implies that d # 0, otherwise we would

have y ¢ F(R,).
Similarly, from F(y*) = F(z?y? + az3y) we obtain

(cx + dy)* = (az)*(cx + dy)? + alaz)®(cx + dy).

By analogy to the earlier case, the left hand side of this equation equals
(cx + dy)* = (4c3d + d*B)z3y + (6c2d* + d*)x?y? + 4(cd?)xy® and the right
right hand side can be expanded as

(az)*(cx + dy)? + a(ax)?(cx + dy) = a*x?(2cd vy + d*y?) + (aa’d)x>y
= (2d%cd + aadd)z3y + (ad®)x?y>.
Comparing both sides we conclude that
(4c3d + d*B — 2a*cd — aad) = (6c2d? + d* — a*d?) = cd® = 0.

Since d # 0, these equations reduce to ¢ = 0, d> = a? and df = aa.
Consequently, 8 = a = ta. On the other hand, it is clear that sending
x +— —z, y — y we define an isomorphism between R, and R_,. This
finishes the proof. O

A~

Corollary 6.4. The classes 4 and Ob(C) do not coincide.

Proof. There exist only countably many finite groups G and each of them
has only finitely many representations p : G — GL,, (k) over the finite field k.

Consequently, $ is at most countable, whereas Ob(C) is uncountable by
Proposition 6.3. O
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We see that the interesting part of the modified inverse problem consists
in determining which infinite rings belong to Y and which do not. Since the
argument of Corollary 6.4 is not constructive, a first step towards solving
this problem is to provide concrete examples of (f—rings not in 4. This will
occupy us in the rest of this chapter.

6.2 A motivating example

Before developing a general approach, let us present a motivating example.
For the rest of this subsection R € Ob((f) will be a discrete valuation ring
with a uniformizing element 7 and field of fractions K. The group G will be
finite and we will consider a residual representation p : G — GL, (k) about

which we additionally assume that Ad(p)% = kI,,.

Proposition 6.5. Lifts p1, p2 € Lift;(R) are strictly equivalent if and only
if they are equivalent as representations over K.

Proof. The “only if” part is obvious. Conversely, suppose there exists A €
GL,(K) such that p; = ApsA~!. Since R is a discrete valuation ring, there
exist B € M, (R)\rM,(R) and s € Z such that A = 7*B. Clearly p1B =
Bps. Reducing to k we obtain pB = Bp and the assumption Ad(p)® = kI,
implies that the image B of B is a (non-zero) scalar matrix. Therefore,
there exist u € ugr and By € I, + My(mpg) such that B = uBjy. Since
p1 = Bop2 By it follows that p; and ps are strictly equivalent. O

Corollary 6.6. If char R = 0, then Def5(R) is finite.

Proof. The field K has characteristic zero, so the group ring K G is semisim-
ple by Maschke’s theorem. Therefore, up to equivalence, there exist only
finitely many n-dimensional representations of G over K and the claim fol-
lows from Lemma 6.5. O

Corollary 6.7. If char R = 0, then R[|X]] is not a universal deformation
ring of p.

Proof. Combine the preceding corollary with the fact that Hom,(R[[X]], R)
is infinite. O



6.3. Finiteness bounds 91

Our aim for the next section is to generalize these observations. We will
prove that the claim of Corollary 6.6 holds even without the assumption
Ad(p)¢ = kI,,. This will imply that R[[X]] ¢ 4. Moreover, we will develop
an approach that will allow us to bound the number of deformations to a
wider class of rings of characteristic zero, not only discrete valuation rings.
This in turn will allow us to identify explicitly a class of C-rings not in L.

Remark 6.8. Proposition 6.5 applies also to discrete valuation rings of
characteristic p. However, if char K = char R = p, there may exist infinitely
many non-equivalent representations of G over K and Corollary 6.6 may not
hold. Consequently, in this case one can not draw a similar conclusion that
R[[X]] ¢ Y, cf. Example 3.13.

6.3 Finiteness bounds

Definition 6.9. We will denote by § the class of all rings R € Ob(C) such
that for every finite group G and representation p : G — GL, (k) the set
Def5(R) is finite.

It is clear that every finite é—ring isin §, but what we are really interested
in, is identifying some large subclass of infinite rings belonging to §. This
will be done using the following key lemma, inspired by [Mar, Theorem 2].

Lemma 6.10. Let G be a finite group, R € Ob(C) be a ring in which |G|
is not a zero-divisor and define J := |G| - mr < R. Then representations
1, p2 1 G — GL,(R) are strictly equivalent if and only if their reductions
wgp1 and mypa to R/J are strictly equivalent.

Proof. The “only if” part of the lemma is obvious. For the “if” part note
that myp1 and mypo are strictly equivalent if and only if there exists A €
I, + M, (mpg) such that

Vge G: p1(9)A = Apa(g) mod M, (J).

If this is the case then B = } o p1(g9) Apa(g) ! satisfies B = |G| - A
mod My(J). Using the definition of J and the assumption that |G| is not

a zero divisor in R, we define By := ﬁ - B € M,(R) and observe that
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By € I, + My, (mpg). Moreover,

p1(h) By pa(h)™! =

1
(hg) A p2(hg) ) A -1 =B,
@l Y. pi(hg) Apa(hg)~ |G| > pi(9) Apalg 0
geG geG
so p1 and po are strictly equivalent. O

Remark 6.11. In the setting of the above lemma let us write |G| = p"s,
r >0, p{s. Since s is invertible in R, we have that |G| is a zero-divisor if
and only if p” is. Moreover, |G|mg = p"mpg.

In particular, if p { |G| then the assumption that |G| is not a zero-
divisor in R is satisfied for every R € Ob(C) and the above lemma implies
that there is at most one deformation to every R € Ob(C). And actually
there is exactly one deformation to every R € Ob(é) — see Proposition 2.34.

Lemma 6.12. Consider R € Ob(é), r € Z=1. The following conditions are
equivalent:

(i) p" is not a zero-divisor in R and R/p"mpg is finite.
(ii) p is not a zero-divisor in R and dim R = 1.
(i13) R is a finitely generated W(k)-module with trivial p-torsion part.

Proof. 1t is clear that p" is a zero-divisor if and only if p is a zero-divisor.
Since k is finite we have that a ring S € Ob(C) is finite if and only if it
is artinian, i.e., if and only if dim.S = 0. The fact that p"mp S pR <
rad(p"mp) implies dim R/p"mp = dim R/pR. Assume that p is not a zero-
divisor. Then dim R/pR = dim R — 1, so dim R/p"mp = 0 if and only if
dim R = 1. This proves the equivalence of the first two statements. It
is also clear that (ii) implies (i7). The converse statement follows from
Theorem 1.16 (see also Remark 1.18). O

Definition 6.13. We will denote by 20 the subclass of all rings R € Ob(C)
satisfying the equivalent conditions of Lemma 6.12.

Corollary 6.14. If Re 2] then Re §.
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Proof. By the first property of Lemma 6.12 the ring R/nmp is finite for
every n > 1 (see also the discussion in Remark 6.11). Since all finite C-rings
are in §, the claim follows easily from Lemma 6.10. O

The result obtained in Corollary 6.14 is fully satisfactory for our appli-
cations in the next sections, but we note that it can be further extended.

Definition 6.15. Given an abelian group A and a prime number p we
will denote by Tp=(A) its p-torsion subgroup, i.e., Tp=(A) = | Ji{a € A |
p"a = 0}.

Observation 6.16. If R is a ring then Tj~(R) is an ideal. Suppose that
char R = 0 and let R := R/T)=(R). Then charR = 0 and p is not a
zero-dwisor in R.

Lemma 6.17. Let R € Ob(C) be of characteristic zero and finitely generated
as a W(k)-module. Then R € §.

Proof. Let G be a finite group and p : G — GL,(k) its representation.
The ring R := R/Ty=(R) is in 20 (Observation 6.16 implies easily that R
satisfies the condition (7i7) of Lemma 6.12), so by Corollary 6.14 the set
Def;(R) is finite. Noetherianity of R implies that there exists r > 1 such
that T~ (R) = Annp". Hence T,»(R) is a finite W(k)/(p")-module and,
consequently, a finite set. It follows that the fibers of the map Lift;(R) —

Lift5(R) induced by the reduction modulo T)» (R) are finite and so Def5(R)
is finite as well. O

6.4 Properties of 2J-rings

Notation 6.18. In the rest of this chapter we reserve the letter K to denote
the field of fractions of the ring W(k).

Lemma 6.19. Consider R € 20 and its localization R’ := R[%] away from p.

(i) The natural map R — R’ is injective and R is a domain (is reduced)
if and only if R is a domain (is reduced).

(i) R is naturally isomorphic to R Q@) K.

(111) R’ is an integral extension of K.
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(i)

(v)

R’ is a domain if and only if it is a finite field extension of K. If this
is the case then R’ is the field of fractions of R.

R’ is reduced if and only if it is a finite étale K-algebra (i.e., a finite
product of finite field extensions of K ).

Proof. (i) This is an easy consequence of the fact that p is not a zero-

(i)

(iii)

(iv)

(v)

6.5

divisor in R.

Note that K = W(k:)[%] and use the identification Bs ~ B ®4 Ag,
valid for any A-algebra B and multiplicative subset S € A.

The extension W(k) € R is integral. Localizing away from p we obtain
that K = W(k)[}%] c R[%] = R’ is integral as well.

The first claim follows from part (ii7) and general properties of integral
extensions (see for example [At, Proposition 5.7]). The second one is
clear, since the fraction fields of domains R and R[Il;] coincide.

In general, part (i7i) implies that R’ is artinian, so by the struc-
ture theorem (|At, Theorem 8.7]), there exist artinian local rings
A, Ay, ... Ag such that R = A1 ® A @ ... ® A;. Note that these

rings are necessarily integral extensions of K.

The ring R’ is reduced if and only if all A;’s have this property. To
finish the proof, observe that a local artinian ring A is reduced if and
only if it is a domain and use again [At, Proposition 5.7]. O

Excluding rings from being in 4

Keeping in mind Corollary 6.14 and the general idea outlined in section 6.2,

we turn our attention to the following problem: for which R € Ob(C) does
there exist S € 2 such that Homy(R, S) is infinite?

Observation 6.20. If S is a ring in which p is not a zero-divisor then every
ring homomorphism R — S factors via R/T,»(R).

The above observation implies that it is enough to solve the problem
for C-rings R in which Ty~ (R) = 0, i.e., in which p is not a zero-divisor.
Observe that such rings are of characteristic zero, hence infinite and of Krull
dimension greater than zero.
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In what follows we assume that Tp~(R) = 0 and set d := dimR.
By Theorem 1.16 there exists a subring Rg S R, isomorphic to the ring
W(k)[[X1,...,X4-1]], over which R is a finite module.

We divide further discussion into two cases, depending on whether d > 2
ord=1.

6.5.1 Case dimR > 2

The results of this subsection have been obtained developing a rough idea of
Jakub Byszewski. I would like to express him my gratitude for suggesting
this approach.

Lemma 6.21. There exist (up to isomorphism) exactly countably many
integral domains in 2.

Proof. Since for every n € N we have the integral domain W (k)| 1/p] € 2,
the interesting part of the proof consists in showing that 20 contains at
most countably many integral domains.

It is a classical fact, following from Krasner’s lemma, that for every n € N
the field Q, has (up to isomorphism) only finitely many extensions of degree
n, see [St, Theorem 4.8|. As a consequence, there exist only countably many
finite field extensions of K. Therefore, in view of Lemma 6.19.(:) and (iv), it
is sufficient to prove that every family of pairwise non-isomorphic domains
S € 0 with the same field of fractions L is at most countable.

Let L be a finite field extension of K and consider S € L such that
S € W and L is the field of fractions of S. Since S is integrally dependent
on W(k), it is contained in the integral closure of W(k) in L, i.e., in the
ring of integers Or of L. On the other hand, Oy, is a finitely generated
W(k)-module and by Lemma 6.19.(iv) we have L = S[%], so there exists
r € N such that p"Op, € S. To finish the proof, it is sufficient to show that
for every r € N there exist only finitely many W(k)-modules M such that
p"Or € M € Op. But this is obvious: such modules correspond bijectively
with W(k)-submodules of Or/p"Op, which is a finite set (indeed: it is a
finitely generated W(k)/(p")-module). O

Theorem 6.22. If d > 2 then there exists an integral domain S € W such
that the set Homs(R, S) is infinite.
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Proof. Due to the assumption d = 2, there exist uncountably many prime
ideals p of Ry with the property Ro/p = W(k) (recall that by definition
Ry = W(k)[[X1,...,X4-1]])- If p is one of them then there exists a prime
ideal q of R such that g n Rgp = p (|At, Theorem 5.10]). The domain R/q is
an integral extension of S/p =~ W(k), hence belongs to 20. We obtain thus
uncountably many surjections R — R/q from R to some integral domain
in 0. Lemma 6.21 and infinite pigeonhole principle imply that for some
integral domain S € 20 the set Homy (R, S) is infinite (even uncountable).

O

Remark 6.23. It is tempting to “refine” the above theorem by changing
“integral domain” to “discrete valuation ring”, using the following argument:

If a domain S € W has the field of fractions L then S € Op. Let us
thus compose the considered morphisms R — S with inclusions S — Oy, in
order to obtain infinitely many morphisms R — Op.

However, Op, is not necessarily a é—ring. Even though it is complete,
local and noetherian, its residue field may be strictly larger than k. See also
the example below.

Example 6.24. Suppose p is a prime number satisfying p = 3 (mod 4), i.e.,
such that —1 is not a quadratic residue in F,, and let R := Z,[[X, Y]]/(X?*+
Y?2).

Consider the integral domain S := Z,[T]/(T? + p*) € 2. For every
a € Z, we have a C-morphism defined by X +— aT, Y — ap, so Hom(R, S)
is infinite.

On the other hand, if S € 2 is a discrete valuation ring then the only
a,b € S for which a® +b* = 0 are a = b = 0. Hence, Homy(R,S) is a
one-element set.

6.5.2 CasedimR=1

If dim R = 1 and T)=(R) = 0 then R itself belongs to 20. It can be shown
that Spec R is finite and so the approach of the preceding subsection can
not be applied in this case. Yet there may still exist some S € 20 for which
the set Hom(R, S) is infinite.

Example 6.25. Let R := W(k)[¢]. The only C-morphism R — S such that

S is a characteristic zero integral domain is the reduction R 29, W(k),
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but for S := R there exist infinitely many morphisms R — 5. Indeed, for
every C' € W(k) we can define a C-homomorphism

W(k)[e] 2 x+ey — z+Cey € W(k)[e].
Consequently, R ¢ 4.

Note that all infinitely many @—homomorphisms R — S constructed in
the above example reduce to the same morphism modulo I := &S. Moreover,
the ideal I <1 S has the property I? = 0. In the rest of this subsection we
will construct pairs (R, S) with similar properties.

In what follows, we will need the notions of derivations and Kéhler
differentials. Their definitions and basic properties can be found for example
in |Ei, §16].

Proposition 6.26. Let A be a ring and f: R — S be a homomorphism of
A-algebras. Suppose there exists an ideal I <1 S with property I? = 0 and
let g : R — S be an additive map such that f = g (mod I). Then g is
an A-algebra homomorphism if and only if the map (f —g) : R — I is an
A-derivation.

Proof. Apply [Ei, Proposition 16.11]. O

Notation 6.27. Given a ring A and an A-algebra R we will denote by Q1 4
the R-module of relative Kdhler differentials of R.

Lemma 6.28. If R,S €20 and S is reduced then Homs (R, S) is finite.

Proof. By Lemma 6.19.(7) it is sufficient to show that there exist only finitely
many W (k)-algebra homomorphisms R — S[%] =: 5. Let x1,...,2m € R
be such that R = W(k)[z1,...,2m]. For every i € {1,...,m} there exists
a monic polynomial F; € W(k)[X] of which x; is a root. If S is reduced
then S’ is a finite product of fields by Lemma 6.19.(v). Hence, each of these
polynomials has only a finite number of roots in S’, so there exist only
finitely many values in S’ to which x;, i € {1,...,m}, can be mapped. This
proves the claim. O
Theorem 6.29. Consider R € 20 and define R := R[%], Q= Qr/w)
Q= Qrik- The following conditions are equivalent:

(i) There exists S € W such that Homy (R, S) is infinite.
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(11) Q # Tpo ().
(i1i) Q' is not trivial.
(iv) R is not reduced.

Proof. (i) = (ii): Let N := nilS and observe that by noetherianity there
exists m € N such that N™™ = 0. We have a finite chain of morphisms

S=S/N™— S/Nmf1 — > S/N2 — S/N.

By assumption, # Homgs(R,S/N™) = oo and # Homs(R,S/N) < o« by
Lemma 6.28. Hence, there exists r € {1,2,...,m — 1} such that

#Homy(R,S/N"™1) =0 and # Homg(R,S/N") < .

Let S := S/N"*! I:= N"/N"*1. Then I is a non-zero ideal of S such that
I? = 0. By infinite pigeonhole principle, there exists an infinite family of C-
morphisms R — S with the same reduction modulo I. By Proposition 6.26,
it corresponds to an infinite family of derivations R — I, so Hompg(€2, I)
is infinite by the definition of 2. Observe that both Q and I are finitely
generated W (k)-modules: Q because R is a finitely generated W (k)-module
and I because it is finitely generated over S, which itself is finitely generated
over W (k). Both Q and I are therefore infinite — otherwise Homyy (€2, 1)
would be finite, which would yield a contradiction. This means that they
both must be distinct from their p-torsion subgroups, in particular 2 #
Ty ().

(i1) = (i): Define M := Q/T,»(Q) and let us adopt the convention
of writing [w] for the corresponding class of w € € in M. Note that Q
is a finitely generated R-module (because R is a finitely generated W(k)-
algebra) and hence, so are M and S := R® M.

We introduce the ring structure on S using the scalar multiplication
and setting xy = 0 for every =,y € M. The obtained ring is clearly local,
complete and noetherian (here it is important that M is a finitely generated
R-module) and has the same residue field as R. Moreover, Tj,=(S) is trivial
and since R € S is an integral extension, we also have dim S = dim R = 1.
Therefore, S € 2. Furthermore, for every C € W(k) the map R 3 = +—
x+C-[dz] € S is a well-defined C-morphism. Since M is a (by assumption
non-trivial) free W(k)-module, all these morphisms are pairwise distinct.
We conclude that S satisfies all the required properties.
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(41) < (ii1): This part follows from Q' = Qp/x = Qr/wi) Qwar) K =

Q[%] (note that formation of differentials commutes with base change: [Ei,

Proposition 16.4]) and an easy observation that Q[%] = 0 if and only if
Q =Ty ().

(17i) < (iv): R’ is a finitely generated K-algebra, so ' = 0 if and only
if R’ is a finite direct product of fields, each finite and separable over K
(|Ei, Corollary 16.16]). Note that char K = 0, so every field extension of K
is separable and combine this result with Lemma 6.19.(v). O

6.6 Conclusions and comments

The following result is an immediate consequence of Corollary 6.14, Theo-
rem 6.22 and Theorem 6.29.

~

Theorem 6.30. Let R € Ob(C) be of characteristic zero and in . Then
R/Ty»(R) is reduced and of Krull dimension 1.

Proof. If R is a universal deformation ring of a representation p of a finite
group G and S € 20, then Def;(S) is finite by Corollary 6.14. Hence, so
is Homgs(R,S). Theorem 6.22 implies thus that dim R/T,=(R) = 1 and
Theorem 6.29 implies that R/T,~(R) is reduced. O

Alternatively, using Lemma 6.12 and Lemma 6.19 we can phrase this
theorem as follows:

Theorem 6.31. If R € il has characteristic zero then R@w ) K is a finite
étale K-algebra.

Note that the infinite rings belonging to 4 that were mentioned in Sec-
tion 6.1 indeed satisfy the conditions of the above theorems.

Remark 6.32. Let us return to the argument proving Corollary 6.4 and an-
alyze the construction described in the proof of Proposition 6.3. The above
theorems imply that if char R = 0, then actually none of the constructed
uncountably many rings belongs to 4. However, Proposition 6.3 still pro-
vides some extra information. Namely, it implies that there are uncountably
many rings that can not be obtained even as a versal deformation ring of a
finite group representation. This is something that we can not conclude in
any way using the approach that we have just developed.
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Remark 6.33. Note that contrary to the case R = W(k)[X]/(X?), every
ring of the form W (k)[X]/(X?,p"X), r € N>y, belongs to 4, as was shown
by Bleher, Chinburg and de Smit in [BCdS]. The above theorem explains
where does the main difference lie between these two similar cases.

Observe also how easy it is to arrive at an unsolved case: the author is
not aware of any result concerning the problem whether, given r € N5 1, the
ring W(k)[X]/(X? — p"X) belongs to 4 or not.

6.6.1 Quotients of universal deformation rings

Definition 6.34. Let us denote by Q the subclass of all é—rings of the form
R/I, where R € { and [ is its proper ideal.

Remark 6.35. Observe that Theorem 6.30 holds true also if we replace "in
" by "in Q". Indeed, if S € 2 and R € Q is a quotient of R’ € 4, then
finiteness of the set Hom,(R', S) implies finiteness of the set Homs(R, S).
The proof of Theorem 6.30 is thus valid also in case R € 9.

One could hope that this strengthening would allow to obtain new results
about the class il itself. That is, a priori, it could happen that Theorem 6.30
does not exclude R from being in L, but some of its quotients is excluded
from being in Q by Remark 6.35. However, this is not the case, which can
be easily seen using Theorem 6.31 and the following easy observation.

Observation 6.36. A quotient of a finite étale K-algebra is itself finite
étale.

Thus, the following problem remains open:

Question 6.37. Obviously 4 € 9. But is Q strictly larger than 4U?

6.6.2 Open questions related to extending the main result

Trying to extend the results of Theorem 6.30 one is lead to following ques-
tions:

Question 6.38. Let S € Ob(C) be a one-dimensional, reduced ring in which
p is not a zero-divisor (in particular: of characteristic zero).

(i) Does S € Q hold?
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(13) If S € Q, which rings R such that R/T,»(R) = S are in {7

It would be interesting to solve these questions at least in some special cases,
for example: for S = W(k) (only the second question), for integral domains
in general (more restrictively: for discrete valuation rings), for rings with
one-dimensional tangent space. Thus, as a challenge for an interested reader
and starting point for new research we formulate the following concrete
problem:

Question 6.39. Which of the following rings are in Y (are in Q)?

o W(kK)[/p]
o W(k)[X]/(X*-p'X)

o W(K)[[X]]/(p"X)
Here r is an integer, r > 1 in the first case and r > 1 in the other cases.

The author is only aware of the fact that Zs[v/5] and Z,[[X]]/(pX) for
p=3(p=3)isin U (is in Q). See also Example 3.12.

6.6.3 Other remarks

It is worth noting that Lemma 6.10, on which we based the argument of this
section, can be applied also in a slightly different way. Not only in order to
find some rings that are not in 4 but also in order to give a lower bound
on the size of a group whose representation can realize R as a universal
deformation ring. More precisely:

Lemma 6.40. Let R € Ob(C) be given and suppose there exist S € Ob(C),
r € N and f1, fo € Homs(R, S) such that Ty=(S) = 0, f1 # f2, and f1 = fo
(mod p"mg). If R is a universal deformation ring of a representation p of
a finite group G, then p" ™! | #G.

Proof. Let p' be the largest power of p dividing #G. By definition of a
universal deformation ring, morphisms f; and fs induce two different defor-
mations of p to S, so fi and fy are different modulo p'mg by Lemma 6.10.
Using the assumption we conclude that [ > r and the claim follows. O
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Example 6.41. Let 7 > 1 be an integer and suppose R := W (k)[X]/(X? —

p"X) is a universal deformation ring of a representation of a finite group G.

Since Ty~ (R) = 0 and we have f : R 22% R, fo : R 22, R with the

same reduction modulo p" 'mpg, Lemma 6.40 implies that p” | #G.

6.6.4 Positive characteristic rings in [

It is clear that the approach of the preceding section can not be directly
generalized to rings of positive characteristic, because it relied heavily on
properties of rings in which p is not a zero-divisor. Therefore, new tech-
niques must be developed to handle this case.

We only want to observe that also the results in the positive character-
istic case will differ from the ones obtained in this chapter. For instance, in
contrast to the characteristic zero case we have the following result.

Proposition 6.42. If k # Fo,F3 then for every d € N, the class U contains
a characteristic p domain of Krull dimension d.

Proof. The claim follows easily from Example 3.13. O
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Summary

In this thesis we study representations of profinite groups over some partic-
ular type of local rings. More specifically, suppose a finite field & is given.
Then the rings that are complete, local, noetherian and whose residue field
is isomorphic to k form a category, which we denote by C. Given a profinite
group G and its continuous finite dimensional representation p over k, we
are interested in describing all the possibilities of lifting p to some object
of C.

For each problem of the above described type, an associated deformation
functor from C to the category of sets can be defined. If such a functor is
representable (in the sense of category theory) then the object representing
it is called the universal deformation ring of the given representation. The
following inwverse problem is central in the thesis: which rings do occur as
universal deformation rings in the introduced setting?

The main results of the thesis go in two directions. Firstly, we completely
answer the stated question in its general form. Secondly, we introduce
its modification and begin a systematic study of the analogous problem
restricted to representations of finite groups.

Our main contribution consists in providing a complete solution to the
inverse problem. We show that in fact every R € Ob(é) can be obtained
as a universal deformation ring. The example we use for this goal is the
special linear group G := SL,,(R), together with the natural representation
(induced by the reduction R — k) in GL, (k). Interestingly, in order to ob-
tain R as a universal deformation ring it is important that n > 4, because
the lower dimensional cases admit some puzzling exceptions, requiring a
careful analysis (also carried out in the thesis). We also discuss deforma-
tions of analogous representations of closed subgroups of GL,(R) containing

SL,(R).
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As mentioned, we are moreover interested in determining the rings that
can be obtained as universal deformation rings of representations of finite
groups. The methods outlined above allow us to conclude merely that every
finite ring belonging to C can be obtained this way. However, infinite rings
having this property exist as well. The second most important contribution
of the thesis is thus the following criterion: Denote by W(k) the ring of
Witt vectors over k, by K its field of fractions and suppose R € Ob(é) can be
obtained as a universal deformation ring of some finite group representation.
If R has characteristic zero, then R Qw ) K is a finite étale K-algebra.



Samenvatting

In dit proefschrift bestuderen wij representaties van pro-eindige groepen
over bepaalde lokale ringen. Specifieker, zij k een eindig lichaam. De ringen
die compleet, lokaal en noethers zijn, en die een restklassenlichaam isomorf
met k hebben, vormen een categorie, die we aanduiden met C. Gegeven een
pro-eindige groep G en haar continue eindig-dimensionale representatie p
over k, zijn wij geinteresseerd in het beschrijven van alle mogelijkheden van
het liften van p tot een object van C. Voor elk probleem van het hierboven
beschreven soort, kan men een bijbehorende deformatiefunctor van C naar
de categorie van verzamelingen definiéren. Als deze functor representeer-
baar is (in de zin van categorietheorie), wordt het representerende object
de universele deformatiering van de gegeven representatie genoemd. Het
volgende inverse probleem staat centraal in het proefschrift: welke ringen
ontstaan als universele deformatieringen in de geintroduceerde opzet?

De belangrijkste resultaten van het proefschrift gaan in twee richtingen.
Ten eerste geven we een volledige antwoord op de gestelde vraag in zijn al-
gemene vorm. Ten tweede introduceren wij een modificatie en beginnen een
systematische studie van het analoge probleem, beperkt tot representaties
van eindige groepen.

Onze belangrijkste bijdrage is een complete oplossing voor het inverse
probleem. We laten zien dat elke R € Ob(C) kan worden verkregen als een
universele deformatiering. Het voorbeeld dat wij voor dit doel gebruiken is
de speciale lineaire groep G := SL,(R), tezamen met de natuurlijke rep-
resentatie (geinduceerd door de reductie R — k) in GL,(k). Interessant
genoeg, om R als de universele deformatiering te krijgen, is het belangrijk
dat n > 4; de lagerdimensionale gevallen laten uitzonderingen toe (die in
dit proefschrift ook worden bestudeerd). We bespreken bovendien defor-

maties van analoge representaties van gesloten ondergroepen van GL,(R),
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die SL,(R) bevatten.

Zoals gezegd, zijn wij bovendien geinteresseerd in het bepalen van de
ringen die kunnen worden verkregen als universele deformatieringen van
representaties van eindige groepen. De hierboven beschreven methoden
laten ons slechts concluderen dat elke eindige ring die tot C behoort, kan
worden verkregen op deze manier. Echter, oneindige ringen met deze eigen-
schap bestaan ook. De tweede belangrijkste bijdrage van het proefschrift
is het volgende criterium: Zij W(k) de ring van Witt vectoren over k, K
zijn quotiéntenlichaam en neem aan dat R € Ob(é) als een universele de-
formatiering van een eindige groepsrepresentatie verkregen kan worden. Als

R karakteristiek nul heeft, is R ®w) K een eindige étale K-algebra.



Sommario

In questa tesi studiamo le rappresentazioni di gruppi profiniti su un par-
ticolare tipo di anelli locali. Per essere pil precisi, supponiamo sia dato
un campo finito k. Gli anelli che sono completi, locali, noetheriani e con
campo residuo isomorfo a k costituiscono una categoria, che indichiamo con
C. Dato un gruppo profinito G e una rappresentazione continua e finito
dimensionale p a valori in k, siamo interessati a descrivere tutti i possibili
sollevamenti di p ad una rappresentazione su un oggetto di C.

Per ciascun problema del tipo sopra descritto pud essere definito un
funtore di deformazione associato che va da C alla categoria degli insiemi.
Se tale funtore & rappresentabile (nel senso della teoria di categorie) al-
lora I'oggetto rappresentante & chiamato l’anello universale di deformazione
della rappresentazione data. Il seguente problema inverso é 'oggetto di stu-
dio centrale nella tesi: quali anelli si realizzano come anelli universali di
deformazione?

I principali risultati della tesi vanno in due direzioni. In primo luogo,
abbiamo dato una risposta completa alla domanda sopra indicata nella sua
forma generale. Secondariamente, introduciamo una variante per gruppi
finiti e iniziamo uno studio sistematico del problema analogo limitato a tale
caso.

Il nostro contributo principale consiste nel fornire una soluzione com-
pleta per il problema inverso. Abbiamo dimostrato che ogni R € Ob(é)
puo essere ottenuto come un anello universale di deformazione. L’esempio
che usiamo per questo obiettivo ¢ il gruppo lineare speciale G := SL,(R),
insieme alla rappresentazione naturale (indotta dalla riduzione R — k) in
GL, (k). Per ottenere R come l'anello universale di deformazione ¢ im-
portante che n > 4, in quanto i casi di dimensione inferiore ammettono

eccezioni (di cui effettuiamo un’attenta analisi). Discutiamo anche le de-
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formazioni delle analoghe rappresentazioni di sottogruppi chiusi di GL,(R)
che contengono SL,(R).

Come detto, siamo inoltre interessati a determinare gli anelli che pos-
sono essere ottenuti come anelli universali di deformazione per rappresen-
tazioni di gruppi finiti. I metodi sopra descritti ci permettono di concludere
solo che ogni anello finito appartenente a ¢ puod essere ottenuto in questo
modo. Tuttavia, esistono anelli infiniti con la stessa proprieta. Il secondo
contributo importante della tesi é quindi il seguente criterio: Indichiamo
con W(k) Uanello dei vettori di Witt su k, con K il suo campo di frazioni
e supponiamo che R € Ob(é) possa essere ottenuto come l'anello univer-
sale di deformazione di una rappresentazione di gruppo finito. Se R ha la
caratteristica zero, allora R ®wy K € una K-algebra finita élale.
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