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Chapter 1

Introduction

Kubota-Leopoldt p-adic L-functions are, for the p-adic analysis, the functions correspond-

ing to the complex variable L-functions associated to Dirichlet characters. Today we

know at least three distinct constructions of these functions : the original by Kubota and

Leopoldt and two power series expansions. The first expansion was discovered by Iwa-

sawa, and uses sequences of Stickelberger elements. The second expansion was done by

Iwasawa and Coleman for the special cases of the powers of the Teichmuller character,

and has been recently generalized to all relevant Dirichlet characters by Tsuji in [Tsu99].

I describe these three constructions and show that they lead to the same object. About

the structure of the document I can say:

1. Chapter I: Formal Power Series. I start with the basics of formal power series

as completions of a polynomial rings giving in the last sections special interest to

power series over Cp, the completion of the algebraic closure of Qp.

2. Chapter II: p-adic Interpolation. In this chapter the Kubota-Leopoldt p-adic

L-function is defined. I am following Iwasawa’s red book [Iwa72] for the classic

construction.

3. Chapter III: Stickelberger Elements and p-adic L-Functions. Here the sec-

ond construction is presented. The main technical tool is Theorem 4.3.1 which relates

a power series to an element of a group algebra. The p-adic L-function will arise in

this way.

4. Chapter IV: The Compact-Open Topology. This chapter is mainly technical.

The main tool is the p-adic maximum principle treated in the first section and the

rest of the chapter I follow [Col79]. In Theorem 5.3.2 I give a useful interpretation

of Coleman’s continuity criterium for the cyclotomic case.
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5. Chapter V: Coleman Local Theory. In this chapter I follow [Col79] and [Col79].

It deals with power series modules such as K((T ))1,OK [[T ]],MK and Galois actions

defined on them. I define the norm and trace, give their basic properties and con-

struct the Coleman homomorphism.

6. Chapter VI: Coleman-Iwasawa-Tsuji Characterization of the p-adic L-

functions I present the third construction here. I follow [Tsu99] to obtain a power

series via the Coleman homomorphism and then proving that it has the interpolation

property, therefore it must be the p-adic L-function.
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Chapter 2

Formal Power Series

2.1 Some generalities about Power Series

In this section let R a commutative ring with 1 and R[[T ]] the topological ring of formal

powers series with the T -adic topology.

Definition 2.1.1 For N ∈ N, we define the N-th truncation map as

PN : R[[T ]] −→ R[T ]
∑

anT
n 7−→

∑

n<N

anT
n

Let f =
∑

n∈N

akT
k ∈ R[T ] and g ∈ TR[[T ]]. For simplicity let’s denote fN = PN (f) and

fN (g) =
∑

n≤N

ang
n ∈ R[[T ]], then for N ≥ M we have fN (g) ≡ fM (g)mod TM therefore

(
fN (g)

)
N∈N

is a Cauchy sequence in R[[T ]] with respect to the T -adic topology.

Definition 2.1.2 For f ∈ R[[T ]] and g ∈ TR[[T ]] we define the power series f(g) as the

the limit f(g) = lim
N→∞

PN (f)(g).

Remark 2.1.1

1. By definition f(g) is the unique series in R[[T ]] such that f(g) ≡ PN (f)(g)modTN

for all N ∈ N, and this property characterizes f(g).

2. Let gN = PN (g), then fN (g) ≡ fN(gN )modTN and f(g) ≡ fN (gN )modTN .

Proposition 2.1.1 The map R[[T ]] × T R[[T ]] −→ R[[T ]] defined as (f, g) 7−→ f(g), is

continuous with respect to the T -adic topology.

Proof. Let F, f ∈ R[[T ]] and G, g ∈ T R[[T ]] such that F ≡ f modTN and G ≡

gmodTN , then it is enough to prove that F (G) ≡ f(g)modTN . Now the congruences
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imply that FN = fN and GN = gN and last remark F (G) ≡ FN (GN ) = fN (gN ) ≡

f(g)modTN .

Corollary 2.1.1 1. For g ∈ T R[[T ]] fixed, we have that g∗ : R[[T ]] −→ R[[T ]] defined

as g∗(f) = f(g) is a R-algebra homomorphism.

2. Let f ∈ R[[T ]] and g, h ∈ T R[[T ]] then
(
f(g)

)
(h) = f

(
g(h)

)
.

Proof. Both parts follow by continuity since they are true for polynomials. 2

Definition 2.1.3 We define R((T )), the ring of Laurent series with coefficients in R, as

R[[T ]]T i.e. the localization of R[[T ]] at the multiplicative set of powers of T .

Definition 2.1.4 f =
∑
anT

n ∈ R((T )), we define the order of f as

ord f = min{n ∈ Z | an 6= 0}.

Lemma 2.1.1 R[[T ]]× is the set of f =
∑
anT

n ∈ R[[T ]] such that a0 ∈ R×.

Proof. Let f =
∑
anT

n, g =
∑
bnT

n ∈ R[[T ]], then fg = 1 if and only if a0b0 = 1 and

for n ≥ 1,

n∑

k=0

akbn−k = 0. That means that if a0 ∈ R× and taking b0 = a−1
0 , for n ≥ 1

we have bn = −a−1
0

n−1∑

k=0

bkan−k. Therefore when a0 ∈ R× we can inductively construct

g ∈ R[[T ]] such that fg = 1. 2

Definition 2.1.5 f =
∑
anT

n ∈ R((T )), we define the order of f as

ord f = min{n ∈ Z | an 6= 0}.

Lemma 2.1.2 R[[T ]]× is the set of f =
∑
anT

n ∈ R[[T ]] such that a0 ∈ R×.

Proof. Let f =
∑
anT

n, g =
∑
bnT

n ∈ R[[T ]], then fg = 1 if and only if a0b0 = 1 and

for n ≥ 1,

n∑

k=0

akbn−k = 0, that means that if a0 ∈ R×, taking b0 = a−1
0 and for n ≥ 1,

bn = −a−1
0

n−1∑

k=0

bkan−k we can inductively construct g ∈ R[[T ]] such that fg = 1. 2

Remark 2.1.2

1. Every f ∈ R[[T ]] not 0 factors as f = TNg with N = ord(f) and g(0) 6= 0.

2. If R is a field in last factorization, by lemma 2.1.2, we have that g ∈ R[[T ]]×.

3. If R is a field, by the last remarks, R((T )) is the fraction field of R[[T ]].
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2.2 Formal Derivatives

In this section we will restrict to study formal power series over a field K of 0 characteristic.

As usual, we define the formal derivative d
dT : K[[T ]] −→ K[[T ]] as

d

dT

(∑
anT

n
)

=
(∑

anT
n
)′

=
∑

nanT
n−1.

Here some other useful properties:

Remark 2.2.1

1. By definition, f ′ = 0 if and only if f ∈ K.

2. d
dT is linear and continuous with respect to the T -adic topology.

3. We have a product formula: for f, g ∈ K[[T ]], (fg)′ = f ′g + g′f . Indeed, since it is

true for polynomials, it follows by continuity.

Lemma 2.2.1 Let f, g ∈ K[[T ]]. If g ∈ T K[[T ]] or f ∈ K[T ] then (f(g))′ = f ′(g)g′.

Proof. By induction is easy to get (gn)′ = ngn−1g′ so the conclusion is true for f = T n,

by linearity it is true for any f ∈ K[T ]. If g ∈ T K[[T ]], f(g) is a limit of series fn(g)

where fn are polynomials, then it follows by continuity. 2

Definition 2.2.1 We define the Exponential and Lambda series respectively as

exp =
∞∑

n=0

T n

n!
∈ K[[T ]]× and λ =

∞∑

n=1

(−1)n+1T
n

n
∈ T K[[T ]].

Remark 2.2.2

1. Is easy to see that exp = exp′ and λ′ = (1 + T )−1.

2. exp and is the only series f ∈ Cp[[T ]] such that f ′ = f and f(0) = 1 (Because for

f =
∑
anT

n, f ′ = f imply that an+1 = (n+ 1)an).

3. For f ∈ T K[[T ]], F = exp(f) is well defined, F (0) = 1 (so F ∈ K[[T ]]×) and by

Lemma 2.2.1 F ′ = exp(f)f ′, then F ′/F = f ′.

Definition 2.2.2 For f ∈ K[[T ]]× we define its logarithmic derivative as δ(f) = f ′/f .

Notice that if h ∈ K[[T ]]× then δ(h) ∈ K[[T ]], and by the product formula for derivatives,

if f, g ∈ K((T ))× then δ(fg) = δ(f) + δ(g).

Lemma 2.2.2 Let f, g ∈ K[[T ]]×. δ(f) = δ(g) if and only if f/g ∈ K×.
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Proof. Let h = f/g ∈ K[[T ]]×, then δ(f) = δ(gh) = δ(g) + δ(h) therefore we have

equivalences: δ(f) = δ(g) ⇐⇒ δ(h) = 0 ⇐⇒ h′ = 0 ⇐⇒ h ∈ K×. 2

Remark 2.2.3

From last lemma we can conclude that for G ∈ K[[T ]]× and f ∈ T K[[T ]] we have:

δ(G) = δ(exp(f)) if and only if G = G(0) exp(f).

Theorem 2.2.1 The power series exp satisfy the following relations:

1. For n ∈ N, exp(nλ) = (1 + T )n. In particular exp(λ) = T + 1.

2. For f, g ∈ T K[[T ]], exp(f + g) = exp(f) exp(g).

3. For f, g ∈ T K[[T ]], λ(f [+]g) = λ(f) + λ(g), where f [+]g = (1 + f)(1 + g) − 1.

Proof. (1) Note that for f = exp(nλ) we have δ(f) = nλ′ = δ
(
(1 +T )n

)
. Hence, by last

lemma f = (1 + T )n.

(2) Let H = exp(f + g), F = exp(f) and G = exp(g). Clearly they are well defined and lie

in K[[T ]]×. Now by last remark δ(H) = f +g = δ(F )+ δ(G) = δ(FG), therefore H = FG.

(3) Let F = λ(f), G = λ(g) ∈ T K[[T ]]. Since

exp(f + g) = exp(f) exp(g) = (1 + f)(1 + g) = (f [+]g) + 1,

we get λ(f [+]g) = λ
(
exp(f + g) + 1

)
. It is enough to show that λ(exp − 1) = T , but it

follows from the fact that
(
λ(exp−1)

)′
= exp′ / exp = 1. 2

Remark 2.2.4

As well as for power series, for f =
∑

n∈Z

anT
n ∈ K((T )) we can define a formal deriva-

tive f ′ =
∑

n∈Z

nanT
n−1 which also is K-linear, continuous and satisfies the usual product

formula i.e. for f, g ∈ K((T )), (fg)′ = f ′g + g′f.

2.3 Convergence

From now on, let p a fix odd prime, v the p-adic valuation on Qp and Qp, the algebraic

closure of Qp. As is well known that the p-adic valuation can be extended in a unique

way to Q×p and v(Q×p ) = Q, where v denotes such extension. Since Qp is not complete, we

define:

Definition 2.3.1 We define Cp as the completion of Qp.
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Let v and | | denote the unique extensions on Cp of the p-adic valuation and the cor-

responding absolute normalized value. For any positive real number r, we define the

following sets:

Br = {ζ ∈ Cp | |ζ| < r},

B′r = {ζ ∈ Cp | 0 < |ζ| < r}.

Let pQ = {pq | q ∈ Q}. Since it coincides with the set of absolute values of elements of

C×p , if r ∈ pQ we can define

Sr = {ζ ∈ Cp | |ζ| = r}.

Definition 2.3.2 f =

∞∑

n=0

akT
k ∈ Cp[[T ]] converges at ξ ∈ Cp if

∞∑

n=0

akξ
k converges. In

such case, as usual, we will denote f(ξ) =

∞∑

k=0

akξ
k.

It is well known that this happens if and only if |akξ
k| → 0. Also, if A converges at some

ξ 6= 0 if and only if A has a positive radius of convergence (which may be infinite).

Definition 2.3.3 Let K a complete subfield of Cp.

We define K[[T ]]r as the set of f ∈ K[[T ]] which are convergent at every point of Br.

Lemma 2.3.1 Let f =
∑

akT
k ∈ Cp[[T ]]r. The associated function defined on Br,

f : ζ 7−→ f(ζ), is continuous.

Proof. Let ζn, ζ ∈ Br such that ζn −→ ζ . Note that for a, b ∈ Cp, |a|, |b| < s we have

|ak+1 − bk+1| ≤ |a− b| max
0≤j≤k

|ajbk−j| ≤ |a− b|sk.

Now since ζm −→ ζ we can take s > 0, |ζ| < s < 1 and N ∈ N such that for n ≥ N ,

|ζm| < s then

∣∣∑ akζ
k
m −

∑
akζ

k
∣∣ ≤ sup

k∈N

|ak||ζ
k
m − ζk| ≤

1

s

(
sup
k∈N

|ak|s
k

)
|ζm − ζ|.

Since s < R the supremum is finite, therefore lim
n→∞

f(ζn) = f(ζ). 2

Lemma 2.3.2 Let f =
∑
anT

n ∈ Cp[[T ]] be convergent on Br. If f(ξn) = 0 for a

sequence (ξn)n∈N ⊆ Cp such that 0 < |ξn| < r and lim
n→∞

ξn = 0 then f = 0.

Proof. Taking a subsequence if necessary we can assume |ξ1| > |ξ2| > . . . . If f 6= 0 we

can take m minimal such that am 6= 0 then

−am =
∑

k>m

akξ
k−m
n = ξn

∑

k>m

akξ
k−m−1
n ,
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|am| = |ξn|

∣∣∣∣∣
∑

k>m

akξ
k−m−1
n

∣∣∣∣∣ ≤ |ξn| sup
k>m

|akξ
k−m−1
n | ≤ |ξn| sup

k>m
|akξ

k−m−1
1 |. (2.1)

Since
∑
akξ

k
1 is convergent we have sup

k>m
|akξ

k−m−1
1 | < ∞, therefore the last inequality

implies that am must be 0, which is a contradiction. 2

Lemma 2.3.3 (Unicity Lemma) If f, g ∈ Cp[[T ]] converges on Br and f(ξn) = g(ξn)

for a sequence (ξn) ⊆ Br which converges to some ξ ∈ Br then f = g.

Proof. If ξ = 0, we may apply last lemma to h = f−g taking an appropiate subsequence.

If ξ 6= 0 we can reduce to the previous case taking F = f(T+ξ) and G = g(T+ξ) ∈ Cp[[T ]]

we have that they are convergent on Br−|ξ| and satisfiy F (ξn − ξ) = G(ξn − ξ). By the

previous case F = G, therefore f = g. 2

Lemma 2.3.4 λ converges for all |ζ| < 1.

Let v(ζ) > 0 and c = pv(ζ) = 1/|ζ| < 1. Since v(n) < lnn
ln p and v(ζ) = ln c

ln p we have

v

(
ζn

n

)
= nv(ζ) − v(n) ≥ n

ln c

ln p
−

lnn

ln p
=

1

ln p
ln

(
cn

n

)
.

That means that

∣∣∣∣
ζn

n

∣∣∣∣ ≤
cn

n
, hence

∑
(−1)n

ζn

n
must be convergent.

Lemma 2.3.5 For all n ∈ N we have,

n− p

p− 1
−

log n

log p
< vp(n!) <

n

p− 1
.

In particular the exponential series converges for |ζ| < p−
1

p−1 .

Proof. Since [n/pk] is the number of multiples of pk less or equal to n, is easy to see that

vp(n!) =

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ · · ·

Now, let n = a0 + a1p+ . . .+ arp with 0 ≤ aj < p, then for k ≤ r we have

[n/pk] = ak + ak+1p+ . . .+ arp
r−k.

Therefore

vp(n!) =

r∑

k=1

[n/pk] =

r∑

k=1

r∑

j=k

ajp
j−k =

r∑

j=1

aj

j−1∑

i=0

pi =
1

p− 1

r∑

j=0

aj(p
j − 1) <

n

p− 1
.

For the other inequality, note that since n/pk − 1 < [n/pk] we have

vp(n!) ≥
r∑

k=1

(
n

pk
− 1

)
=

n

p− 1
−
np−r

p− 1
− r >

n− p

p− 1
−

log n

log p
.

2
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Chapter 3

p-adic Interpolation

From now on p is a fixed prime, assumed odd.

3.1 Dirichlet Characters

Definition 3.1.1 (Dirichlet Characters) Let n and integer, n ≥ 1. A map

χ : N −→ C

is called a Dirichlet Character to the modulus n if

1. χ(a) depends only upon the residue class of amodn.

2. χ is compleatly multiplicative i.e. for all a, b ∈ N we have χ(ab) = χ(a)χ(b).

3. χ(a) 6= 0 if and only if a is prime to n.

Remark 3.1.1

1. Let n ∈ Z, n ≥ 1. There is a one to one correspondence between the Dirichlet char-

acter to modulus n and the usual characters of the multiplicative group
(
Z/nZ

)×
.

Therefore there are exactly ϕ(n) Dirichlet characters to the modulus n.

2. If m | n, any χ̂ ∈ Hom
((

Z/mZ
)×
,C×

)
induces another homomorphism one has by

composition with the canonical homomorphism,

(
Z/nZ

)×
−→

(
Z/mZ

)× χ̂
−→ C×

Definition 3.1.2 A Dirichlet character χ to a modulus n is called primitive if it is not

induced by any character to a modulus m with m < n. The integer n is the called the

conductor of χ and is denoted by fχ.
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For n prime to p we have the following isomorphisms:

(
Z/m0p

n+1Z
)×

=
(
Z/m0Z

)×
×
(
Z/pn+1Z

)×

Definition 3.1.3 Let χ a Dirichlet Character. The character χ is said to be of first kind

if the p-th part of fχ is 1 or p and of second kind if fχ is a power of p.

Proposition 3.1.1 Every Dirichlet character χ has a unique factorization χ = θψ where

θ is of first kind and ψ is of second kind.

3.2 Generalized Bernoulli Numbers

Classically the Bernoulli numbers Bn and Bernoulli polynomials Bn(X) are defined by

their generating functions F (T ) =
TeT

eT − 1
and F (T,X) = F (T )eTX respectively. For a

Dirichlet character χ, with conductor f = fχ, the formal power series Fχ(T ) and Fχ(T,X)

are defined as

Fχ(T ) =

f∑

a=1

χ(a)
TeaT

efT − 1
and Fχ(T,X) = Fχ(T )eTX =

f∑

a=1

χ(a)
Te(a+X)T

efT − 1
.

Definition 3.2.1 The generalized Bernoulli numbers Bn,χ and generalized Bernoulli poly-

nomials Bn,χ(X) respect the character χ are defined as

Fχ(T ) =

∞∑

n=0

Bn,χ
T n

n!
and Fχ(T,X) =

∞∑

n=0

Bn,χ(X)
T n

n!
.

Proposition 3.2.1 The Bernoulli polynomials satisfy by the formulas:

1. Bn,χ(X) =

n∑

k=0

(
n

k

)
Bn−k,χX

k, in particular Bn,χ(0) = Bn,χ.

2.

kf∑

a=1

χ(a)an =
1

n+ 1
{Bn+1,χ(kf) −Bn+1,χ} .

Proof. The first part is a consequence of the standard product formula for series. Let

us prove the second one:

Fχ(T,X + f) − Fχ(T,X) = Fχ(T )(e(X+f)T − eXT ) =

f∑

a=1

χ(a)Te(a+X)T ,
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looking at the coefficients corresponding to T n+1 we get

Bn+1,χ(X + f) −Bn+1,χ(X) = (n+ 1)

f∑

a=1

χ(a)(a +X)n.

Finally evaluating at X = jf for j = 0, . . . , k and summing,

Bn+1,χ(kf) −Bn+1,χ(0) = (n+ 1)
k−1∑

j=0

f∑

a=1

χ(a)(a + jf)n

= (n+ 1)

kf∑

a=1

χ(a)an.

2

The previous proposition can be used to characterize p-adically the Bernoulli numbers.

Let

Sn,χ(X) =
1

n+ 1

(
Bn+1,χ(X) −Bn+1,χ

)
,

therefore, by the previous proposition,

Sn,χ(kf) =
1

n+ 1

(
Bn+1,χ(kf) −Bn+1,χ

)
=

kf∑

a=1

χ(a)an. (3.1)

Corollary 3.2.1 As an element of Qp(χ),

Bn,χ = lim
h→∞

1

fph
Sn,χ(fp

h).

Proof. By Proposition 3.2.1, Bn+1,χ(X) = Bn+1,χ + (n+ 1)Bn,χXmodX2, then

Sn,χ(fp
h) =

1

n+ 1

(
Bn,χ(fp

h) −Bn,χ
)
≡ Bn,χmod p2h.

2

3.3 The Normed space PK

For any power series A =
∑
akT

k ∈ K[[T ]] set ‖A‖ = sup |ak|.

Definition 3.3.1 Let PK denote the set of A ∈ K[[T ]] such that ‖A‖ <∞.

Remark 3.3.1

Let A,B ∈ PK and a ∈ K, then:

1. ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0.

2. ‖A+B‖ ≤ max{‖A‖, ‖B‖} and ‖aA‖ = |a|‖A‖.

3. ‖AB‖ ≤ ‖A‖‖B‖.

13



4. PK is a subalgebra of K[[T ]] and K[T ] ⊆ PK .

1 and 2 and 3 are trivial and for 4 taking m,n such that |am| = ‖A‖ and |bn| = ‖B‖, if

AB =
∑
crT

r then

|cr| ≤ max
s+t=r

|as||bt| ≤ |an||bm| = ‖A‖‖B‖.

Proposition 3.3.1 The K-algebra PK is complete respect to ‖ ‖.

Let (An) ⊆ PK be a Cauchy sequence with respect to ‖ ‖ say An =
∑
ankT

k. Let us split

the remaining of the proof in 3 steps:

i) For each k ∈ N, the sequence (an,k) ⊆ K is convergent.

ii) If ak = lim
n→∞

an,k then A =
∑
akT

k ∈ PK .

iii) Finally, An converges to A.

Proof.

i) Taking any ε > 0, there existsN ∈ N such that n,m ≥ N implies that ‖An−Am‖ < ε,

in particular |an,k − am,k| < ε. That means that, for fixed k, (an,k) ⊆ K is Cauchy,

hence convergent.

ii) Since (An)n∈N is Cauchy, it is bounded, say by C > 0. Then for all n and all k,

|an,k| ≤ ‖An‖ ≤ C, therefore |ak| ≤ C so A ∈ PK .

iii) For ε > 0 and N such that n,m ≥ N , ‖An −Am‖ < ε for any k ∈ N |an,k − am,k| ≤

‖An −Am‖ < ε so fixing k and taking limit when n goes to infinity we get that for

m ≥ N , |ak−amk| ≤ ε hence ‖A−Am‖ < ε. Since this happens for any ε > 0 means

that An converges to A. 2

Definition 3.3.2 We define the combinatorial polynomials
(T
n

)
as

(
T

n

)
=

1

n!

n−1∏

k=0

(T − k).

Clearly we have that ‖
(T
n

)
‖ ≤

∣∣ 1
n!

∣∣. By Lemma 2.3.5 we have the

∣∣∣∣
1

n!

∣∣∣∣ =
(

1

p

)v(n!)

≤ p
− 1

p−1 . (3.2)

Given any sequence (bn) ⊆ K, there exists a unique sequence (cn) such that

e−T
∑

bn
T n

n!
=
∑

cn
T n

n!
.
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This means that,

cn
n!

=

n∑

i=0

bi
i!

(−1)n−i

(n− i)!
and

bn
n!

=

n∑

i=0

ci
i!

1

(n− i)!
,

therefore

cn =

n∑

i=0

(
n

i

)
bi(−1)n−i and bn =

n∑

i=0

(
n

i

)
ci.

With these notations we have:

Lemma 3.3.1 (Interpolation) Let 0 < r < |p|
1

p−1 and |cn| ≤ Crn for some C > 0.

Then there exists a unique A ∈ PK convergent for |ξ| < δ = |p|
1

p−1 /r such that for all

n ∈ N,

A(n) = bn

Proof. Let Ak(T ) =

k∑

i=0

(
T

i

)
ci. Clearly Ak(n) = bn and using lemma 2.3.5

∥∥∥ci
(
T

i

)∥∥∥ ≤ |ci|

∣∣∣∣
1

i!

∣∣∣∣ ≤ |ci|p
−i

p−1 ≤ C
(
|p|

−1
p−1
)i

= Cδ−i.

For j ≥ k,

‖Aj −Ak−1‖ ≤ max
k≤i≤j

∥∥∥ci
(
T

i

)∥∥∥ ≤ Cδ−k, (3.3)

since δ < 1 this means that (Ak) is Cauchy, then exists A ∈ PK such that Ak → A respect

to ‖ ‖. Let A =
∑
ajT

j and Ak =
∑
ajkT

j, as we have seen ajk → ak as j increases, in

the other hand since deg(Ak−1) ≤ k−1 we have ak,k−1 = 0 then for j ≥ k using the bound

(3.3) we get

|aj,k| = |aj,k − ak,k−1| ≤ ‖Aj −Ak−1‖ ≤ Cδ−k,

taking limit as j increases we obtain

|ak| ≤ Cδ−k. (3.4)

This means that A(ξ) converge for |ξ| < δ, in particular in the integers.

Claim: For a fix element ξ ∈ Cp such that |ξ| < δ, Ak(ξ) → A(ξ).

Let bj,k = aj −aj,k, then A(ξ)−Ak(ξ) =
∑
bj,kξ

j . Is enough to prove that sup
j

|bj,kξ
j| → 0

as k → ∞. For j > k, using the bound (3.4)

|bj,kξ
j| = |ajξ

j | ≤ C(δ−1|ξ|)j ≤ C(δ−1|ξ|)k
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and for j ≤ k, (using the bound (3.3))

|bj,kξ
j | ≤ ‖A−Ak‖|ξ|

j ≤ Cδ−(k+1)|ξ|j ≤

{
Cδ−k if |ξ| ≤ 1,

C(δ−1|ξ|)k if |ξ| > 1.

Therefore if we call m = max{δ−1, (δ−1|ξ|)} < 1 then

|A(ξ) −Ak(ξ)| = sup
j

|bj,kξ
j | ≤ Cmk,

this means that Ak(ξ) → A(ξ) as k → ∞. 2

3.4 p-adic L-function: Classical Approach

Let χ a Dirichlet character of conductor f andK = Qp(χ) i.e. K = Q(χ(1), χ(2), . . .).Consider

ω : Z −→ C be a fixed embedding of the Teichmüller character in C.

Definition 3.4.1 The twisted characters of χ are the Dirichlet characters χn induced by

χω−n i.e. for a prime to p,

χn(a) = χ(a)ω−n(a).

Let p ∤ n, since ω has conductor p, fn = fχn |pf but χ = χnω
n hence f |pfn so in general

for any n, fn = paf with a = 0, 1. Finally let

bn =
(
1 − χn(p)p

n−1
)
Bn,χn

and

cn =
n∑

i=0

(
n

i

)
bi(−1)n−i.

Lemma 3.4.1 For any n ≥ 0,

|cn| ≤
1

|p2f |
|p|n.

Proof. By Corollary 3.2.1 and using the fact that fn = pαf and (3.1),

Bn,χn = lim
h→∞

1

phfn
Sn,χn(phfn) = lim

h→∞

1

phf
Sn,χn(phf) = lim

h→∞

1

phf

phf∑

a=1

χn(a)a
n,

replacing this limit in the definition of bn,

bn =
(
1 − χn(p)p

n−1
)
Bn,χn

= Bn,χn − lim
h→∞

χn(p)p
n−1

ph−1f

ph−1f∑

a=1

χn(a)a
n

= lim
h→∞

1

phf

phf∑

c=1

χ(c)cn − lim
h→∞

1

phf

ph−1f∑

a=1

χn(ap)(ap)
n.
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Eliminating the repeated terms and using that χn(a)a
n = χ(a)〈 a 〉n,

bn = lim
h→∞

1

phf

phf∑

a=1,
(a,p)=1

χn(a)a
n = lim

h→∞

1

phf

phf∑

a=1,
(a,p)=1

χ(a)〈 a 〉n. (3.5)

Now, replacing (3.5) in the definition of cn

cn =
n∑

i=0

(
n

i

)
(−1)n−i lim

h→∞

1

phf

phf∑

a=1,
(a,p)=1

χ(a)〈 a 〉i

= lim
h→∞

1

phf

phf∑

a=1,
(a,p)=1

χ(a)
n∑

i=0

(
n

i

)
(−1)n−i〈 a 〉i

= lim
h→∞

1

phf

phf∑

a=1,
(a,p)=1

χ(a)
(
〈 a 〉 − 1

)n
= lim

h→∞

1

phf
cn(h),

where cn(h) =

phf∑

a=1,
(a,p)=1

χ(a)
(
〈 a 〉 − 1

)n
, clearly is an integral element of K.

Claim. For all n ∈ N, cn(h) ≡ 0mod pn+h−2.

Since 〈 a 〉 ≡ 1mod p then
(
〈 a 〉−1

)n
≡ 0mod pn hence cn(1) ≡ 0mod pn. Let us proceed by

induction on h. The case h = 1 is done, if h ≥ 1 let us assume that cn(h) ≡ 0mod pn+h−2.

By standard division each 1 ≤ a ≤ ph+1f can be uniquely written as a = u+ phfv where

1 ≤ u ≤ phf , 0 ≤ v ≤ p− 1 and u ≡ amod phf , then ω(u) = ω(a) and

〈 a 〉 = 〈u 〉 + phfω(u)−1v,

then,
(
〈 a 〉 − 1

)n
=

n∑

k=0

(
n

k

)(
〈u 〉 − 1

)k(
phfω(u)−1v)n−k.

Since 〈u 〉 ≡ 1mod p the k-th term of last sum is divisible by pk+(n−k)hf, now for n−k ≥ 1,

k + (n− k)h = n+ (n− k)(h− 1) ≥ n+ h− 1, hence

(
〈 a 〉 − 1

)n
≡
(
〈u 〉 − 1

)n
mod pn+h−1,

and since a ≡ umod f , χ(a) = χ(u) then

χ(a)
(
〈 a 〉 − 1

)n
≡ χ(u)

(
〈u 〉 − 1

)n
mod pn+h−1.

Summing up along 1 ≤ a ≤ ph+1f such that (a, p) = 1,

ph+1f∑

a=1,
(a,p)=1

χ(a)
(
〈 a 〉 − 1

)n
≡

p−1∑

v=0

phf∑

u=1,
(u,p)=1

χ(u)
(
〈u 〉 − 1

)n
mod pn+h−1,

cn(h+ 1) ≡ pcn(h) ≡ 0mod pn+h−1.

17



The claim is proved.

Since cn(h) = ph+n−2θn(h), for some θn(h) with |θn(h)| ≤ 1, we can conclude

|cn| = lim
h→∞

1

|pn+hf |
|cn(h)| = lim

h→∞

1

|phf |
|pn+h−2θn(h)| ≤

1

|p2f |
|pn|

2

Corollary 3.4.1 There exists Aχ ∈ K[[T ]] convergent for |ζ| < |p|−
p

p−1 (> 1) such that,

Aχ(n) =
(
1 − χn(p)p

n−1
)
Bn,χn .

Proof. Taking r = |p| and C = 1
|p2f | , we can apply the interpolation lemma (lemma 3.3.1)

for bn an cn as above, since the previous lemma says that |cn| ≤ Crn and r = |p| < |p|
1

p−1 ,

hence there exists such Aχ ∈ K[[T ]] convergent for |ξ| < |p|
1

p−1 |p|−1 = |p|−
p

p−1 which takes

the prescribed values at the non negative integers, Aχ(n) = bn. 2

Theorem 3.4.1 There exists a unique p−adic meromorphic function Lp(s, χ) on B(1, r) ⊆

Cp, where r = |p|−
p

p−1 , such that:

1. Lp(s, χ) =
a−1

s− 1
+

∞∑

n=0

an(s− 1)n with a1 =

{
1 −

1

p
if χ = 1

0 if χ 6= 1
.

2. Lp(s, χ) = −
(
1 − χn(p)p

n−1
)Bn,χn

n
.

Proof. Take for Aχ the one of the Corollary 3.4.1 then

Lp(s, χ) =
1

s− 1
Aχ(1 − s),

holds the conditions. The unicity follows from Lemma 2.3.3. 2
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Chapter 4

Stickelberger Elements and p-adic

L-Functions

We fix the notation ζn = e
2πi
n ∈ C. We fix once and for all an embedding Q →֒ Cp so that

ζn is also an element of Cp.

4.1 The Cyclotomic Character

Lemma 4.1.1 We have isomorphisms

σn : (Z/pnZ)×−→Gal
(
Qp(ζpn)/Qp

)
,

given by σn(a) : ζpn 7−→ ζapn.

Proof. Clearly σn is a group homomorphism and its kernel consists in the a ∈ (Z/pnZ)×

such that ζapn = ζpn but by definition of ζpn this is equivalent to say that a = 1mod pnZ,

hence σn is injective. For the surjectivity take σ ∈ Gal
(
Qp(ζpn)/Qp

)
i.e. σ ∈ Aut

(
Qp(ζpn)

)

and σ acts trivially in Qp hence sigma is determined by its value σ(ζpn) which must be

another pn root of 1 so σ(ζpn) = ζapn with a 6= 0mod p.

Corollary 4.1.1 For 1 ≤ m < n the Galois isomorphisms

σn,m : Z/pn−mZ −→ Gal
(
Qp(ζpn)/Qp(ζpm)

)
,

are given by σn,m(k) : ζpn 7−→ ζ1+kpm

pn = ζkpn−mζpn.

Proof. Let σ ∈ Gal
(
Qp(ζpn)/Qp(ζpm)

)
, σ(ζpn) = ζapn with a ∈ (Z/pZ)×. Since (ζpn)p

n−m
=

ζpm must be fixed, a ≡ 1mod pm so a = 1 + kpm mod pn where k runs through Z/pmZ. 2
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Let Qp(ζp∞) =
⋃

n∈N

Qp(ζpn) and G = Gal
(
Qp(ζp∞)/Qp

)
then we have the following canon-

ical isomorphisms

G ∼= lim
←−

Gal
(
Qp(ζpn)/Qp

)
∼= lim
←−

(Z/pnZ)× ∼= Z×p .

Definition 4.1.1 We define the canonical character κ : G
≃

−→ Z×p .

Let µn ⊆ Qp(ζpn) be the group of pn-roots of 1 and Nn = NQp(ζpn )|Qp(ζpn−1 ) . Since

Nn(ζpn) =
∏

ζp=1

ζζpn = ζpn−1 we have an inverse system {Nn : µn −→ µn−1}.

Definition 4.1.2 We define the Tate Module as Zp(1) = lim
←−

µn.

By construction Zp(1) is naturally a Zp-module (Zp acting by exponentiation) and admit

a generator namely the sequence ζ = (ζpn).

4.2 The Preparation Theorem

Let (K, v) be a finite extension of (Qp, vp) in Cp, with valuation ring O and maximal

p = (π). For f ∈ O[[T ]] say f =
∑
anT

n we can define the so called µ and λ invariants as

µ(f) = min{v(an)|n ∈ N} and λ(f) = min{n ∈ N | v(an) = µ(f)}.

Now, Let us denote O[T ]N the set of polynomials of degree less than N in O[T ].

Lemma 4.2.1 (Division lemma) Let f, g ∈ O[[T ]], with µ(f) = 0 and λ = λ(f). Then

we have a decomposition

g = qf + r

where q ∈ O[[T ]] and r ∈ O[T ]λ(f). Further such decomposition is unique.

Proof. By hypothesis f = f0 + T λu where u ∈ O[[T ]]× and f0 ∈ πO[T ]λ. Now g =

h0T
λ + r0 with r0 ∈ Oλ[T ] so by taking q0 = h0u

−1 and reducing modπ, we get

g = q0uT
λ + r0 = fq0 + r0.

That means that for some g1 ∈ O[[T ]] we have

g = q0f + r0 + πg1,

20



applying the same argument to g1 we obtain r1 ∈ O[T ]λ and q1, g2 ∈ O[[T ]] such that

g1 = q1f + r1 + πg2, therefore

g = (q0 + πq1)f + (r0 + πr1) + π2g2.

Repeating the process we obtain (qn) ⊆ O[[T ]], (rn) ⊆ Oλ[[T ]] such that q =
∑
qnπ

n,

r =
∑
gnπ

n are convergent, r ∈ O[T ]λ and g = qf + r. 2

Definition 4.2.1 A polynomial P ∈ O[T ] is said to be distinguished if P = T n+an−1T
n−1+

. . .+ a0 with ai ∈ p i.e. P is monic and P − T degf ∈ p[T ].

Theorem 4.2.1 (p-adic Weierstrass Preparation theorem) Let f ∈ O[[T ]] not zero,

µ = µ(f) and λ = λ(f). We may factor f uniquely as

f = πµP (T )u(T )

where P ∈ O[T ] is distinguished of degree λ and u ∈ O[[T ]]×.

Proof. Dividing f by πµ, it is enough to check the case when µ(f) = 0. Now, we

can apply the division lemma to T λ and f we get g ∈ O[[T ]] and r ∈ O[T ]λ such that

T λ = gf + r. By reduction mod p we get

r = T λ − gf,

but by hypothesis f is divisible by T λ, then so does r. Since deg r ≤ deg r < λ, we have

that r = 0 i.e. r = 0mod p. Now set P = T λ − r(T ), clearly it is distinguished and since

T λ = gf the constant term of g cannot be 0mod p so g ∈ O[[T ]]×. Taking u = 1/g we

obtain f = P (T )u(T ) as was to be shown. 2

Remark 4.2.1

1. For f ∈ OK [[T ]] not zero, the factorization f = πµP (T )u(T ) with P ∈ O[T ] distin-

guished and u ∈ O[[T ]]× is called the Weierstrass Factorization of f and P the

Weierstrass Polynomial of f .

2. If u ∈ O[[T ]]× then |u(ζ)| = 1 for all ζ ∈ B1 (by Lemma 2.1.2 u(0) ∈ O× i.e.

|u(0)| = 1, then for ζ ∈ B1 we must have |u(z)−u(0)| ≤ |ζ| < 1 therefore |u(ζ)| = 1).

Corollary 4.2.1 If f ∈ O[[T ]] is not zero then it has the same zeros of P in B1, and each

zero has the same multiplicity.

Proof. By the preparation theorem f = πµP (T )u(T ) with P a polynomial and u ∈

O[[T ]]×. By part 2 of Remark 4.2.1 the zeros of f in B1 are zeros of P . Pick a ∈ B1
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among the zeros of f and set g ∈ OK [[T ]] such that f = (T − a)m g with g(a) 6= 0 and

g = πµQ(T )v(t) the Weierstrass factorization of g. Since Q(a) 6= 0 and (T − a)mQ/P ∈

OK [[T ]]×, this quotient cannot have zeros neither poles therefore P = (T − a)mQ i.e. m

is the common multiplicity of a as zero of f as well as zero of P . 2

Last Corollary gives us another proof of the uniqueness Principle:

Corollary 4.2.2 Let f, g ∈ O[[T ]]. If f(ζ) = g(ζ) for infinitely many ζ ∈ B1 then f = g.

Proof. Let h = f − g. If h 6= 0 by last corollary it must have at most finitely many zeros

since they are the zeros of its Weierstrass polynomial. But this contradicts the hypothesis,

therefore h = 0 i.e. f = g. 2

Let [pn] = (T + 1)p
n
− 1. Clearly these polynomials are distinguished. For any f ∈ O[[T ]],

by the division lemma (Lemma 4.2.1) there exists qn ∈ O[[T ]] and fn ∈ O[T ]pn such that

f = qn[p
n] + fn, hence there are well define K-algebra morphisms

ϕn : O[[T ]] −→ O[T ]/[pn]

f 7−→ fn mod[pn].

Since [pn] is a factor of [pn+1], the canonical protections O[T ]/[pn+1] −→ O[T ]/[pn] con-

stitute an inverse system and induces a K-algebra morphism

O[[T ]] −→ lim
←−

O[T ]/
(
(1 + T )p

n
− 1
)
.

Both sides have natural topologies, O[[T ]] the one induced by the maximal ideal (p, T )

and lim
←−

O[T ]/[pn] the one induced by the inverse limit. The following result can be found

in [Was97, p. 114]

Theorem 4.2.2 The last morphism is an algebraic and topological isomorphism.

Proof. This morphism is surjective because for every coherent sequence in the inverse

limit, we may take a sequence of representatives of each term (fn)n∈N and by definition it

must be a cauchy sequence of polynomials so must have limit f ∈ O[[T ]] and the coherence

implies that f ≡ fn mod[pn]. For the injectivity note that any element of its kernel must

be divisible for every [pn], hence must be 0. 2

4.3 Group rings and Power Series

Let d prime to p. For each n ∈ N set qn = dpn+1, Kn = Q(ζqn) and Γn = Gal
(
Kn/K0

)
and

∆ = Gal
(
K0/Q

)
. SinceK0/Q is tame at p the restriction map Gal

(
Kn/Q

)
−→ Gal

(
K0/Q

)
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induce a canonical split exact sequence

1 // Gal
(
Kn/K0

)
// Gal

(
Kn/Q

) // Gal
(
K0/Q

)
i

oo_ _ _

// 1 ,

Hence we get a canonical isomorphism Gal
(
Kn/Q

)
∼= Γn × ∆, which fits in the diagram:

Gal
(
Kn/Q

) ∼= // Γn × ∆

(
Z/qnZ

)× //

σn

OO

Un ×
(
Z/pdZ

)×
γn×δ

OO (4.1)

where Un =
{
amod qn | a ≡ 1mod pd

}
, γn = σn|Un

and σn, δ are given by

σn(a) : ζqn 7−→ ζaqn and δ(b) : ζpd 7−→ ζbpd.

Let K∞ =
⋃

n∈N

Q(ζqn) and Γ = Gal
(
K∞/K0

)
. We have topological isomorphisms:

Γ = lim
←−

Γn ∼= lim
←−

Un ∼= 1 + pqZp = (1 + pd)Zp .

Let γ : (1 + pd)Zp −→ Γ such isomorphism, then it is totaly characterize by its action

γ(a) : ζqn −→ ζamod qnZ
qn .

From diagram (4.1) we get

Gal
(
K∞/Q

) ∼= // Γ × ∆

Z×p //

σ

OO

(1 + pdZp) ×
(
Z/pdZ

)×
γ×δ

OO

Note that γ0 = γ(1 + pd) is a topological generator of Γ i.e. Γ = γ
Zp

0 .

Lemma 4.3.1 The Groups Gal
(
K∞/Kn

)
= Γp

n
= γ

pnZp

0 and Γn = 〈 γn(1 + pd) 〉.

Proof. Note that Gal
(
K∞/Kn

)
has index pn in Γ. Since the only subgroup of index pn

of Zp is pnZp, then the corresponding subgroup of Γ must be Γp
n
, hence

Gal
(
Kn/K0

)
= Γp

n
= γ

pnZp

0 .

Now, canonically Γn ∼= Γ/Γp
n

= 〈 γ0Γ
pn

〉, therefore Γn = 〈 γn(1 + pd) 〉. 2

For F a finite extension of Qp, consider the group algebras OF [Γn] with the topology

induced by OF . Note that the canonical homomorphisms {Γn −→ Γm}m≤n induce an

inverse system of topological algebras
{
OF [Γn] −→ OF [Γm]

}
m≤n

.
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Definition 4.3.1 We define OF [[Γ]] as the topological OF -algebra lim
←−

OF [Γn].

Clearly the morphisms OF [Γ] −→ OF [Γn] induced by the canonical projections are coher-

ent with the inverse system, therefore we get a canonical morphism

OF [Γ] −→ OF [[Γ]].

By the same argument that we will use in Lemma 6.3.1 we have that last morphism is a

dense immersion therefore we may consider OF [Γ] as a dense subgroup of OF [[Γ]] doing

the identification:

γ(a) ⇆
(
γn(amod pn)

)
n∈N

.

Theorem 4.3.1 There exists a unique isomorphism of compact OF -algebras

OF [[T ]] ∼= OF [[Γ]],

such that the isomorphism sends 1 + T 7−→ γ0 = γ(1 + pd).

Proof. Consider the algebra-morphism OF [T ] −→ OF [Γn] given by 1+T 7−→ γn(1+pd).

By Lemma 4.3.1 they are surjective and γn(1 + pd) has order pn in Γn, hence monic

polynomial [ pn ] = (1 + T )p
n
− 1 is in the kernel and has minimal degree, therefore it is a

generator of such kernel and we get an isomorphism

θn : OF [T ]/[ p ]
∼=

−→ OF [Γn].

Such isomorphisms are clearly compatible with corresponding inverse systems, then they

induce an isomorphism

lim
←−

OF [T ]/[ p ]
∼=

−→ lim
←−

OF [Γn].

which sends
(
1 + T mod[ pn ]

)
n∈N

7−→
(
γn(1 + pd)

)
therefore by Theorem 4.3.1

OF [[T ]] ∼= lim
←−

OF [T ]/[ pn ] ∼= lim
←−

OF [Γn] = OF [[Γ]],

and the resulting isomorphism sends 1 + T 7−→ γ(1 + pd). 2

4.4 p-adic L-Functions: Iwasawa’s Approach

Let p be an odd prime and d an integer prime to p such that d 6= 2mod 4. In this section

we will continue with the notation: qn = pn+1d, Kn = Q(ζqn), K∞ =
⋃

n∈N

Kn and the

groups G = Gal
(
K∞/Q

)
, Gn = Gal

(
Kn/K0

)
, Γ = Gal

(
K∞/K0

)
, Γn = Gal

(
Kn/K0

)
,

∆ = Gal
(
K0/Q

)
. We let σa, for a prime to q0, denote the element in Gal

(
K∞/Q

)
which

sends each ζqm 7−→ ζaqm as well as its restrictions in Gal
(
Kn/Q

)
.
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Definition 4.4.1 (Stickelberger Element) The Stickelberger element θn is defined as

ξn =
1

qn

qn∑

a=1,
(a,q0)=1

aσ−1
a |Kn =

∑

a∈Wn

{
a

qn

}
σ−1
a |Kn ∈ Qp[Gn], (4.2)

where Wn ⊆ Z is any set of representative of
(
Z/qnZ

)×
.

Now consider the inverse system of algebras {Qp[Gn] −→ Qp[Gm]}m≤n where the maps

are the induced by the respective restrictions.

Corresponding to the decomposition Gal
(
Kn/Q

)
∼= Γn × ∆, we write:

σa = δ(a)γn(a), with δ(a) ∈ ∆, γn(a) ∈ Γn.

We will use the same notation σa indistinctly as an element of Gal
(
Q(ζp∞)/Q

)
as well as

its canonical image in Gal
(
K∞/Q(ζf )

)
.

It is well known [Was97, pp. 93] that for c prime to qn we have

(1 − cσ−1
c )θn ∈ Zp[Gal

(
Kn/Q

)
].

An adaptation of the same argument gives as:

Lemma 4.4.1 Let c prime to q0. We have that,

ηn = −(1 − cγn(c)
−1)ξn ∈ Zp[∆ × Γn].

Proof. With the previous notation,

ξn =
1

qn

qn∑

a=1,
(a,q0)=1

a δ(a)−1γn(a)
−1. (4.3)

Since c is prime to q0 we may consider in the sum (4.3) the change of summing index

a ≡ bc mod qn, then
a

qn
=

{
bc

qn

}
and δ(a) = δ(b), hence

ξn =

qn∑

b=1,
(b,q0)=1

{
bc

qn

}
δ(bc)−1γn(bc)

−1 =

qn∑

b=1,
(b,q0)=1

{
bc

qn

}
δ(b)−1γn(b)

−1γn(c)
−1.

Then:

ηn = −

qn∑

a=1,
(a,q0)=1

({
ac

qn

}
− c

{
a

qn

})
δ(a)−1γn(a)

−1γn(c)
−1 ∈ Zp[∆ × Γn],

since:

{
ac

qn

}
+

[
ac

qn

]
=
ac

qn
= c

{
a

qn

}
+ c

[
a

qn

]
. 2

25



Let us fix c0 = 1 + pd and θ∗ = ωθ−1. Consider the idempotent:

εθ∗ =
1

|∆|

∑

δ∈∆

θ∗(δ)δ−1 ∈ Kθ[∆]

where Kθ = Qp(θ) Let us define

ξn(θ) = −
1

qn

qn∑

a=1,
(a,q0)=1

a θω−1(a)−1γn(a)
−1,

ηn(θ) =

qn∑

a=1,
(a,q0)=1

(
c0

{
a

qn

}
−

{
ac0
qn

})
θω−1(a)γn(a)

−1γn(c0)
−1 ∈ Oθ[Γn].

By definition, εθ∗ξn = ξn(θ)εθ∗ and εθ∗ηn = ηn(θ)εθ∗ .

In [Was97, pp.119] is proven that or m ≥ n, the restriction map Kθ[Γm] −→ Kθ[Γn] sends

ξ(θ)n 7−→ ξm(θ) and ηn(θ) 7−→ ηm(θ).

Since both sequences are coherent and, by Theorem (4.3.1), we are able to associate them

power series:

(
ξn(θ)

)
n∈N

7−→ f(T, θ) for θ 6= 1,
(
ηn(θ)

)
n∈N

7−→ g(T, θ),
(
1 − c0γn(c0)

−1
)
n∈N

7−→ h(T, θ).

Theorem 4.4.1 Let χ = θψ an even Dirichlet character with θ of first kind and ψ of

second kind, and let ζψ = ψ(c0)
−1 = χ(1 + q0)

−1, then

Lp(s, χ) = f(ζψ(1 + q0)
s − 1, θ).

Proof. See [Was97, pp.123]. 2
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Chapter 5

The Compact-open Topology

5.1 Zeros of Power Series and the p-adic Maximum Principle

In this section K is a complete extension of Qp in Cp and f =
∑
anT

n ∈ K[[T ]] convergent

for |ζ| < R. Since for |ζ| < R, |anζ
n| −→ 0, then sup

n∈N

|anζ
n| is really a maximum and

|f(ζ)| ≤ max
n∈N

|anζ
n|.

Definition 5.1.1 1. For 0 ≤ r < R we define Mf (r) = max
n∈N

|an|r
n and the growth

function associated to f , Mf : r 7−→Mf (r).

2. r < R, is called regular if Mf (r) = |am|r
m for only one m ∈ N and it is called

critical if its not regular.

3. For each r < R the coefficients am such that Mf (r) = |am|r
m are called dominant

for the radius r.

4. For f with R > 1 we define the extreme indexes of f as

λ(f) = min{n ∈ N | |an| = Mf (1)} and ν(f) = max{n ∈ N | |an| = Mf (1)}.

In the following let us denote for r ∈ |Cp|, Sr and Br the sets of ζ ∈ Cp such that |ζ| = r

and |ζ| < r respectively.

Remark 5.1.1

1. The growth function is always non decreasing.

2. For a series convergent for |ζ| ≤ 1, Mf (1) = sup
n∈N

|an| = ‖f‖ (as in the first chapter).

3. For |ζ| = r, |f(ζ)| ≤ Mf (r) and the equality |f(ζ)| = Mf (r) holds for any regular

radii, hence the zeros of f lie on the critical radii.
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4. The condition R > 1 guaranties that the extreme indexes are finite hence we can

define the number ∆(f) = ν(f) − λ(f).

5. Mf (1) ≤ 1 if and only if f ∈ OK [[T ]] and ‖f‖ < 1 if and only if f ∈ pK [[T ]].

Further if f ∈ OK [[T ]] with R > 1 and ‖f‖ = 1 the extreme indexes has the

following interpretation: If f̃ = f mod p, then f̃ ∈ κ[T ] and the extreme indexes are

λ(f) = ord0(f̃), ν(f) = deg(f̃).

Lemma 5.1.1 Let f =
∑

anT
n ∈ K[[T ]]. Then critical radii from a discrete sequence

0 ≤ r1 < r2 < . . . < R.

Proof. Let 0 < r < R, since |an|r
n −→ 0 there is N ∈ N such that for n > N ,

|an|r
n < Mf (r)/2. So there must be a m ≤ N such that Mf (r) = |am|r

m. Now for n > N

and 0 < s < r, we have:

|an|r
n ≤ |am|r

m =⇒ sn−m < rn−m ≤ |am|/|an| =⇒ |an|s
n < |am|s

m.

Then if s < r is critical radius must satisfy |ai|s
i = Ms(f) = |aj |s

j for 1 ≤ i < j ≤ N

i.e. it must satisfy one of the equations sj−i = |ai|/|aj |, 0 ≤ i < j ≤ N so there are only

finitely many choices for s. 2

Let r < R and consider fr(T ) = f(rT ) then fr is convergent for |ζ| < R/r. Since 1 < R/r

we can define λr(f) = λ(fr), νr(f) = ν(fr) then

λr(f) = min{n ∈ N | |an|r
n = Mf (r)},

νr(f) = max{n ∈ N | |an|r
n = Mf (r)}.

Let us fix f =
∑

anT
n ∈ K[[T ]] and denote λr(f) = λr and νr(f) = νr.

Lemma 5.1.2 If r < t are two consecutive critical radii and r < s < t then

νr = λs = νs = λt.

Proof. Let N ∈ N be such that for any n ≥ N , |an|t
n < Mf (r). Then for r ≤ s ≤ t

and n ≥ N , |an|s
n < Mf (r)(s/t)

n < Mf (s). This means that for each radius in ]r, t[

the dominant terms always have indexes less or equal to N . Consider the dominant term

|am|s
m = Mf (s) i.e. for m 6= n ≤ N |an|s

n < |am|s
m. By continuity there is a ε > 0 such

that for m 6= n ≤ N and |s− t| < ε we have |an|t
n < |am|t

m. Now for each n ∈ N set

An = {s ∈]r, t[ | am is dominant for the radius s} ⊆]r, t[,
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by the previous these sets are open and ]r, t[=
⋃
n∈NAn. In particular the complement of

Am is also therefore, and since ]r, t[ is connected, Am =]r, t[ i.e. all the radii s ∈]r, t[ have

the same dominant term. Finally, note that for m < n ≤ N and s ∈]r, r′[ we have

|an|r
n = |an|s

n(r/s)n < |am|s
m(r/s)n < |am|r

m(r/s)n−m,

hence m = νr. An analogous argument shows that m = λt. 2

Let 0 ≤ r0 < r1 < r2 < . . . ≤ R be a increasing sequence stoping at some N with rN = 1

or infinite such that lim rn = R. For such sequences we have:

Proposition 5.1.1 Let ρ : [0, R[−→ R continuous function such that all its restrictions

ρn = ρ|[rn,rn+1] are convex and continuously differentiable in their respective domains.

If for all n ∈ N we have that ρ′−(rn) ≤ ρ′+(rn) then ρ is convex.

Proof. Let g : [0, R[−→ R defined as

g(t) =





ρ′(t) if t 6= rn for all n ∈ N,

ρ′−(rn) if t = rn for some n ∈ N.

By definition g is increasing and for each x ∈ [0, R[, the function g only has finitely many

discontinuities in [0, x] and ρ =

∫ x

0
g(t)dt. Fix x0, x1 ∈ [0, R] with x0 < x1 and t ∈ (0, 1).

With these constants consider y : [x0, x1] −→ [x0, x1] defined as y(s) = x0 + t(s− x0). We

must show that:

ρ(y(x1)) ≤ ρ(x0) + t(ρ(x1) − ρ(x0)). (5.1)

Note that y(x0) = x0, y(s) < s and y′ = t. Inequality (5.1) is equivalent to the following:

∫ y(x1)

y(x0)
g(s)ds ≤ t

∫ x1

x0

g(s)ds. (5.2)

Let w : [y(x0), y(x1)] −→ [x0, x1] be the inverse function of y and g̃ = g ◦ y, then

1

t

∫ y(x1)

y(x0)
g(s)ds =

∫ y(x1)

y(x0)
g̃(w(s))w′ds =

∫ x1

x0

g̃(η)dη.

Since g is increasing, for each s ∈ [0, 1] we have that g̃(s) = g(y(s)) ≤ g(s) i.e. g̃ ≤ g.

Therefore comparing the integrals of g and g̃ we obtain (5.2). 2

Corollary 5.1.1 The function Mf : [0, R[−→ R is continuously convex and smooth expect

at the critical radii.
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Proof. Let ρ = Mf , r1 < r < r2 consecutive critical radii and m = λr < n = νr. Since r

is critical we have ρ(r) = |am|r
m = |an|r

n. By the last lemma for s ∈]r1, r[ and t ∈ (r, r2)

we get ρ(s) = |am|s
m and ρ(t) = |an|t

n. Since am and an are dominant coefficients for the

radius r, Mf is continuous in ]r1, r2[. Clearly the f is smooth in ]s, r[, ]r, t[ and looking at

the derivatives at s, t we have

ρ′−(r) = m|am|r
m−1 ≤ n|an|r

n−1 = ρ′+(r), (5.3)

therefore by Proposition 5.1.1 ρ is convex. 2

Lemma 5.1.3 Let g =
∑

bnT
n ∈ OK [[T ]]. Then g has exactly λ = λ(g) zeros in B1,

counting multiplicities.

Proof. Without loss of generality we may take g/‖g‖ instead of g in order to get ‖g‖ = 1.

By the preparation theorem (theorem 4.2.1) there exists P ∈ OK [T ] distinguished of degree

λ and a unit u =
∑

unT
n such that g = P (T )u(T ). By part 2 of Remark 4.2.1 g and

P share the same zeros in B1 (with the same multiplicities). Now, P have λ zeros in Cp

(counting multiplicities) and since it is distinguished P = T λ +
∑

i<λ

ciT
i with |ci| < 1. For

each zero ζ of P we have that:

|ζ|λ =
∣∣∑

i<λ

ciζ
i
∣∣ ≤ max

i<λ
|ci||ζ|

i < max
i<λ

|ζ|i,

but it happens if and only if |ζ| < 1 (because for |ζ| ≥ 1, |ζ|λ ≥ |ζ|i for λ ≥ i). Therefore

P , as well as f , has λ zeros in B1. 2

Corollary 5.1.2 For |ζ| < R and r < R, f has exactly λr zeros in the ball Br.

Proof. Taking g(T ) = f(rT ), it converges for |ζ| < R/r. Since 1 < R/r the coefficients

of g are bounded so we can assume g ∈ OK [[T ]] then the result follows from the previous,

since by definition λr(f) = λ(g). 2

Theorem 5.1.1 (Zeros in critical radius) If r < R is a critical radius of f then f has

exactly νr − λr zeros in the sphere |ζ| = r.

Proof. Let r < R be a critical radius and r < t < R be the next one. By the corollary f

has exactly λr and λt zeros at the balls Br and Bt respectively. Since the radii s ∈]r, t[ are

all regular, f must have λt − λr zeros in the sphere |ζ| = r, and by Lemma 5.1.2 λt = νr

therefore f has exactly νr − λr zeros in Sr. 2
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Corollary 5.1.3 Let r < R be critical and ξ ∈ Cp satisfying one of the following condi-

tions: (i) |ξ| < Mf (r). (ii) |ξ| = Mf (r) and |ξ − f(0)| = Mf (r).

Then there exists ζ ∈ Sr such that f(ζ) = ξ.

Proof. Let h =
∑

n≥1

anT
n and g = f − ξ = (f(0) − ξ) + h. Note that f takes the value

ξ in Sr if and only if g has a zero in it too. By last theorem it happens when r is critical

with respect to g i.e. when g has more that one dominant term for such radius. Since r is

critical with respect to f we have that Mh(r) = Mf (r) then

Mh(r) ≤Mg(r) = max{|f(0) − ξ|,Mh(r)}.

Now, conditions (i) and (ii) imply that |f(0) − ξ| ≤Mf (r), therefore

Mg(r) = Mh(r) = Mf (r).

Last equality implies that f and g will share the same dominant terms of positive degree.

If the constant term of f is not dominant then f must have at least two dominant terms

of higher degree then so does g; If not we must have |f(0)| = Mf (r) and f must have at

least another dominant term wish shares with h and g, hence in both cases the constant

term of g is dominant and shares the other dominant terms of f . 2

Corollary 5.1.4 Let r is a critical radius of f . For every t ∈ R such that t = |ξ| ≤Mr(f)

for some ξ ∈ Cp, there exists ζ ∈ Sr such that |f(ζ)| = t.

Proof. If t = 0 it is just last theorem. If t > 0 then t ∈ pQ∩]0,Mr(f)], so choose ξ ∈ St

according the following cases:

1. If t < Mf (r): Take any ξ ∈ St, trivially we get |ξ| < Mf (r).

2. If |a0| < t = Mf (r): Take any ξ ∈ St, we always get |ξ − a0| = Mf (r).

3. If |a0| = t = Mf (r): Take ξ = −a0, then we have that |ξ − a0| = |2||a0| = Mf (r).

In each case the ξ chosen fulfills the conditions of Corollary 5.1.3 therefore there exists

ζ ∈ Sr such that |f(ζ)| = |ξ| = t. 2

Theorem 5.1.2 (The Maximum Principle) Let r < R, r ∈ pQ then

Mf (r) = sup
|ζ|<r

|f(ζ)| = sup
|ζ|≤r

|f(ζ)| = max
|ζ|=r

|f(ζ)|.

Proof. Let |ζ| ≤ r, then |f(ζ)| ≤Mf (|ζ|) ≤Mf (r) which implies

sup
|ζ|<r

|f(ζ)| ≤ sup
|ζ|≤r

|f(ζ)| ≤Mf (r).

Now fix ζ ∈ Sr. We may choose a sequence (ζn)n∈N ⊆ Br such that
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(i) The sequence rn = |ζn| is a decreasing sequence of regular radii.

(ii) lim
n→∞

ζn = ζ.

By (ii) we get lim
n→∞

rn = r and by regularity |f(ζn)| = Mf (rn). As Mf is continuous

(Corollary 5.1.1) we get

Mf (r) = lim
n→∞

Mf (rn) = lim
n→∞

|f(ζn)| ≤ sup
|ζ|<r

|f(ζ)|.

Finally, if r is regular we have |f(ζ)| = Mf (r) for any ζ ∈ Sr and if it is critical, by

Corollary 5.1.4 there exists ζ ∈ Sr such that |f(ζ)| = Mf (r). 2

5.2 K((T ))1 and the compact-open Topology

Let B′ = {ζ ∈ Cp | 0 < |ζ| < 1}. Recall that K((T ))1 is the subring of K((T )) constituted

by Laurent series of finite order pole that converge at every point of B′. Put

pQ−

:= {|ζ| = pv(ζ) | ζ ∈ B′} = {pq | q ∈ Q and q < 0}.

For ε > 0 and 0 < a < b consider the family NK of sets

N(ε, a, b) =
{
f ∈ K((T ))1 | for a ≤ |ζ| ≤ b, |f(ζ)| < ε

}
.

This family of sets satisfies the conditions of a system of neighborhoods of 0 therefore they

allows to define a topology in K((T ))1. (see [Wil98]).

Definition 5.2.1 We define the compact-open topology as the topology induced by the

system NK of neighborhoods of 0.

Remark 5.2.1

1. The compact-open topology has basis

{f +N(ε, a, b) | f ∈ K((T ))1, ε > 0 and 0 < a < b < 1}.

2. The compact-open topology turns K((T ))1 into a topological ring.

3. The natural immersion of K into K((T ))1 is continuous.

Lemma 5.2.1 Let f =
∑

n∈Z

anT
n ∈ K((T ))1. For r ∈ pQ−

let

‖f‖r = sup
|ζ|=r

|f(ζ)|.
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1. For r ∈ pQ−

, ‖f‖r = sup
n∈Z

|an|r
n.

2. For 0 < r′ < r ∈ pQ−

, sup
r′≤|ζ|≤r

|f(ζ)| = max
{
‖f‖r′ , ‖f‖r}.

Proof. (1) Since f ∈ K((T ))1 for some N ∈ N we have TNf =
∑

n∈N

bnT
n ∈ K[[T ]] then

bn = an−N and rN‖f‖r = MTNf (r) = sup
n∈N

|bn|r
n, hence

‖f‖r = sup
n∈N

|an−N |r
n−N = sup

n∈Z

|an|r
n.

(2) Let ρ : (0, 1) −→ R defined as ρ(r) = ‖f‖r. Let g ∈ K[[T ]]× such that f = TNg and

r1 < r < r2 be consecutive critical radii of g. By definition there exists c1, c2 > 0 and

n1 < n2 ∈ Z such that for every s ∈]r1, r[ we have ρ(s) = c1s
n1 as for every t ∈]r, r2[ we

have ρ(t) = c2t
n2. Since r is critical c1r

n1 = ρ(r) = c2r
n2, therefore

ρ′−(r) = n1c1r
n1−1 ≤ n2c2r

n2−1 = ρ′+(r).

We have that ρ is convex because it satisfies the conditions of Proposition 5.1.1, in par-

ticular for every s ∈]r′, r[ we have ‖f‖s ≤ max{‖f‖r′ , ‖f‖r} and it is equivalent to have

sup
r′≤|ζ|≤r

|f(ζ)| = max
{
‖f‖r′ , ‖f‖r}. 2

Corollary 5.2.1 1. For r ∈ pQ−

and ε > 0, the sets

V (r, ε) =
{
f ∈ K((T ))1 | For all ζ ∈ Sr we have |f(ζ)| < ε

}
,

are open and constitute system of neighborhoods of 0 for the compact-open topology.

2. The ring K((T ))1 with the compact-open topology is a second-countable topological

ring i.e. every point admits a countable system of neighborhoods.

3. A sequence in K((T ))1 converges if and only if it converges uniformly in each sphere

Sr with r ∈ pQ−

.

Proof. (1) Clearly the sets V (r, ε) are open and by part 2 of Lemma 5.2.1 V (a, b, ε) =

V (a, ε) ∩ V (b, ε), hence any neighborhood of 0 must contain one of them.

(2) It follows from part 1 and the fact that pQ−

is countable because
{
V (r, q) | r ∈ pQ−

with q ∈ Q+
}

gives a countable system of neighborhoods of 0.

(3) Since for a fixed r ∈ pQ−

the family {V (r, ε) | ε > 0} is a system of neighborhoods of

0 for the topology of uniform convergence on Sr, (3) follows directly from part (1).

Definition 5.2.2 We define K[[T ]]1 as the ring K[[T ]]∩K((T ))1 endowed with the relative

topology with respect to open-compact topology of K((T ))1.
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Theorem 5.2.1 The compact-open topology turns K[[T ]]1 into a complete topological ring.

Proof. The only non trivial part is the completeness. Let (fn)n∈N ⊆ K[[T ]]1 be a Cauchy

sequence, fn =
∑
an,kT

k. Fix r ∈ pQ−

and pick t > r also in pQ−

, then:

i) For j ∈ N, ‖fn− fm‖r = sup |an,k − am,k|r
k ≥ rj|an,j − am,j| which means that each

(an,j)n∈N ⊆ K is Cauchy. Since K is complete, it has a limit aj ∈ K, so that we

may consider a power series f =
∑

akT
k.

ii) Since (fn)n∈N is Cauchy, (‖fn‖t)n∈N is bounded, say by C > 0. Not that for all n and

all j, |an,j |t
j ≤ ‖fn‖t ≤ C, therefore |aj |t

j ≤ C and this implies that lim
n→∞

|aj|r
j = 0

because

|aj|r
j = |aj |t

j

(
r

t

)j
≤ C

(
r

t

)j
.

Since r ∈ pQ−

can be chosen arbitrarily we must have that f ∈ K[[T ]]1.

iii) For ε > 0, N ∈ N such that n,m ≥ N , ‖fn − fm‖r < ε and for any k ∈ N we have

|an,k − am,k|r
k ≤ ‖fn − fm‖r < ε then fixing j and taking limit when n goes to

infinity we get that for m ≥ N , |aj − amj | ≤ ε hence ‖f − fm‖r < ε. Since r ∈ pQ−

as well as ε > 0 are arbitrary, we get lim
n→∞

fn = f . 2

Definition 5.2.3 For f ∈ K((T ))1 we define Vf , the set of series dominated by f , as

the set of g ∈ K((T ))1 such that |g(ζ)| ≤ ‖f‖|ζ| for all ζ ∈ B′.

Lemma 5.2.2 1. For f ∈ K((T ))1 and g ∈ Vf , ord g ≥ ord f.

2. Vf is a complete subspace of K((T ))1.

3. For r ∈ pQ−

, if ‖f‖r < ε then Vf ⊆ V (r, ε).

4. For ε > 0 and r ∈ pQ−

exists N ∈ N such that

Vf ∩ T
NK[[T ]]1 ⊆ V (r, ε).

Proof. (1) Let f =
∑

n≥−N anT
n and g =

∑
bnT

n ∈ Vf . Since the critical radii of f

are isolated we may find r > 0 such that every s ∈ (0, r) is regular with respect to f ,

then λs = νs = k ≥ −N for some fixed k. It will be enough to show that for j < −N

we have bj = 0. For this note that for every s ∈]0, r[, |bj |s
j ≤ ‖g‖s ≤ ‖f‖s = |ak|s

k then

|bj | ≤ |ak|s
k−j. Then for any j < k, taking limit when s goes to 0, we get bj = 0.

(2) Let ord(f) = N by the previous part, Vf ⊆ TN K[[T ]]1 which is complete, then it is

enough to show that Vf is closed. For this take (gn) ⊆ Vf converging to g ∈ K((T ))1

and pick any r ∈ pQ−

. Then for any ζ ∈ Sr we have |gn(ζ)| ≤ ‖f‖r, therefore |g(ζ)| =
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lim
n→∞

|gn(ζ)| ≤ ‖f‖r. Since r is arbitrary we must have that g ∈ Vf .

(3) Taking g ∈ Vf and any |ζ| = r, |g(ζ)| ≤ ‖f‖r < ε then g ∈ V (r, ε).

(4) Fix s ∈ pQ−

, s > r and R > ‖f‖s by part 2, Vf ⊆ V (s,R) then

Vf ∩ T
NK[[T ]]1 ⊆ V (s,R) ∩ TNK[[T ]]1 ⊆ V

(
r,R(r/s)N

)
. (5.4)

For the second inclusion take g ∈ V (s,R) such that g = TNh with h ∈ K[[T ]]1. Applying

the maximum principle (Theorem 5.1.2) to h we get ‖g‖rr
−N = ‖h‖r ≤ ‖h‖s = ‖g‖s−N ,

then ‖g‖r ≤ ‖g‖s(r/s)
N . From (5.4) for a fixed N , as soon as it is big enough, we get

Vf ∩ T
NK[[T ]]1 ⊆ V (r, ε). 2

As in Definition 2.1.1 set the N -th truncation map PN : K((T ))1 −→ K((T ))1 as

PN

(∑

n∈Z

anT
n

)
=
∑

n<N

anT
n,

Remark 5.2.2

1. PN is continuous, since for any r ∈ pQ−

and f =
∑
anT

n ∈ K((T ))1, by part 1 of

Lemma 5.2.1 ‖PN (f)‖r = sup
n<N

|an|r
n ≤ sup

n∈Z

|an|r
n = ‖f‖r.

2. PN (Vf ) ⊆ Vf , since for g ∈ Vf and ζ ∈ B′ we have

|PN (g)(ζ)| ≤ |g(ζ)| ≤ ‖f‖|ζ|.

The following proposition gives us a useful criterium for convergence in K((T ))1.

Proposition 5.2.1 Let g ∈ K((T ))1 and (gn)n∈N ⊆ Vf . Then (gn) converges to g if and

only if for all N ∈ Z,
(
PN (gn)

)
n∈N

converges to PN (g).

Proof. Since the truncations PN are continuous, the sufficiency is clear. For the other

implication, by linearity of PN , it is enough to check the case g = 0. For this fix ε > 0 and

r ∈ pQ−

. Since gn ∈ Vf then gn − PN (gn) ∈ Vf ∩ T
NK[[T ]]1. By part 4 of Lemma 5.2.2

for a fixed N , big enough, we have gn − PN (gn) ∈ V (r, ε/2). Now, since lim
n→∞

PN (gn) = 0,

for n big enough we have that PN (gn) ∈ V (r, ε/2), therefore gn ∈ V (r, ε). 2

5.3 The Compact-Open topology in OK [[T ]]

In OK [[T ]] we can consider two topologies: the compact-open topology, as a subspace of

K[[T ]]1 and the (p, T )-adic topology. The following theorem relates both topologies:
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Theorem 5.3.1 In OK [[T ]] the (p, T )-adic topology and the compact-open topology coin-

cide. In particular OK [[T ]] is compact with respect to the compact-open topology.

Proof. Since both topologies, the (p, T )-adic and compact-open are given by systems of

neighborhoods of 0, {(p, T )N | N ∈ N} and {V (r, ε) ∩ OK [[T ]] | r ∈ pQ−

, ε > 0} respec-

tively, it will be enough to prove the following claims:

Claim 1: For ε > 0 and r ∈ pQ−

exists N ∈ N such that (p, T )N ⊆ V (r, ε).

Let f ∈ (p, T )N . By definition f =

N∑

k=0

gnp
kTN−k with gk ∈ OK [[T ]], then for ζ ∈ Sr

|f(ζ)| ≤ max
0≤k≤N

|gk(ζ)|
1

pk
rN−k ≤ ‖g‖r max

{
1

pN
, rN

}
.

Since g ∈ OK [[T ]] implies that ‖g‖r ≤ 1, we have that fr ≤ max
{

1
pN , r

N
}
. Therefore

taking N big enough we get ‖f‖r < ε.

Claim 2: For all N ∈ N we have V (1/p, 1/pN ) ∩ OK [[T ]] ⊆ (p, T )N .

Let f ∈ V (1/p, 1/pN ) ∩ OK [[T ]]. Since f ∈ OK [[T ]] we have

f ≡
N−1∑

k=0

akT
k mod(T, p)N .

Now, since ‖f‖1/p <
1
pN for k < N we have that |ak/p

N−k| < 1. In particular ak = αkp
N−k

for some αk ∈ OK . Therefore for k < N we have akT
k = αkp

N−kT k ∈ (p, T )N , so

f ∈ (p, T )N . 2

As in the end of Section 4.2, set [ pn ] = (1 + T )p
n
− 1.

Definition 5.3.1 For m ∈ N we define Ωm as the set of roots of [pm+1] in Cp and

Ω′m = Ωm \ {0}. Also we define Ω =
⋃

m∈N

Ωm and Ω′ = Ω \ {0}.

Remark 5.3.1

1. Each Ωm = {ζapm+1 − 1 | 0 ≤ a < pm+1} and Ω1 ⊆ Ω2 ⊆ Ω3 ⊆ . . . ⊆ Ω.

2.
∏

u∈Ω′

u =

∞∏

n=1

∏

(a,p)=1,
a≤pn+1

(ζapn − 1) = 0. Indeed let Φn ∈ Z[T ] be the pnth-cyclotomic

polynomial i.e. Φn+1(T ) =
∏

(a,p)=1,
a≤pn+1

(T − ζapn+1). Since for n ≥ 1, Φn+1(T ) = Φn(T
p)

we have
∏

(a,p)=1,
a≤pn+1

(ζapn − 1) = Φpn+1(1) = p, which implies that
∏

u∈Ω′

u = 0.
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3. Each f ∈ K[T ]/[pm+1] induces a well defined map f : Ωm −→ OK , so for such f ’s

we may define a norm ‖f‖m = sup
u∈Ωm

|f(u)|.

4. Let (fn)n∈N and f be in K[T ]/[pm+1]. Since Ωm is finite we get: (fn)n∈N converges

to f with respect to ‖ ‖m if and only if for all u ∈ Ωm,
(
fn(u)

)
n∈N

converges to f(u).

5. For f =
∑

akT
k ∈ K[T ]/[pm+1], we may consider the norm ‖f‖K = sup

0≤k<pm+1

|ak|

which is well defined by the uniqueness of the Euclidean division in K[T ].

6. K[T ]/[pm+1] with respect ‖ ‖K is homeomorphic to Kpm+1
via the following map

Kpm+1
−→ K[T ]/[pm+1]

(a0, a1, . . .) 7−→ a0 + a1T + . . .
(5.5)

7. ‖ ‖K and ‖ ‖m are equivalent since K is complete and K[T ]/[pm+1] is a finite dimen-

sional K vector space [Neu99, p.132], therefore they induce the same topology.

8. The map (5.5) sends Opm+1

K to OK [T ]/[pm+1]. In particular OK [T ]/[pm+1] is compact

with respect the ‖ ‖m topology.

Consider the canonical commutative diagram:

OK [[T ]]
ϕ //

ϕn
''O

O

O

O

O

O

O

O

O

O

O

O

O

lim
←−

OK [T ]/[pn+1]

πn

��
OK [T ]/[pm+1]

Theorem 5.3.2 (Convergence Criterium) Let fn, f ∈ OK [[T ]]. Then:

(fn)n∈N converges to f if and only if for all u ∈ Ω′,
(
fn(u)

)
n∈N

converges to f(u).

Proof. The first implication is clear. For the converse, note that by Remark 5.3.1 the

hypothesis implies that for each m ≥ N , lim
n→∞

ϕm(fn) = ϕm(f) and since ϕm = πmϕ,

lim
n→∞

πm
(
ϕ(fn)

)
= πm

(
ϕ(f)

)
.

But by definition of the product topology this implies that lim
n→∞

ϕ(fn) = ϕ(f) then the

conclusion follows from the continuity of ϕ−1. 2

Remark 5.3.2

If lim
n→∞

gn = g in lim
←−

OK [T ]/[pn+1], taking fn = ϕ−1(gn), f = ϕ−1(g) and u ∈ Ω′ we have

fn(u) = ϕm(fn)(u) = πm(gn)(u) −→ πm(g)(u) = ϕm(f)(u) = f(u).
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Therefore the last convergence criterium is equivalent the continuity of the inverse of the

map

OK [[T ]]
ϕ

−→ lim
←−

OK [T ]/[pn+1].

Definition 5.3.2 A testing sequence is a sequence (ai)i∈N ⊆ B′ with all its terms different

such that for any sequence (gn)n∈N ⊆ OK [[T ]] we have that lim
n→∞

gn = 0 if and only if for

all i ∈ N, lim
n→∞

gn(ai) = 0.

Theorem 5.3.2 says that Ω′ is a testing sequence, the following result from [Col79] charac-

terizes such sequences.

Theorem 5.3.3 Let (ai)i∈N ⊆ B′. (ai) is a testing sequence if and only if lim
m→∞

m∏

i=1

ai = 0.

Proof. Suppose that (gn) does not converge to zero. We claim that without loss of

generality exists a δ > 0 such that |gn(0)| > δ for all n ≥ 1. Indeed, since gn ∈ OK [[T ]]

there must be a k ∈ N such that the k-th coefficients of gn does not converges to 0 i.e.

if we define hn = T−k(gn − Pk(gn)) has a subsequence such that |hn(0)| > δ for some

δ > 0 as we claimed, and if for any a ∈ B′ such that gn(a) −→ 0, hn(a) −→ 0. Now

set A1 = |a1| and for m ≥ 1 Am =

m∏

i=1

|ai|
m∏

j<i

|ai − aj | The lemma will follow from the

following assertion:

Claim: Let f =
∑
bjT

j ∈ OK [[T ]]. If |f(ai)| < Am for 1 ≤ i ≤ m, the we have that

|f(0)| <
m∏

i=1

|ai|.

If m = 1 then |a1| = A1 > |f(a1)|, then

|f(0)| ≤ max
{
|f(a1) − f(0)|, |f(a1)|

}
≤ |f(a1)| < |a1|.

(in general for ζ ∈ B′, |f(ζ) − f(0)| ≤ |ζ|) Now, suppose that the assertion is true for

m ≥ 1, since f − f(am+1) = (T − am+1)g for some g ∈ OCp [[T ]] then f(ai) − f(am+1) =

(ai− am+1)g(ai), now using the hypothesis that |f(ai)| < Am+1 for 1 ≤ i ≤ m+ 1 we find

|ai − am+1||g(ai)| ≤ max
{
|f(ai)|, |f(am+1)|

}
< Am+1

for 1 ≤ i ≤ m. then

|g(ai)| < Am+1|ai − am+1|
−1 = |am+1|Am < Am,

for 1 ≤ i ≤ m. By induction |g(0)| <
m∏

i=1

|ai|, therefore

|f(0)| = |f(am+1) − am+1g(0)| <
m+1∏

i=1

|ai|,
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as we asserted.

Now in our case take m ∈ N such that δ > |Am| > 0, since gn(ai) −→ 0 for each i,

and exists N ∈ N such that for 0 ≤ i ≤ m and n ≥ N , |gn(ai)| < |Am| by the claim

|gn(0)| < |Am| < δ, which is a contradiction. 2

5.4 Continuity with respect to the compact open topology

Proposition 5.4.1 The map K((T ))1 × B1 −→ Cp, (f, ζ) 7−→ f(ζ) is continuous with

respect to the product and the p-adic topologies.

Proof. Take (fn, ζn) converging to (f, ζ) in K((T ))1 ×B1, then there are 0 < s < r < 1

such that s < |ζn|, |ζ| < r for all n. Now we have that

|fn(ζn) − f(ζ)| ≤ max{|fn(ζn) − f(ζn)|, |f(ζn) − f(ζ)|},

and by the maximum principle

|fn(ζn) − f(ζ)| ≤ max{‖f − fn‖r, ‖f − fn‖s, |f(ζn) − f(ζ)|}.

Therefore fn(ζn) converges to f(ζ). 2

Consider the n-th coefficient function cn : K[[T ]] −→ K characterized by the equality

h =
∑

cn(h)T
n,

for all h ∈ K[[T ]]. Let f =
∑

akT
k ∈ K[[T ]] and g ∈ TK[[T ]]. As in Definition 2.1.2,

there is a well defined series f(g) ∈ K[[T ]] such that f(g) ≡ fN (g)modTN+1 where fN

denotes the truncation PN (f). Last congruence implies that ck(f) = ck(fN ) for all k ≤ N .

Lemma 5.4.1 Let f ∈ K[[T ]], g ∈ T K[[T ]] and R, r > 0 such that f, g converges in BR

and Br respectively, then:

1. For 0 < s < α < r if β = ‖g‖α < R then |cN
(
f(g)

)
|sN ≤ ‖f‖β(s/α)N . In particular

f(g) converges in Br.

2. If R = ∞ or R > sup
s<r

‖g‖s then for s < r and ζ ∈ Bs we have

(
f(g)

)
(ζ) = f(g(ζ)).

3. If g ∈ T OK [[T ]]× then for any f ∈ K((T ))1, f(g) ∈ Vf .

39



Proof. Let us call h = f(g) and hn = fn(g) =
∑

k≤n

akg
k, then:

(1) Since cN (hN ) =
∑

k≤N

akcN (gk) we have |cN (hN )| ≤ sup |ak||cN (gk)|, but |cN (h)| =

|cN (hN )| and |cN (gn)|αN ≤ ‖gn‖α ≤ ‖g‖nα, then

|cN (h)|αN ≤ max
k≤N

|ak|‖g‖
k
α ≤ ‖f‖β.

Hence |cN (h)|sN ≤ ‖f‖β(s/α)N as we stated.

(2) Let ζ ∈ Ss such that s < r, and fix α, β as in part 1, then for k,N ∈ N and k > N ,

|ck(h)|s
k ≤ ‖f‖β ≤ (s/α)N . Since ck(h) = ck(hN ) for k ≤ N we have that h(ζ)− hN (ζ) =

∑

k>N

ck(h)ζ
k −

∑

k>N

ck(hN )ζk, then

|h(ζ) − hN (ζ)| ≤ max
k>N

{|ck(h)|s
k, |ck(hN )|sk} ≤ max{‖f‖β, ‖fN‖β}(s/α)N

since ‖fN‖β ≤ ‖f‖β we get |h(ζ) − hN (ζ)| −→ 0, so we obtain

(
f(g)

)
(ζ) = lim

n→∞

(
fn(g)

)
(ζ) = lim

n→∞
fn
(
g(ζ)

)
.

Finally for ξ = g(ζ), by definition f(ξ) = lim
n→∞

fn(ξ) = f(g)(ζ).

(3) Since g = Tu(T ) with u ∈ OK [[T ]]× by part 2 of Remark 4.2.1 we have that |g(ζ)| = |ζ|

then
∣∣(f(g)

)
(ζ)
∣∣ = |f

(
g(ζ)

)
| ≤ ‖f‖|g(ζ)| = ‖f‖|ζ|. 2

Proposition 5.4.2 The map OK [[T ]]× T OK [[T ]] −→ OK [[T ]] defined as (f, g) −→ f(g)

is continuous with respect to the compact open topology.

Proof. Let (fn, gn) converges to (f, g) in OK [[T ]]× T OK [[T ]] and η ∈ Ω′. By Proposi-

tion 6.5 the evaluation is continuous, then we have lim
n→∞

gn(η) = g(η) and lim
n→∞

fn(gn(η)) =

f(g(η)). Now taking |η| < r < 1 we have that ‖g‖, ‖gn‖r ≤ r < 1, then by last lemma

lim
n→∞

(
fn(gn)

)
(η) =

(
f(g)

)
(η) hence by our convergence criterium (Theorem 5.3.2) we can

conclude that lim
n→∞

f(gn) = f(g). 2

Corollary 5.4.1 Let f ∈ K((T ))1. The map f∗ : T OK [[T ]] −→ K((T ))1, g 7−→ f(g), is

continuous with respect the open compact topology.

Proof. First, note that for g ∈ T OK [[T ]] and ζ ∈ B′, |g(ζ)| ≤ |ζ| hence we have

|
(
f(g)

)
(ζ)| = |f

(
g(ζ)

)
| ≤ ‖f‖|ζ|,

therefore f(g) ∈ Vf . Let gn −→ g in T OK [[T ]], by Theorem 5.3.2 is enough to show

that for all N ∈ N, lim
n→∞

PN (f(gn)) = PN (f(g)). For this fix N and set fN = PN (f),

note that there is a cN ∈ K such that fN ∈ cNOK [[T ]] hence by the previous proposition

lim
n→∞

fN (gn) = fN (g), then by continuity of PN we get PN
(
f(gn)

)
= PN

(
fN(gn)

)
−→

PN
(
fN (g)

)
= PN

(
f(g)

)
. 2
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Corollary 5.4.2 The map λ∗ : T OK [[T ]] −→ K[[T ]] is continuous.

Proof. By Lemma 2.3.4, the map λ ∈ K[[T ]]1, hence λ∗ must be continuous. 2

Lemma 5.4.2 Let s < r < t all in pQ−

. There exists C > 0 such that for any f ∈ K((T ))1

we have

‖f ′‖r ≤
C

r
max{‖f‖s, ‖f‖t}. (5.6)

Proof. Let f =
∑

n∈Z anT
n so f ′ =

∑
n∈Z nanT

n−1. Now for n ≥ 1,

n|an|r
n−1 = r−1n|an|t

n

(
r

t

)n
≤
C1

r
‖f‖t ,

n|a−n|r
−n−1 = r−1n|a−n|s

−n

(
s

r

)n
≤
C2

r
‖f‖s ,

where C1 = sup
n≥1

n(r/t)n and C2 = sup
n≥1

n(s/r)n. Then C = max{C1, C2} satisfies 5.6. 2

Proposition 5.4.3 The Formal derivative on K((T ))1 is continuous with respect to the

compact-open topology.

Proof. It is clear from Lemma 5.4.2 2
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Chapter 6

Coleman Local Theory

6.1 Generalities and Notation

In this chapter we will study several Galois action associated to a finite abelian unramified

extension of Qp, on several rings on power series. Let us recall the definition:

Definition 6.1.1 A Galois extension E/Qp is unramified if

[E : Qp] = [kE : Fp].

Let E/Qp any finite Galois extension and n = [E : Qp]. Here are some general remarks:

Remark 6.1.1

1. We will use the usual notation OE for the ring of integral elements over Zp of E, pE

for its maximal ideal and kE = OE/pE , its residual field.

2. It is well known that n = ef where e is the ramification index and f the inertia

degree, given by pOE = peE and f = [kE/Fp] (See [Neu99]). By definition in the

unramified case n = f and e = 1, in particular p is a uniformizer for E.

3. Consider the canonical surjective homomorphism Gal
(
E/Qp

)
−→ Gal

(
kE/Fp

)
[Neu99,

p. 56]. It is an isomorphism if and only if E/Qp is unramified.

4. kE is a finite extension of Fp therefore it is a finite field with pf elements and has

a Frobenius automorphism ϕE defined as ϕE(a) = ap for all a ∈ kE which fixes

kϕE
E = Fp.

5. The automorphism ϕE ∈ Gal
(
kE/Fp

)
has a unique lift ϕ ∈ Gal

(
E/Qp

)
, which is a

generator of Gal
(
E/Qp

)
, and is called the Frobenius element of Gal

(
E/Qp

)
.
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Let us fix the notation for this chapter:

Let K an unramified finite Galois extension of Qp in a fixed algebraic closure Cp, with

f = [K/Qp], ∆ = Gal
(
K/Qp

)
and Frobenius element ϕ. By the previous discussion

∆ = 〈ϕ 〉 = {1, ϕ, · · · , ϕf−1}.

Let Kn = K[ζn+1
p ], K∞ =

⋃
Kn and Gn = Gal

(
Kn/K

)
, G∞ = Gal

(
K∞/K

)
= lim
←−

Gn.

As K is unramified we have G∞ ∼= Gal
(
Qp(ζp∞)/Qp

)
∼= Z×p as topological groups, given

canonically by the cyclotomic character κ : G∞
≃

−→ Z×p defined by its action on p-th roots

of unity, σ(ζpn+1) = ζ
κ(σ)
pn+1.

6.2 The multiplicative Zp-action on MK

Let MK be the set of units of OK [[T ]] and MK be the set of principal units of OK [[T ]]

i.e. the set of f ∈ MK [[T ]] such that f(0) ≡ 1mod pK .

Remark 6.2.1

1. Since OK [[T ]] and UK = 1 + pOK are compact and the sum is continuous, MK =

UK + TOK [[T ]] is compact.

2. MK = O×K MK and since O×K is compact, then MK is compact.

The multiplicative group MK admits a natural Z-action given by exponentiation i.e.

(n, f) ∈ Z × MK 7−→ fn. The aim of this section is to extend this natural action to

a Zp-action.

Lemma 6.2.1 For α ∈ Zp there is a well defined series (1 + T )α ∈ Zp[[T ]] such that for

every sequence (αn)n∈N ⊆ N, αn −→ α we have that (1 + T )αn −→ (1 + T )α.

Proof. Let τ : Zp −→ TK[[T ]], τ(α) = αλ and ε = exp(τ) i.e. ε : Zp −→ MK ,

ε(α) = exp(αλ). By Proposition 5.4.2 the map ε is continuous since exp∗ and τ are

continuous. By Theorem 2.2.1, for n ∈ N (1 + T )n = exp(nλ) = ε(n), therefore for α ∈ Zp

the power series ε(α) has the desired property i.e. can be taken as (1 + T )α. 2

Corollary 6.2.1 There is a unique continuous Zp-action on UK which extends the natural

Z-action given by (n, u) ∈ Z × UK 7−→ un ∈ UK .

Proof. Since for α ∈ Zp, (1 + T )α ∈ Zp[[T ]] it must converges in B1, then we can define

u = 1 + ζ ∈ UK , uα = (1 + T )α(ζ). Let εK : Zp × UK −→ UK given by εK(α, 1 + ζ) =
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(1 + T )α(ζ). By Lemma 2.3.1 εK is continuous, hence by continuity it is a well define

Zp-action on UK totaly determined by its restriction over Z × UK . 2

Theorem 6.2.1 There is Zp continuous action on the multiplicative group MK that ex-

tends the natural Z-action.

Proof. For f ∈ MK we can write f = f(0)(1 + g) where g ∈ T OK [[T ]] and clearly this

decomposition is continuous. By the previous lemmas we have a continuous map

(α, f) ∈ Zp × MK 7−→ f(0)α(1 + g)α = f(0)α
(
(1 + T )α

)
∗
(g) ∈ MK .

By continuity, it is a well defined Zp-action on MK and it is totaly determined by its

restriction over Z × MK . 2

Definition 6.2.1 We define the exponential Zp-actions on UK and MK as the unique Zp

actions that extends the respective natural Z-actions given by exponentiation.

Now, for α ∈ Zp, let us consider the power series [α] = (1 + T )α − 1.

Remark 6.2.2

For α, β ∈ Zp, we have [α]
(
[β]
)

= [αβ] = [β]
(
[α]
)
. This is clear by continuity of the

exponentiation since it is true for α, β ∈ Z.

6.3 Galois Structures on K((T ))1

Remark 6.3.1

1. Since each OK [Gn] is an OK free module of finite rank we can endowed them with

the canonical Topology induced by OK .

2. The product
∏

n∈N

OK [Gn] is a compact topological space with respect to the product

topology. Further it is a topological OK -algebra (with term-to-term operations).

3. The product topology in
∏

n∈N

OK [Gn] has as basis:

{U1 × U2 × . . . | Un ⊆ OK [Gn] are open and Un = OK [Gn] for n big enough}

Note that for m ≤ n the restrictions Gn −→ Gm induce ring homomorphisms on the group

algebras πm,n : OK [Gn] −→ OK [Gm]. This constitute an inverse system of rings, so we

can consider its inverse limit lim
←−

OK [Gn] as the subset of
∏

n∈N

OK [Gn].

Definition 6.3.1 We define the Iwasawa Ring OK [[G∞]] as lim
←−

OK [Gn] endowed with

the inverse-limit topology i.e. the topology induced by the product topology.
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Each OK [Gn] acts on Kn naturally extending the action of Gn by linearity i.e. for x ∈ Kn

and θ =
∑N

j=1 ajσj ∈ OK [Gn], θ · x =
∑
ajσj(x),

|θ · x| ≤ max
j≤N

|aj ||σjx| ≤ |x|

which means that these actions are continuous. Also these actions are compatible with

respect to restrictions and we can extend them to an action of OK [[G∞]] on K∞ in the

following way: for x ∈ K∞ =
⋃

n∈N

Kn and θ = (θn)n∈N ∈ OK [[G∞]], since x ∈ Km for some

m, we can define θ · x = θm · x (which is well define by compatibility). For G∞ = lim
←−

Gn,

let us consider OK [G∞] with its natural action on K∞ i.e. the linear extension of the

action of G∞.

Lemma 6.3.1 OK [G∞] is densely immersed in OK [[G∞]] in a canonical way such that

the actions on K∞ are compatible.

Proof. First note that the natural projections G∞ −→ Gn extend to algebra morphisms

OK [G∞]
ϕn
−→ OK [Gn] in a compatible way with respect to restrictions, then by the univer-

sal property we have a map OK [G∞]
ϕ

−→ OK [[G∞]] such that πnϕ = ϕn i.e. the following

diagram commutes:

OK [G∞]
ϕ //

ϕn &&M

M

M

M

M

M

M

M

M

M

OK [[G∞]]

πn

��
OK [Gn]

ϕ has dense image because the arrows ϕn are surjective. For the injectivity of ϕ take

θ ∈ kerϕ, θ =

N∑

j=1

ajσj with σj ∈ G∞ all different, then there must be a m ∈ N such that

σj|Km are all different so by Dedekind’s independence lemma ([Mil08, pp.52]) the σj |Km

must be linearly independent. Then

0 = ϕn(θ) =
N∑

j=1

aj
(
σj |K×

m

)
=⇒ a1 = . . . = aN = 0 =⇒ θ = 0.

Finally, the actions are compatible because both coincide on OK [Gn]. 2

From now on we will consider OK [G∞] as a topological subring of OK [[G∞]].

Remark 6.3.2

1. By Lemma 6.2.1 for σ ∈ G∞ there we can consider the power series:

[κ(σ)] = (1 + T )[κ(σ)] − 1 ∈ TOK [[T ]],

therefore for any f ∈ K((T ))1 there is a well defined power series

σ · f = f([κ(σ)]) ∈ K((T ))1.
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2. For u ∈ Ω i.e. u = ζapn+1 − 1 and σ ∈ G∞ we have

(σ · f)(u) = f([κ(σ)](u)) = f(ζaupn+1 − 1) = σ(f(u)).

3. For σ ∈ G∞ and f ∈ K[[T ]]1 we have that (σ · f)
(
[α]
)

= σ · f([α]). This is a

consequence of Remark 6.2.2 since (σ · f)
(
[α]
)

= f([κ(σ)α]) = f([α] ◦ [κ(σ)]) =

σ · f([α]).

Theorem 6.3.1 There is a unique continuous structure of OK [[G∞]]-module on K((T ))1

which extends the K-module structure such that for all f ∈ K((T ))1 and σ ∈ G∞, we have

σ · f = f(
[
κ(σ)]

)
= f

(
(1 + T )κ(σ) − 1

)
.

Proof. Let σ ∈ G∞ and [κ(σ)] ∈ TOK [[T ]]. By part 3 of Lemma 5.4.1 for f ∈ K((T ))1

we have that f([κ(σ)]) ∈ Vf then by linearity for any θ ∈ OK [G∞] we have that θ ·f ∈ Vf ⊆

K((T ))1. In particular we have an OK [G∞]-module structure on K((T ))1. For extending

the action of OK [G∞] to an action of OK [[G∞]], by Lemma 6.3.1, it is enough to prove

that it is continuous on OK [G∞]. For this purpose take (θn, fn) ∈ OK [G∞] × K((T ))1

such that (θn, fn) −→ (θ, f). Note that

θn · fn − θ · f = θn · (fn − f) + (θn − θ) · f.

Now taking ε > 0, 0 < r < 1 and gn = fn − f , for n big enough we have gn ∈ V (r, ε),

then θn · gn ∈ Vgn ⊆ V (r, ε) which means that lim
n→∞

θn · gn = 0. For the remanning case we

need:

Lemma 6.3.2 For (θn)n∈N ⊆ OK [G∞] such that lim
n→∞

θn = 0 and f ∈ K((T ))1 we have

that lim
n→∞

θn · f = 0 with respect to the compact-open topology.

Proof. Suppose first that f ∈ OK((T )). Since OK [[G∞]] acts continuously on K∞ for

any x ∈ K∞, lim
n→∞

θn(x) = 0. Now using part 2 of Remark 6.3.2 we have that for any

θ ∈ OK [G∞] we get (θ·f)(u) = θ(f(u)) then for u ∈ Ω, lim
n→∞

(θn·f)(u) = lim
n→∞

θn(f(u)) = 0.

By Theorem 5.3.2 we may conclude that θn · f = 0 as we wanted. For the general case,

taking f ∈ K((T ))1 we have that the truncations Pm(f) ∈ amOK((T )) for some am ∈ K×

and since for any θ ∈ OK [G∞], Pm(θ ·f) = Pm
(
θ ·Pm(f)

)
we have that lim

n→∞
Pm(θn ·f) = 0

for any m ∈ N. Therefore by Proposition 5.2.1 we get lim
n→∞

θn · f = 0. 2

6.4 The Norm Operator

Let On, pn denote the ring of integral elements of Kn and its maximal ideal respectively

and Ωn = {ζapn+1 − 1 | a ∈ Z} i.e. the set of non zero roots of [pn+1]. For f ∈ OK [[T ]] and
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u ∈ OK let us denote u[+]T = (1 + u)(1 + T ) − 1 and

fu(T ) = f(u[+]T ) = f((1 + u)(1 + T ) − 1) ∈ OK [[T ]].

We will say that f ∈ OK [[T ]] is Ωn invariant if fu = f for all u ∈ Ωn i.e. if for 1 ≤ a < pn+1

we have f(T ) = f(ζapn+1(1 + T ) − 1), for example [pn+1] is always Ωn invariant.

Lemma 6.4.1 If f ∈ OK [[T ]] is Ω0-invariant there exists a unique g ∈ OK [[T ]] such that

f = g
(
[ p ]
)
.

Proof. Uniqueness: if g([p]) = h([p]), g and h coincide in
⋃

n∈N

Ωn, since [ p ](Ωn+1) = Ωn

we have that h|Ω = g|Ω, therefore by the unicity lemma, Lemma 2.3.3, we get g = h.

Existence: Let us suppose that for 0 ≤ i ≤ n− 1, we have ai ∈ OK such that

f =

n−1∑

i=0

ai[ p ]i + [ p ]nfn, (6.1)

for some fn ∈ OK [[T ]] (for n = 0 such presentation is trivial) and consider gn = fn−fn(0).

By the preparation theorem (Theorem 4.2.1) for gn exists µ ∈ N, u ∈ OK [[T ]]× and P ∈

OK [T ] distinguished such that gn = pµP (T )u(T ). On the other hand since f and [ p ] are

Ω0-invariants, by equation (6.1) fn must be Ω0 invariant. But then P vanishes in Ω0, so it is

divisible by [ p ] (because it is divisible by T and the minimal polynomial of ζp−1). Taking

an = fn(0) we have that fn = an + [ p ]fn+1 therefore we get f =
n∑

i=0

ai[ p ]i + [ p ]nfn+1. In

this way we construct a sequence (an) ⊆ K such that

f −
∞∑

i=0

ai[ p ]i ∈
⋂

n≥0

[ p ]nOK [[T ]] = 0.

Setting g =
∞∑

i=0

aiT
i we have f = g

(
[p]
)
. 2

Let K[[T ]]Ω0
1 and OK [[T ]]Ω0 be the subrings of K[[T ]]1 and OK [[T ]] respectively of Ω0-

invariant power series. Last lemma implies that [ p ]∗ : OK [[T ]] −→ OK [[T ]]Ω0 is an

algebraic ring isomorphism.

Lemma 6.4.2 1. For u ∈ Ω the maps from K((T ))1 to itself: f 7−→ fu are continuous

ring homomorphisms with respect to the compact-open topology.

2. The ring isomorphism [ p ]∗ : OK [[T ]] −→ OK [[T ]]Ω0 is a topological isomorphism

with respect to the compact-open topology.
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Proof. (1) Since the maps f 7−→ fu are ring homomorphisms, they are continuous if and

only if they are continuous at 0. For this let lim
n→∞

fn = 0 in K((T ))1 and u′ ∈ Ω then for

any u′ ∈ Ω′ we have lim
n→∞

(fn)u(u
′) = lim

n→∞
fn(u[+]u′) = 0. Since u′ is arbitrary in Ω′ by

Theorem 5.3.2 we have get lim
n→∞

(fn)u = 0.

(2) Let lim
n→∞

fn = 0 in OK [[T ]]. For any u ∈ Ω′, lim
n→∞

fn
(
[ p ](u)

)
= 0 but [ p ](Ω) = Ω

hence, by Theorem 5.3.2, lim
n→∞

fn
(
[ p ]
)

= 0. Lemma 6.4.1 says that [ p ]∗ is a bijection,

hence a continuous isomorphism, but by Corollary 5.3.1 OK [[T ]] is compact, then [ p ]∗

must be a topological isomorphism. 2

Theorem 6.4.1 The ring homomorphism

[ p ]∗ : K[[T ]]1 −→ K[[T ]]Ω0
1

f 7−→ f
(
[ p ]
)

is a topological isomorphism with respect to the compact-open topology.

Proof. By Corollary 5.4.1 [ p ]∗ is continuous and it is clearly and homomorphism. Let

K · OK [[T ]] = {α f | (α, f) ∈ K ×OK [[T ]]} and K · OK [[T ]]Ω0 = K · OK [[T ]] ∩K[[T ]]Ω0
1 .

By Lemma 6.4.1 it is easy to see that [ p ]∗ maps K · OK [[T ]] onto K · OK [[T ]]Ω0 . Since

both sets are dense respectively in K[[T ]]1 and K[[T ]]Ω0
1 , then [ p ]∗ is surjective. We only

need to prove that [ p ]∗ has continuous inverse in K · OΩ0
K , since by continuity it can be

extended to a continuous map defined in K[[T ]]Ω0
1 and it will be the inverse of [ p ]∗. For

this we will need the following claim:

Claim: Let h ∈ K[[T ]]1, r ∈ pQ−

, p−
p

p−1 < r < 1 and t = r1/p. Then ‖h‖r = ‖h
(
[ p ]
)
‖t.

Let ζ ∈ St i.e. |ζ| = t, then [ p ](ζ) = (1 + ζ)p − 1 =

p∑

k=1

(
p

k

)
ζk. Note that

∣∣∣∣
(
p

k

)
ζk
∣∣∣∣ =





|ζ|p if k = p

1
p |ζ|

k if 1 ≤ k ≤ p− 1.

Since p−
1

p−1 < |ζ| we have that for 1 ≤ k ≤ p − 1: 1
p |ζ|

k < 1
p |ζ| < |ζ|p therefore r is a

regular radius for [ p ] and [ p ](St) ⊆ Sr, in particular ‖h([ p ])‖t ≤ ‖h‖r. Now by Theorem

5.1.2 there exits ξ ∈ Sr such that ‖h‖r = |h(ξ)|. Now taking ζ a root of [ p ] − ξ we have
∣∣[ p ](ζ)

∣∣ = r, since M[ p ] is strictly increasing we must have that |ζ| = t, therefore

‖h‖r = |h(ξ)| =
∣∣h
(
[ p ](ζ)

)∣∣ ≤ ‖h([ p ])‖t ≤ ‖h‖r.

Returning to our case by part 2 of Lemma 6.4.2
(
[ p ]∗

)−1
is well defined in K · OΩ0

K and

by linearity we only need to check continuity at 0. For that purpose let us prove that
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for any fn ∈ K · OK [[T ]] such that lim
n→∞

fn([ p ]) = 0 we have lim
n→∞

fn = 0. By last claim

for any r, p
− p

p−1 < r < 1 we have ‖fn‖r = ‖fn([ p ])‖r1/p , but for any s ∈ pQ−

we have

lim
n→∞

‖fn‖s = 0, therefore lim
n→∞

fn = 0. 2

Theorem 6.4.2 There exists unique map Norm NrK : OK [[T ]] −→ OK [[T ]] such that

NrK(f)
(
[ p ]
)

=
∏

u∈Ω0

fu. (6.2)

Further, this map is continuous and multiplicative i.e. NrK(fg) = NrK(f)NrK(g).

Proof. Let F : OK [[T ]] −→ OK [[T ]] defined as F (f) =
∏

u∈Ω′

0

fu. Clearly F is multiplica-

tive and, by part 1 of Lemma 6.4.2, continuous. For f ∈ OK [[T ]], since (fu)u′ = fu[+]u′,

F (f) ∈ OK [[T ]]Ω. Therefore by Lemma 6.4.1 we can define a continuous map NrK =

F ◦ ([ p ]∗)−1 which satisfies (6.2).

Remark 6.4.1

1. ord
(
NrK(f)

)
= ord(f). Since F = NrK(f)([ p ]) =

∏

u∈Ω0

fu we have that ordF =

p ord f =
∑

u∈Ω0

ord fu, on the other hand for u ∈ Ω0, ord fu = ord f , therefore we

may conclude.

2. Let ηn = ζpn+1−1, since [ p ](ηn+1) = un we have NrK(f)(ηn) = NrK kn+ 1n
(
f(ηn+1)

)
,

further by induction we get

NrkK(f)(ηn) = NrK kn+ kn
(
f(ηn+k)

)
.

Let ΛK = lim
←−

Zp[Gn] (respect the canonical restrictions), since the inclusions Zp[Gn] →֒

OK [Gn] are compatible with the Lemma 6.3.1 for the case K = Qp,we get that Zp[G∞] is

canonically densely immersed in ΛK .

Now by Lemma 6.2.1 for f ∈ MK and a ∈ Zp then (a, f) −→ fa is a well defined and

continuous action, and it is easy to see that for f ∈ MK , σ · f ∈ MK . Hence we have a

structure of Zp[G∞]-module on the multiplicative abelian group MK . For this action we

will use the following notation: For θ =
∑
akσk ∈ Zp[G∞] and f ∈ MK we will denote

f θ = f
∑
akσk =

∏
(σk · f)ak .

Lemma 6.4.3 There is a unique Zp[G∞]-homomorphism log : MK −→ K[[T ]] such that

exp∗ log = IdMK
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Proof. Note that for g ∈ MK we have the factorization g = u(1 + f) and the map

g 7−→ (u, f) ∈ U1
K × T OK is continuous. Therefore we can define

log g = logK u+ λ∗f,

which is continuous by the continuity of λ⋆ in TOK [[T ]] and the continuity of logK in U1
K .

Now since K is unramified the exponential map expK : pOK −→ U1
K is the inverse of logK

and by part 1 of Theorem 2.2.1 we have exp(λ∗(f)) = 1 + f , therefore

exp(log g) = exp(logK u) + exp(λ∗(f)) = u(1 + f) = g.

By part 2 of Theorem 2.2.1 for 1 + f, 1 + g ∈ 1 + TOK we have that

log
(
(1 + f)(1 + g)

)
= λ(f [+]g) = λ(f) + λ(g) = log(1 + f) + log(1 + g).

In particular for n ∈ N, log
(
(1 + f)n

)
= n log(1 + f), therefore by continuity we get

log
(
(1 + f)α

)
= α log(1 + f) for any α ∈ Zp, hence log is a Zp-homomorphism. Now for

α ∈ Zp, [α] ∈ T K[[T ]], by Corollary 2.1.1 part 2 we have for any h ∈ T K[[T ]] that

λ
(
h([α])

)
=
(
λ(h)

)
([α]).

Then for f ∈ MK and σ ∈ G∞ we have

log(σ · f) = log
(
f([κ(σ)])

)
=
(
log(f)

)
([κ(σ)]) = σ · log(f).

Then log is a Zp[G∞]-homomorphism. 2

Theorem 6.4.3 The set MK has a unique structure of continuous ΛK-module which ex-

tends the Zp[G∞] action i.e. f ∈ MK , a ∈ Zp and σ ∈ G∞ we have

a · f = fa and σ · f = f([κ(σ)]).

Proof. As in Theorem 6.3.1 (since Zp[G∞] is dense is ΛK) the continuity of the action

of Zp[G∞] is enough to get an extension to a unique continuous action of ΛK on MK . For

this, let (θn, fn) ∈ Zp[G∞] × MK such that θn −→ θ and fn −→ f . Notice that

(fn)
θn =

(
fnf

−1)θnf θn (6.3)

Let us prove that (fn)
θ −→ f θ: Take u ∈ Ω′, for any g ∈ MK and θ =

∑
akσk, by Lemma

2.3.1 and Remark 6.3.2, we have that

gθ(u) =
∏

(σ · g)ak (u) =
∏

g
(
σ(u)

)ak .
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Now since fn(σ(u)
)
−→ f(σ(u)

)
and using the continuity of Zp multiplicative action we

have that

(fn)
θ(u) =

∏
fn(σ(u)

)ak −→
∏

f(σ(u)
)ak = f θ(u),

then by Theorem 5.3.2 we have f θn −→ f θ. By equation (6.3) it is enough to show that if

gn −→ 1 then gθn
n −→ 1, but since log is continuous we have log(gn) −→ 0 and by Theorem

6.3.1 and Lemma 6.4.3 log(gθn
n ) = θn · log(gn) −→ 0, therefore using Lemma 6.4.3 we get

gθn
n = exp∗

(
log(gθn

n )
)
−→ 1,

as we wanted to prove. 2

Remark 6.4.2

1. If σ ∈ G∞, f ∈ K((T ))1 and u ∈ B′ then we have (σ · f)u = fu
(
[κ(σ)]

)
= σ · fu.

Note that (σ · f)u = f
(
[κ(σ)]

)
u

= f
(
[κ(σ)](u[+]T )

)
, therefore

(σ · f)u = f
(
(1 + u)[κ(σ)](1 + T )[κ(σ)] − 1

)
= fu

(
[κ(σ)]

)
.

Proposition 6.4.1 The map NrK leaves invariant MK and MK , further NrK restricts

to a ΛK endomorphism of MK i.e. for all θ ∈ ΛK and f ∈ MK ,

NrK(θ · f) = θ · NrK(f).

Proof. Since NrK is multiplicative, it leaves invariant MK and since it preserve OK [[T ]]

we have NrK(MK) ⊆ OK [[T ]]∩MK . Now since NrK = F
(
[ p ]∗

)−1
(see Theorem 6.4.2) the

first coefficient of NrK(f) is the p-th power of the first coefficient of f , then NrK(MK) ⊆

MK . Since NrK is multiplicative it does commute with the Z-action on MK , therefore by

continuity it must commute with the extended action of Zp. Now, by last lemma we have

(
NrK(σ · f)

)(
[ p ]
)

=
∏

u∈Ω0

(σ · f)u =
∏

u∈Ω0

fu
(
[κ(σ)]

)
=
(
σ · NrK(f)

)(
[ p ]
)
,

hence NrK(σ ·f) = σ ·NrK(f). We have proven that the norm commutes with the Zp[G∞]-

action therefore by continuity of the norm it must commute with the ΛK-action i.e. the

norm must be a ΛK -endomorphism. 2

Theorem 6.4.4 There exists unique map TrK : K[[T ]]1 −→ K[[T ]]1 such that

TrK(f)
(
[ p ]
)

=
∑

u∈Ω0

fu. (6.4)

further it is a continuous OK [[G∞]]-homomorphism.
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Proof. Let S : K[[T ]]1 −→ K[[T ]]1, S(f) =
∑

u∈Ω′

0

fu. By part 1 of Lemma 6.4.2, S is a

continuous ring homomorphism and as in the case of the norm is Ω0 invariant, then by

Theorem 6.4.1 we can take TrK = S ◦ ([ p ]∗)−1, which is a continuous endomorphism of

OK [[T ]] satisfying (6.4). By part 3 of Remark 6.3.2 and Remark 6.4.2 we have that

(
σ ·TrK f

)
([ p ]) =

(
TrK f([ p ])

)
([κ(σ) ]) =

(∑

u∈Ω0

fu

)
[κ(σ)] =

∑

u∈Ω0

σ · (fu) =
∑

u∈Ω0

(σ · f)u.

Therefore
(
σ · TrK f

)
([ p ]) =

(
TrK(σ · f)

)
([ p ]) hence σ · TrK f = σ · (TrK f). 2

Remark 6.4.3

1. Since TrK leaves OK [[T ]] is invariant, TrK is a continuous OK [[G∞]]-endomorphism

of OK [[T ]].

2. Let ηn = ζpn+1 − 1. As well as in the case of the norm we have

(a) TrK f(ηn) = TrKn+1/Kn

(
f(ηn+1)

)
.

(b) For f ∈ OK [[T ]], TrnK(f) ≡ 0mod pnOK [T ].

3. For g(T ) ∈ OK [[T ]] then TrK(g[ p ]) = p g. Just note that since h = g([ p ]) is Ω0

invariant, TrK(h)([ p ]) = ph. Therefore, by definition of TrK , TrK(h) = p g(T ).

Proposition 6.4.2 For f ∈ MK we have TrK(log f) = log(NrK f).

Let f = 1 + g ∈ M′K = 1 + TOK [[T ]]. Then f([ p ]) = 1 + g([ p ]) and fu = 1 + g(u[+]T ) ∈

M′K , hence by part 2 of Corollary 2.1.1 we have

log(fu) = λ
(
g(u[+]T )

)
=
(
λ(g)

)
(u[+]T ) = log(f)u,

log(f [ p ]) = λ
(
g([ p ])

)
=
(
λ(g)

)
([ p ]) = log(f)([ p ]).

Therefore

[ p ]∗(log NrK f) = log
(
(NrK f

)
([ p ])) = log

∏

u∈Ω0

fu =
∑

u∈Ω0

log(fu)

=
∑

u∈Ω0

(log f)u =
(
TrK(log f

))
([ p ]) = [ p ]∗(TrK log f),

Since [ p ]∗ is injective we must have that TrK(log f) = log(NrK f). Now the general case

follows from the fact that NrK ,TrK and log are Zp-homomorphisms. 2

Let us consider the extension of the Frobenius ϕ : K((T ))1 −→ K((T ))1 given by its action

on coefficients i.e.

ϕ

(∑
anT

N

)
=
∑

ϕ(an)T
N .
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Remark 6.4.4

1. ϕ is a ring homomorphism and ϕ(f) ≡ fpmod p.

2. Since ∆ = Gal
(
K/Qp

)
∼= Gal

(
K∞/Qp∞

)
(the isomorphism is given by restriction)

we can lift ϕ ∈ Gal
(
K∞/Qp∞

)
, which acts as the usual ϕ on K and trivially on all

p-th roots of unity.

3. Since for every a ∈ OK , |ϕ(a)| = |a| we have that ‖ϕ(f)‖r = ‖f‖r for any r ∈ pQ−

,

in particular ϕ is continuous.

4. ϕ commutes with evaluations i.e. if f ∈ OK((T )) and g ∈ T OK [[T ]] then ϕ
(
f(g)

)
=

(
ϕf
)
(ϕg). This follows by Proposition 5.4.2 and the continuity of ϕ (since it is true

when f, g are polynomials).

5. ϕ commutes with NrK . Since ϕ is a ring isomorphism we have

ϕ
(
NrK(f)([ p ])

)
=
∏

u∈Ω0

ϕ(fu) =
∏

u∈Ω0

ϕ(f)u = NrK
(
ϕ(f)

)
([ p ]),

because ϕ(fu) = ϕ(f(u[+]T )) = ϕ(f)(u[+]T ) = ϕ(f)u. On the other hand

ϕ
(
NrK(f)([ p ])

)
=
(
ϕ(NrK f)

)
([ p ]),

then by Lemma 6.4.2 we have NrK ϕ(f) = ϕNrK(f).

Lemma 6.4.4 Let n ≥ 1, g ≡ 1mod pnOK [[T ]] and h ∈ MK , then:

1. Let f ∈ OK [[T ]]. If f([ p ]) ∈ pNOK [[T ]] then f ∈ pNOK [[T ]].

2. NrK(g) ≡ 1mod pn+1OK [[T ]]

3.
NrnK(h)

ϕ
(
Nrn−1

K (h)
) ≡ 1mod pnOK [[T ]] i.e.

ϕ−n NrnK(f) ≡ ϕ−(n−1) Nrn−1
K (f)mod pk.

Proof. (1) Let f =
∑
anT

n. Since [ p ] ≡ T pmod p, if f([ p ]) ∈ pOK [[T ]] then f([ p ]) =
∑

an[ p ]n ≡
∑

anT
np ≡ 0mod p, therefore f ∈ pOK [[T ]]. Now if f([ p ]) ∈ pNOK [[T ]],

taking h = 1
pN−1 f we have that h([ p ]) ∈ pOK [[T ]] then, by the previous case h ∈ pOK [[T ]],

therefore f ∈ pNOK [[T ]].

(2) By part 1 it is enough to show that F (g) ≡ 1mod pn+1. For this take u ∈ Ω0 ⊆ p0, then

u[+]T ≡ T mod p0 and gu = g(u[+]T ) ≡ gmod pnp0. Therefore F (g) ≡ gp ≡ 1mod pnp0

but this means that the coefficients of F (g) − gp lie in pnp0 ∩ OK = pn+1OK i.e. F (g) ≡

1mod pn+1 and by part 1 NrK(g) ≡ 1mod pn+1.
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(3) First let us prove the case n = 1: Without loss of generality we may suppose that

h =
∑
anT

n ∈ OK [[T ]], because if h = h0T
−N for some N > 0 and h0, T

N ∈ OK [[T ]] then

with our assumption we have:

NrK(h)

ϕ(h)
=

(
NrK(TN )

ϕ(TN )

)−1 NrK(h0)

ϕ(h0)
≡

NrK(h0)

ϕ(h0)
mod p.

Now, ϕ(h) ≡
∑

n

apnT
n and hp ≡

∑

n

apnT
np mod p, then ϕ(h)(T p) ≡ hp mod p. On the

other hand F (h) ≡ hp mod p0, and since both series have integral coefficients we must

have that F (h) ≡ hp mod p, then NrK(h)(T p) ≡ hp mod p. Therefore

NrK(h)(T p)

ϕ(h)(T p)
≡ 1mod p,

then, looking at the coefficients, it is easy to see that
NrK(h)

ϕ(h)
≡ 1mod p.

Now let g1 =
NrK(h)

ϕ(h)
and gn+1 = NrK(gn) for n > 1. We have seen that g1 ≡ 1mod p

and since the norm and ϕ are multiplicative we have that

gn =
NrnK(h)

ϕ
(
Nrn−1

K (h)
) ,

then by part 2 is easy to conclude that gn ≡ 1mod pn. 2

From part 3 of last Lemma we have that

ϕ−k NrkK(f) ≡ ϕ−(k−1) Nrk−1
K (f)mod pk,

hence we are able to define

Definition 6.4.1 Let us define Nr∞K : MK −→ MK as Nr∞K (f) = lim
n→∞

ϕ−n NrnK(f) and

M
ϕ
K as the set of f ∈ MK such that NrK(f) = ϕf .

Remark 6.4.5

1. From definition NrK
(
Nr∞K (f)

)
= ϕ

(
Nr∞K (f)

)
.

2. If f ∈ M
ϕ
K then Nr∞K f = f , therefore Nr∞K maps MK onto M

ϕ
K .

3. Since Nr∞K (f) ≡ f mod pOK [[T ]], we have that M
ϕ
K ⊆ MK .

4. Since NrK and ϕ are continuous we have that M
ϕ
K is closed. Further, since MK is

compact we have that M
ϕ
K is compact.

Proposition 6.4.3 Nr∞K : MK −→ M
ϕ
K is a continuous a ΛK-homomorphism.
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Proof. Since NrK and ϕ are ΛK -homomorphisms and the continuity of the ΛK -action

on MK , by definition of N∞, it is must be a ΛK-homomorphism. Hence it is enough to

check the continuity in 1. For this take a sequence (fn)n∈N ⊆ MK convergent to 1, then

for N ∈ N there exist n0 ∈ N such that for n ≥ n0 fn ≡ 1mod pNOK [[T ]] therefore by

part 2 of Lemma 6.4.4 and definition of Nr∞K we have that

Nr∞K (fn) ≡ ϕ−N NrNK(fn) ≡ 1mod pNOK [[T ]].

But, this means that lim
n→∞

Nr∞K (fn) = 1. 2

Proposition 6.4.4 Let M′K = 1 + pOK [[T ]]. The sequence

1 −→ M′K −→ MK

Nr∞K // M
ϕ
K

i
oo_ _ _ −→ 1

is a split exact sequence of topological ΛK-modules, where i is the inclusion.

Proof. We only need to prove that ker Nr∞K = M′K1. By part 3 of Remark 6.4.5 we have

that ker Nr∞K ⊆ M′K . For the other inclusion take f ∈ M′K . Note that iterating part 2 of

Lemma 6.4.4 we get NrkK(f) ≡ 1mod pkOK [[T ]], therefore Nr∞K (f) = 1 i.e. f ∈ ker Nr∞K . 2

6.5 Local units and the Coleman Homomorphism

Let U (n) be the principal units of Kn i.e. U (n) = 1 + pn.

Remark 6.5.1

1. Notice that for m ≤ n, NrK knm(U (n)) ⊆ Um. Further, since for l ≤ m ≤ n we have

NrK kmlNrK knm = NrK knl, then the principal units constitute an inverse system

with respect to norms.

2. Each Gn acts naturally on U (n) and, as in Corollary 6.2.1, we may define in U (n) a

canonical continuous Zp-action, therefore we have a continuous Zp[Gn]-action.

3. Note that the canonical morphisms Z[G∞] −→ Z[Gn] induce continuous Zp[G∞]-

action on each U (n). Therefore each of them can be extended to a continuous ΛK-

actions on the respective U (n).

4. For m ≤ n the Zp[G∞]-actions on U (n) and Um are compatible with NrKn/Km
:

U (n) −→ Um then, by continuity of the norms, they are compatible the respective

ΛK -actions, therefore we can induce a canonical topological ΛK-action on lim
←−

U (n).
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Definition 6.5.1 We define the group of local units UK as lim
←−

U (n) with the canonical

ΛK-module structure.

Lemma 6.5.1 Let ηn = ζpn+1 − 1. For every (αn)n∈N ∈ U1
K,∞ there is a unique g ∈

OK [[T ]] such that g(un) = ϕn(αn).

Proof. The uniqueness follows immediately by the Corollary 4.2.2. For the existence,

first note that ϕ leaves p invariant, the ϕn(αn) ∈ U (n). Now since ηn is prime in On, there

exists fn ∈ OK [[T ]] such that

fn(ηn) = ϕn(αn)

Now, for any n, k ∈ N by Remark 6.4.1 we have

(
ϕ−k NrkK fn+k

)
(ηn) = ϕ−k NrK kn+ kn

(
fn+k(ηn+k)

)
= ϕn(αn). (6.5)

Let gn = ϕ−n NrnK(f2n) and m = n+ j with j ≥ 0, note that by (6.5) we have

(ϕ−j NrjK gm)(ηn) = ϕ−m−j Nrm+j
K f2m(ηn) = ϕn(αn),

and by 3 of Lemma 6.4.4

ϕ−j NrjK gm = ϕ−m−j Nrm+j
K f2m ≡ ϕ−m NrmK f2mmod pm+1,

then for m = n+ j, ϕn(αn) = (ϕ−j NrjK gm)(ηn) ≡ gm(ηn)mod pm+1, then

|ϕn(αn) − gm(ηn)| ≤
1

pm+1
. (6.6)

Finally, (gm)m∈N ⊆ OK [[T ]] (compact by Corollary 5.3.1) admits an accumulation point

g ∈ OK [[T ]], then by (6.6) g(ηn) = ϕn(αn). 2

Theorem 6.5.1 There is a topological ΛK-isomorphism ColK : U1
K,∞ −→ M

ϕ
K such that

for u = (un)n∈N ∈ U1
K,∞ we have

(
ColK(u)

)
(ηn) = ϕn(un).

Proof. Let φn : Mϕ −→ U (n) defined as ϕn(f) = ϕ−nf(ωn). By part 2 of Remark

6.3.2 the φn are Zp[G∞]-morphisms and by Proposition and the continuity of ϕ, they

are continuous. Therefore they are topological ΛK-morphisms. Now iterating part 2 of

Remark 6.4.1, we have NrkK(f)(ωn) = NrKn+k/Kn
f(ωn+k) therefore for n = m + k and

f ∈ M
ϕ
K we have

φm(f)(ωm) = ϕ−m NrmK ϕ
−k NrkK(f)(ωm) = ϕ−n Nrm+k

K NrKm+k/Km
(f)(ωm+k)

= NrKn/Km
ϕ−n NrnK(f)(ηn) = NrKn/Km

φm(f)(ωm),
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then the following diagram commutes:

M
ϕ
K

φn //

φm ""E

E

E

E

E

E

E

E

U (n)

NrKn/Km

��
Um

Then they define a continuous ΛK-morphism, ϕ : M
ϕ
K −→ U1

K,∞ which is injective by the

uniqueness lemma (Lemma 2.3.3), surjective by last lemma. Since M
ϕ
K is compact ϕ is a

topological ΛK-isomorphism, therefore so does ΓK = φ−1. 2

Lemma 6.5.2 Let Θ : TOK [[T ]] −→ K[[T ]]1 defined as Θ(f) = f −
Φ(f)

p
where

Φ(f) = ϕ(f)
(
(1 + T )p − 1

)
.

For any f ∈ T OK [[T ]] we have that Θ
(
λ(f)

)
∈ OK [[T ]].

Proof. Since for each n ≥ 1 factors uniquely as n = pka with k ≥ 0 and (a, p) = 1

we have λ(f) =
∞∑

n=1

(−1)n+1 f
n

n
=

∑

(a,p)=1

(−1)a+1 1

a

∞∑

k=0

(fa)p
k

pk
, Since OK [[T ]] is closed, is

enough to show that for any f ∈ OK [[T ]],

Θ

( ∞∑

k=0

fp
k

pk

)
∈ OK [[T ]].

For this purpose we need the following claim:

Claim: For f ∈ OK [[T ]] and k ∈ N we have Φ(fp
k
) ≡ fp

k+1
mod pk+1.

Let g be defined by [ p ] = T p + pg and f =
∑
anT

n. Since

Φ(f) = ϕf([ p ]) =
∑

ϕ(ap)(T
p + pg)n ≡

∑
apnT

np ≡ fpmod p,

the claim is true for k = 0. Now, for a k ≥ 0 assume that Φ(fp
k
) = fp

k+1
+ pk+1hk with

hk ∈ OK [[T ]], therefore

Φ(fp
k+1

) = ϕfp
k+1

([ p ]) = Φ
(
fp

k)p
= (fp

k+1
+ pk+1hk)

p = fp
k+2

+ pk+2hk+2,

for some hk+2 ∈ OK [[T ]], hence the claim is true for k + 1.

We can restate the claim in the following way: for every k ∈ N we have that

fp
k+1

pk+1
− Φ

fp
k

pk
∈ OK [[T ]].
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this means that for each N ≥ 1 there is a gN ∈ OK [[T ]] such that

Θ

( N∑

k=0

fp
k

pk

)
=

N∑

k=0

fp
k

pk
−

N∑

k=0

Φ
fp

k

pk
f = gN − Φ

fp
N

pN
.

Since lim
N→∞

fp
N

pN
= 0 and ϕ and [ p ] are continuous we have that Θ is continuous and

Θ

( ∞∑

k=0

fp
k

pk

)
= lim

N→∞
Θ

( N∑

k=0

fp
k

pk

)
= lim

N→∞
gN ∈ OK [[T ]]. 2

Lemma 6.5.3 The map ΘΩ : MK −→ OK [[T ]] defined as

ΘΩ(f) = Θ(log f),

is a continuous ΛK-homomorphism.

Proof. Since log and [ p ]∗ are continuous ΛK homomorphism, so it is ΘΩ. Therefore it

only remains to check the integrability of its image. For this let g ∈ T OK [[T ]], by Lemma

6.5.2 we have that ΘΩ(1 + g) = Θ(λ(g)) ∈ OK [[T ]]. Now for f ∈ MK we may write

f = a(1 + g) where a = 1 + h(p) with h ∈ TZp[[T ]] and g ∈ T OK [[T ]], then

ΘΩ(f) = Θ log(1 + h(p)) + Θ log(1 + g) = Θ
(
λ(h)

)
(p) + Θ

(
λ(g)

)
∈ OK [[T ]].

2

For the following we will need an integral version of the normal basis theorem:

Lemma 6.5.4 Let E/Qp a finite Galois unramified extension of degree f . Then there

exists a θ ∈ OE such that θ, ϕ(θ), . . . , ϕf−1(θ) is a Zp-basis of OK .

Proof. Let θ ∈ kE a normal primitive element kE/Fp i.e. an element such that θ, θ
p
, . . . , θ

pf−1

is a Fp basis of kE . Fix θ ∈ OE a lifting of θ, then the set

R = {b1θ + b2ϕ(θ) + . . .+ bfϕ
f−1(θ) | 0 ≤ bi ≤ p− 1},

is a system of representative of kE in OE . Since p is a uniformizer of pE , for each a ∈ OE

we have that a =
∞∑

j=0

ajp
j with aj ∈ R, hence aj =

f−1∑

k=0

bj,kϕ
k(θ) with 0 ≤ bj,k ≤ p − 1.

Therefore a =

f−1∑

k=0

( ∞∑

j=0

bj,kp
j

)
ϕk(θ) then

OK = Zpθ + Zpϕ(θ) + . . .+ Zpϕ
f−1(θ).

Now if

f−1∑

k=0

αkϕ
k(θ) = 0 for αk ∈ Zp we may assume that at least one αk ∈ Z×p , but

reducing mod p it contradicts the fact that θ, θ
p
, . . . , θ

pf−1

are a Fp basis of kE , therefore
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θ, ϕ(θ) . . . , ϕf−1(θ) must be linearly independent over OK . 2

Lemma 6.5.5 Let b ∈ K and n ∈ Z. Consider the equation in K:

b = a− ϕ(a)pn (6.7)

1. If n 6= 0 then the equation has always unique solution.

2. If n = 0 the equation is solvable if and only if TrK/Qp
(b) = 0.

3. If n 6= 0 the equation has a solution in Qp if and only if b ∈ Qp.

Proof. By last lemma there is a θ ∈ K such that θ, ϕ(θ) . . . , ϕf−1(θ) is a Zp-basis of

OK , therefore a Qp-basis of K. Let b =

f−1∑

k=0

bkϕ
k(θ) and a =

f−1∑

k=0

akϕ
k(θ). By linear

independence equation (6.7) is equivalent to the system of equations in Qp

bk = ak − ak−1p
n for 0 ≤ k ≤ f − 1 where a−1 = af−1.

In matrix notation:



1 0 0 · · · 0 −pn

−pn 1 0 · · · 0 0

0 −pn 1 · · · 0 0

0 0 −pn · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −pn 1







a0

a1

a2

...

af−1




=




b0

b1

b2
...

bf−1




(1) Since the matrix of the system has determinant 1 − pn(f−1) for n 6= 0 the system is

always solvable.

(2) For the case n = 0 if the equation has solution we must have
∑

k

bk = 0 and since

the matrix has rank n − 1 then the equation has solution if and only if
∑
bk = 0.

Now, TrK/Qp
(b) =

f−1∑

k=0

bk TrK/Qp
(θ), hence the existence of a solution is equivalent to

TrK/Qp
(b) = 0.

(3) It follows from the fact that the matrix preserve the space of vectors (a0, a1, . . . , af−1) ∈

Qf
p such that ak = 0 for k 6= 0. 2

As before, let c1 : K[[T ]] −→ K the first coefficient projection i.e. c1(f) = f ′(0).

Lemma 6.5.6 Θ(K[[T ]]) = ker(TrK/Qp
◦c1).
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Proof. Note that for f =
∑
anT

n ∈ K[[T ]] we have

Θ(f) =
∑

Θ(akT
k) =

(
a0 −

ϕ(a0)

p

)
+
(
a1 −ϕ(a1)

)
T +

∑

k≥2

(
akT

k −
ϕ(ak)[ p ]k

p

)
. (6.8)

Note that for n ≥ 2 the n-th term of Θ(f) is given by

cn(Θ(f)) = an −
1

p

∑

k≥2

ϕ(ak)cn
(
[ p ]k

)
, (6.9)

and since [ p ] =

p−1∑

j=1

(
p

j

)
T j then [ p ]k =

p−1∑

j1,...,jk=1

(
p

j1

)
· · ·

(
p

jk

)
T j1+...+jk therefore for

k ≤ n ≤ k(p− 1) we have

cn
(
[ p ]k

)
=

∑

j1+...+jk=p−1
1≤ji≤p−1

(
p

j1

)
· · ·

(
p

jk

)
=





pn if n = k

0mod p if k < n ≤ k(p− 1)

and 0 otherwise. So in equation (6.9) we get for n ≥ 2:

cn(Θ(f)) = an − ϕ(an)p
n−1 −

1

p

∑

n
p−1
≤k<n

ϕ(ak)cn
(
[ p ]k

)
. (6.10)

Now given g =
∑
bnT

n ∈ K[[T ]], for solving the equation Θ(f) = g, with f =
∑

n

anT
n

by (6.8) and (6.10), we need to solved simultaneously the system:

b0 = a0 −
ϕ(a0)

p
, b1 = a1 − ϕ(a1) and b′n = an − ϕ(an)p

n−1 for n ≥ 2.

where b′n = bn +
1

p

∑

n
p
≤k<n

ϕ(ak)cn
(
[ p ]k

)
which is well determined when we know ak for

k < n. By Lemma 6.5.5 the only condition we need is that TrK/Qp
(a1) = 0, therefore that

f ∈ ker(TrK/Qp
◦c1). 2

Theorem 6.5.2 The following sequence of topological ΛK-modules is exact:

1 // Zp(1)
αK // MK

ΘΩ // OK [[T ]]
βK // Zp(1) // 1 ,

where αK(a · ζ) = (1 + T )a, βK(f) = TrK/Qp
f ′(0) · ζ and ζ = (ζpn+1)n∈N.

Proof. It is clear that αK is injective and βK is surjective. By Lemma 6.5.2 we have that

ΘΩ(MK) ⊆ OK [[T ]] and by Lemma 6.5.6 its image is exactly kerβK . Then we only need to

check exactness at MK . Since log(1 + T )a = aλ and Θ(aλ) = aΘ(λ) = λ−
λ([ p ])

p
= 0 we

have that ΘΩαK = 0. It remains to prove the other inclusion. For that take g = uf ∈ MK

with f ≡ 1 + a1T modT 2, then log g = log u+ a1T +

∞∑

k=2

akT
k. If ΘΩ(g) = 0 by equation

(6.8) we have that:
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1. (p− 1) log u = log u−
log u

p
= 0, hence log u = 0 i.e. u = 1.

2. a1 = ϕ(a1), hence a1 ∈ Zp.

3. For k ≥ 1, if a1, . . . , ak ∈ Qp by equation (6.9) we get ak+1 ∈ Qp.

Therefore f = g ∈ Qp[[T ]]. Now let h = log f − a1λ then h ≡ 0modT 2 and Θ(h) = 0 i.e.

p h(T ) = h([p]). Since

h ≡ 0modT k =⇒ h([ p ]) = 0modT pk,

we must have h = 0, then log f = a1λ i.e. f = (1 + T )a1 = αK(ζa1). 2

Lemma 6.5.7 OK [[T ]] = OK [[G∞]] · (1 + T ) + OK [[T ]]Ω0 as OK [[G∞]]-modules.

Proof. First, note that by Theorem 6.4.1 we have that

OK [[T ]]Ω0 = [ p ]∗(OK [[T ]]) = {g([ p ]) | g ∈ OK [[T ]]}.

Now, let a ∈ N. If a is prime to p, take σa ∈ G∞ such that κ(τa) = a, then

σa · (1 + T ) = (1 + T )a ∈ OK [[G∞]] · (1 + T ),

is a monic polynomial of degree a. If a = pb we have that

[ p ]a =
(
(1 + T )p − 1

)a
∈ OK [[T ]]Ω0

is a monic polynomial of degree pa. Therefore the OK [[G∞]]-submodule OK [[G∞]] · (1 +

T ) + OK [[T ]]Ω0 contains monic polynomials of any degree, so must be dense in OK [[T ]],

but since it is compact they coincide. 2

Definition 6.5.2 We define V = ker TrK = {f ∈ OK [[T ]] | TrK f = 0}.

Theorem 6.5.3 V is a principal OK [[G∞]]-module generated by 1 + T .

Proof. Let h = TrK(1 + T ). Since h([ p ]) =
∑

ζp=1

ζ(1 + T ) = 0 we have h = 0, then

(1 + T ) ∈ ker TrK and since it is a OK [[G∞]]-module, OK [[G∞]] · (1 + T ) ⊆ ker TrK . Now

by part 3 of Remark 6.4.3 if h = g([ p ]) ∈ O[[T ]]Ω we have TrK(h) = p g, but it implies

that

OK [[T ]]Ω0 ∩ V = 0,

therefore OK [[G∞]] · (1 + T ) ∩ OK [[T ]]Ω0 = 0. By last Lemma we get

OK [[T ]] = OK [[G∞]] · (1 + T ) ⊕OK [[T ]]Ω0 ,

then we must have OK [[G∞]] · (1 + T ) = V . 2
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Theorem 6.5.4 We have that ΘΩ(Mϕ
K) ⊆ V . Further the sequence of Theorem 6.5.2

induces the following exact sequence of OK [[G∞]]-modules:

1 // Zp(1)
αK // M

ϕ
K

ΘΩ // V
βK // Zp(1) // 1 .

Proof. Let f ∈ MK . Taking trace of ΘΩ0 we get

TrK ΘΩ0(f) = TrK(log f) −
1

p
ϕTrK

(
[ p ]∗ log f

)
.

By part 3 of Remark 6.4.3 we have TrK
(
[ p ]∗ log f

)
= p f and by Proposition 6.4.2

TrK(log f) = log(NrK f) therefore

TrK ΘΩ0(f) = log(NrK f) − log(ϕf) = log

(
NrK f

ϕf

)
. (6.11)

Then f ∈ M
ϕ
K if and only if TrK ΘΩ0(f) = 0 i.e. ΘΩ0(f) ∈ V . About the exactness, since

αK(Zp((1)) ⊆ M
ϕ
K the sequence is exact in M

ϕ
K . For g ∈ kerβK , there is a f ∈ mK such

that g = ΘΩ0(f) then by (6.11) g ∈ ker βK ∩ V if and only if f ∈ M
ϕ
K , so the sequence is

exact at V , therefore it is exact. 2

The following diagram summarizes much of the maps we have defined:

MK

ΘΩ0 // OK [[T ]]

U1
K,∞

ColK //

ColK

''P

P

P

P

P

P

P

P

P

P

P

P

P

M
ϕ
K

//
?�

OO

V = OK [[G∞]] · (1 + T )
?�

OO

OK [[G∞]]

OO

(6.12)

Since OK [[G∞]] is compact, and the action on 1+T is injective and continuous, there exists

a well defined continuous map Col : U1
K,∞ −→ OK [[G∞]] characterized by the relation

ΘΩColK(u) = (1 + T )Col(u).

It will be useful in the next chapter.
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Chapter 7

Coleman-Iwasawa-Tsuji

Characterization of the p-adic

L-functions

7.1 Coleman semi-local Theory for Abelian number fields

Proposition 7.1.1 Let K/Q a finite extension and for p|p let (OK)p be the completions

of OK at p. The projections OK −→ (OK)p induce a canonical isomorphism

OK ⊗Z Zp ∼=
∏

p|p

(OK)p.

Proof. Both Zp-modules are free and have the same Zp-rank since (OK)p has Zp-rank

epfp and n =
∑

p|p epfp. So it is enough to check that the canonical map is surjective, but

this follows by the Chinese reminder theorem.

Let F be an abelian number field unramified at p and ∆ = Gal
(
F/Q

)
.

Remark 7.1.1

1. Since ∆ is abelian decomposition groups of each p|p coincide, so we can set ∆p as

the common decomposition group.

2. Since F/Q is unramified at p we have a Frobenius element element ϕ ∈ ∆p, charac-

terized as the automorphism of F which satisfies ϕ(a) ≡ apmod p, for all p|p i.e.

ϕ(a) ≡ ap mod pOF .

Further ϕ is a generator of ∆p.
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If p|p let us denote Fp the completion of F at p and Op = (OF )p the ring of Zp integral

elements of Fp.

Definition 7.1.1 We define the topological ring

ÔF :=
∏

p|p

Op
∼= OF ⊗Z Zp

endowed with the product topology.

From now on fix p′|p. For each p|p the rings Op and Zp[∆] has natural structure of Op[∆p]

modules, further since ∆/∆p permutes transitively all the primes above p we have that

ÔF
∼=
∏

p|p

Op
∼= Op′ ⊗Zp[∆p] Zp[∆]. (7.1)

Last isomorphism describes the Zp[∆p]-action on ÔF . Indeed this ∆-action explicitly can

be describe in following way: Let T a set of representatives of ∆/∆p then for δ ∈ ∆ there

is a unique decomposition δ = τσ where τ ∈ T and σ ∈ ∆p. Therefore there is a well

define action

δ · (ap)p|p =
(
τ(aq)

)
p|p

∈ ÔF , (7.2)

where q = σ−1(p).

Lemma 7.1.1 1. Let M a Zp[∆p]-module. Canonically we have:

M̂ =
∏

p|p

Mp
∼= Mp′ ⊗Zp[∆p] Zp[∆].

2. The Zp[∆p]-module Zp[∆] is flat.

Proof. (1) Since canonically M̂ ∼=
∏

p|p

M ⊗Z[∆p] Op, by the isomorphism (7.1) we get

M̂ ∼= M ⊗Z[∆p]

∏

p|p

Op
∼= Mp′ ⊗Zp[∆p] Zp[∆].

(2) Follows directly from (1) since the localizations and finite products are exact. 2

7.2 Kummer theory for abelian unramified extensions

For n ≥ 0 let Fn = F (ζpn+1), Gn = Gal
(
Fn/F

)
and as before put F∞ =

⋃
n∈N Fn and

G∞ = Gal
(
F∞/F

)
. Lemma 7.1.1 allow us to generalize almost everything we have done

in last chapter to the semi-local case for example:
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Theorem 7.2.1 The additive group ÔF [[X]] admits a continues ÔF [∆][[G∞]]-action such

that for all σ ∈ G∞ and f ∈ ÔF [[X]],

σ · f = f
(
(1 +X)κ([σ]) − 1

)
(7.3)

Proof. First, since F is unramified at p we have canonically that G∞ ∼= Gal
(
Fp′,∞/Fp′

)
.

Now by Lemma 7.1.1 we get ÔF [[X]] ∼= OFp′
[[X]] ⊗Zp[∆p] Zp[∆], hence it has a natural

structure of OFp′
[[G∞]] module satisfying (7.3), and clearly we may extend this action to

an OFp′
[[G∞]] ⊗Zp[∆p] Zp[∆]-action and therefore to an ÔF [∆][[G∞]]-action. 2

Now, set

MF := {f ∈ ÔF [[X]] | f(0) = 1mod p}.

Canonically MF
∼=
∏

p|p

MFp
∼= MFp′

⊗Zp[∆p] Zp[∆], hence it has natural structure of topo-

logical Zp[∆][[G∞]] induced by the Zp[[G∞]]-action on MFp′
, therefore it satisfies (7.3).

Let NF : MF −→ MF the map induced by NrFp′
i.e. NF = NrFp′

⊗Zp[∆p]IdZp[∆] and

M
ϕ
F = {f ∈ MF | NF (f) = ϕf}, where ϕ is the induced by the Frobenius acting on

coefficients. Note that canonically M
ϕ
F
∼=
∏

p|p

M
ϕ
Fp

∼= M
ϕ
Fp′

⊗Zp[∆p] Zp[∆]

Definition 7.2.1 We define the semi-local units of F as

UF =
∏

p|p

U1
Fp ,∞

The Zp[[G∞]]-structure of U1
F,∞ induces canonically a Zp[∆][[G∞]] structure n UF , so in

such context we get:

Theorem 7.2.2 Let ηn = ζpn+1 − 1. There is a topological Zp[∆][[G∞]]-isomorphism

ColF : UF −→ M
ϕ
F such that for u = (un)n∈N ∈ UF and fη = ColF (u) ∈ M

ϕ
F we have

fη(ηn) = ϕn(un).

Proof. Take ColF = ColFp′
⊗Zp[∆p] IdZp[∆]. By Theorem 6.5.1 and the flatness of IdZp[∆],

ColF has the desire properties. 2

Let Φ be the continuous endomorphism of ÔF [[X]] defined as

Φ(f) = ϕ(f)
(
(1 +X)p + 1

)

By Lemma 6.5.3 we have a Zp[∆][[G∞]]-homomorphism ΘF : M0
F −→ ÔF [[X]] defined by

ΘF (f) =

(
1 −

Φ

p

)
log(f).
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From the diagram (6.12) we get

M0
F

ΘF // ÔF [[X]]

U
ColF //

Col

&&L

L

L

L

L

L

L

L

L

L

L

L

M
ϕ
F

//
?�

OO

ÔF [[G∞]](1 +X)
?�

OO

ÔF [[G∞]]

OO

Therefore, for u ∈ U , there exists a unique element Col(u) ∈ ÔF [[G∞]] satisfying

ΘF (ColF (u)) = Col(u) · (1 +X),

which defines a Zp[∆][[G∞]]-homomorphism Col : U −→ ÔF [[G∞]]. As every homomor-

phism, Col admits a unique extension to the total quotient rings

Col : Q(UF ) −→ Q(ÔF [[G∞]]).

Since Q(UF ) = lim
←−

(Fn⊗Qp)
× ∼= pZ ×UF we have that for x = pn u ∈ lim

←−
(Fn⊗Qp)

× with

u ∈ UF and every σ ∈ G∞,

(1 − σ) · x = pn uσ(pn u)−1 = uσ(u)−1 ∈ UF .

Hence, the image of Col really lies in

ÔF [[G∞]]∼ =
{
x ∈ Q(OF [[G∞]]) | ∀σ ∈ G∞, (1 − σ)x ∈ ÔF [[G∞]]

}

so we get the following an extension of Col as Zp[∆][[G∞]]-homomorphism:

Col : lim
←−

(Fn ⊗ Qp)
× −→ ÔF [[G∞]]∼

Let Γp = Gal
(
Fp,∞/Fp

)
∼= Z×p . Since they are canonically isomorphic we may write Γ

instead of Γp doing the corresponding identification in each case.

For a Zp-module Note that the cyclotomic character κ : Γ −→ Z×p induces a natural

topological generator γ0 ∈ Γ such κ(γ0) = 1 + pd where d = [F : Q]. By Theorem

4.3.1 for each p|p, we have an isomorphism of compact Op-algebras Op[[Γ]] ∼= Op[[T ]]

which identifies the topological generator γ0 ∈ Γ with 1 + T . Further, since we have a

canonical isomorphisms ÔF [[Γ]] ∼=
∏

p|p

Ôp[[[Γ]] and ÔF [[T ]] ∼=
∏

p|p

Ôp[[[T ]], therefore we get

an isomorphism of compact ÔF algebras which sends γ0 in 1 + T ,

ÔF [[Γ]] ∼= ÔF [[T ]],
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Since G0 = Gal
(
F0/F

)
∼= Gal

(
Q(ζp)/Q

)
, we may consider the Teichmüller character

ω : G0 −→ Zp. For 0 ≤ j ≤ p− 2, let

ej =
1

p− 1

∑

τ∈G0

ωj(τ)τ−1,

denote the idempotents of Zp[G0]. Since G∞ ∼= Γ × G0, the idempotents induce the

following decomposition of ÔF -algebras as Zp[G0]-module ÔF -algebras

ÔF [[G∞]] ∼=

p−2⊕

j=0

ejÔF [[Γ]][G0] ∼=

p−2⊕

j=0

ÔF [[Γ]]ej ∼=

p−2⊕

j=0

ÔF [[T ]]ej . (7.4)

The last isomorphism is induced by γ0 7−→ 1 + T .

Lemma 7.2.1 The isomorphism given in (7.4) extends uniquely to an isomorphism of

OF -algebras

ÔF [[G∞]]∼ ∼=
1

T
ÔF [[T ]]e0 ⊕

p−2⊕

j=1

ÔF [[T ]]ej . (7.5)

Proof. As a morphism of OF -algebras it extends uniquely on the total quotient field and

therefore on ÔF [[G]]∼. Since ÔF [[G∞]]∼ is a Zp[∆]-module we have

ÔF [[G∞]]∼ ∼=

p−2⊕

j=1

ejÔF [[G∞]]∼.

Then, each x ∈ ÔF [[G∞]]∼ have a unique decomposition x =

p−2∑

i=1

ejx =

p−2∑

i=1

x(j)ej . By

definition (1−γ0)x ∈ ÔF [[G∞]] then e0(1−γ0)x ∈ e0ÔF [[G∞]] = ÔF [[Γ]]e0 therefore there

exits γ(0) ∈ OF [[Γ]] such that e0x = (γ0 − 1)−1γ(0)e0. It is enough to show:

Claim: For 1 ≤ j ≤ p− 2 there exits γ(j) ∈ ÔF [[Γ]] such ejx = γ(j)ej .

Since ωj 6= 1 there exists a τj ∈ G0 such that ωj(τj) 6= 1, hence

(1 − τj)x ∈ ÔF [[G∞]] =

p−2⊕

j=0

ÔF [[Γ]]ej ∼=

p−2⊕

j=0

ÔF [[T ]]ej .

Now the j-th component of (1 − τj)x is given by

ej(1 − τj)x =
1

p− 1

∑

τ∈G0

ωj(τ)τ−1(1 − τj)x =
1 − ωj(τj)

p− 1
x(j)ej ∈ ÔF [[Γ]]ej .

Since 1 − ωj(τj) is a unit we have that ejx = γ(j)ej with γ(j) ∈ OF [[Γ]].
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We have proved that x ∈ ÔF [[G]]∼ it have a unique decomposition

x = (γ0 − 1)−1γ(0) +

p−2∑

j=1

γ(j)ej

with γ(k) ∈ ÔF [[Γ]] and clearly all such x lie in x ∈ ÔF [[G]]∼ therefore we get (7.5). 2

Definition 7.2.2 For u ∈ lim
←−

(Fn ⊗ Qp) and 0 ≤ i ≤ p − 2, we define Col(i)(u) as the

power series such that under isomorphism 7.5,

Col(u) 7−→

p−2∑

j=0

Col(j)(u)ej .

7.3 p-adic L-Function: Coleman-Iwasawa Approach

Let ψ a Dirichlet character of first kind i.e p2 ∤ fψ, d the prime-to-p part of fψ, F = Q(ζd)

and ∆ = Gal
(
F/Q

)
. We regard ψ as a character of G = Gal

(
Q(ζfp)/Q

)
and put χ = ψ|∆.

Then uniquely we can write

ψ = χωi

with some 0 ≤ i ≤ p− 2. Using the notation of last section Fn = F (ζpn+1) we have:

Lemma 7.3.1 ηd,n = 1 − ζpn+1ϕ−n(ζf ) ∈ Fn. The sequence

ηd = (ηd,n)n∈N

is coherent with respect to norms.

Proof. Since Gal
(
Fn/Fn−1

)
= {σa | σa(ζpn+1) = ζap ζpn+1}, we have

NFn|Fn−1

(
1 − ζpn+1ϕ−n(ζd)

)
=

∏

a∈Fp

(
1 − ζap ζpn+1ϕ−n(ζd)

)

= 1 −
(
ζpn+1ϕ−n(ζd)

)p

since ϕ(ζd) = ζpd we get NFn|Fn−1

(
1 − ζpn+1ϕ−n(ζd)

)
= 1 − ζpnϕ−n(ζd). 2

Remark 7.3.1

1. If d 6= 1 then ηn,d ∈ U
1
Fn

. Therefore ηd ∈ UF .

2. The sequence ηd has Coleman power series fηd
= Col(ηd) is 1 − ζd(1 +X), since

ϕn(fηd
) = 1 − ζpn+1ζd = fηd

(ζpn+1 − 1).
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Let ξχ =
∑

δ∈∆ χ(δ−1)δ ∈ Z[ζd][∆]. ξχ acts naturally (on coefficients) on F [[X]] and since

ξ(ζd
a) = χ(a)ξ(ζd), for every y ∈ ÔF there is a unique ỹ ∈ Zp[χ] such that

ξχ(y) = ỹξχ(ζf ).

Definition 7.3.1 For ψ = χωi as before, we define gψ as

gψ(T )ξχ(ζd) = −ξχ
(
Col(i)(ηd)

)
.

For f ∈ ÔF [[X]], let

Df(X) = (1 +X)
d

dX
f(X).

Lemma 7.3.2 Let fηd
= Col(ηd), then:

ξχ(DΘF fηd
)|X=eZ−1 =

∞∑

n=1

(
1 − χ(p)pn−1

)
Bn,χ

Zn−1

n!
ξχ(ζd).

Proof. By Remark 7.3.1 fηd
= 1 − ζd(1 +X) therefore

Φ(fηd
) = ϕ(fηd

)
(
(1 +X)p − 1)

)
= 1 − ζpd(1 +X)p.

Now, by definition of ΘF and D we have:

D
(
1 − Φ

p

)
log fηd

=
f ′ηd

fηd

−
1

p

(ϕfηd
)′

(ϕfηd
)

=
ζd(1 +X)

ζd(1 +X) − 1
−

ζpd(1 +X)p

ζpd (1 +X)p − 1

=

f∑

a=1

ζad (1 +X)a

(1 +X)f − 1
−

f∑

a=1

ζapd (1 +X)ap

(1 +X)fp − 1

1

Applying ξχ to both sides (since ξ(ζd
a) = χ(a)ξ(ζd)),

ξχ (DΘF fηd
) =

(
f∑

a=1

χ(a)(1 +X)a

(1 +X)f − 1
−

f∑

a=1

χ(ap)(1 +X)ap

(1 +X)fp − 1

)
ξχ(ζd).

Finally, setting X = eZ − 1 we get:

ξχ(DΘF fηd
)|X=eZ−1 =

(
f∑

a=1

χ(a)eZa

eZf − 1
−

f∑

a=1

χ(ap)eZap

eZfp − 1

)
ξχ(ζd)

=

(
∞∑

n=1

Bn,χ
Zn−1

n!
− χ(p)

∞∑

n=1

Bn,χ
(pZ)n−1

n!

)
ξχ(ζd).

2

1in this step we are using the general fact
∑f

a=1(ζdT )a = Tf
−1

ζdT−1
ζdT , hence

∑f
a=1

(ζdT )a

Tf−1
= ζdT

ζdT−1
.
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Lemma 7.3.3 Let f ∈ ÔK [[T ]](1 +X). If

f(X) =

(p−2∑

j=0

βj(T )ej

)
· (1 +X)

with βj ∈ ÔK [[T ]]. Then we have

Dkf(0) = βj(κ(γ0)
k − 1) (7.6)

For all k ≥ 1 with k ≡ jmod p− 1.

Proof. Let β = (1+T )n and f = β(T )ej ·(1+X). Since β(T )ej corresponds in OK [[G∞]]

to
1

p− 1

∑

τ∈G0

ωj(τ)τ−1γn0 , hence we have that

f =
1

p− 1

∑

τ∈G0

ωj(τ)(τ−1γn0 ) · (1 +X) =
1

p− 1

∑

τ∈G0

ωj(τ)(1 +X)κ(γn
0 τ

−1).

Now, since Dk (1 +X)α = αk (1 +X)α and κ(τ−1)k = ω−k(τ), we have

Dk f =
1

p− 1

∑

τ∈G0

ωj(τ)κ(γn0 τ
−1)k(1 +X)κ(γn

0 τ
−1)

=
1

p− 1

∑

τ∈G0

ωj(τ)ω−k(τ)κ(γk0 )n(1 +X)κ(γn
0 τ

−1).

Therefore

Dk f(0) =





β
(
κ(γ0 − 1)

)
k ≡ jmod p− 1

0 k 6≡ jmod p− 1

By linearity (7.6) holds for linear combinations of ej with polynomial coefficients. By

continuity of the derivative and the action it must hold for general power series. 2

Theorem 7.3.1 (Iwasawa-Coleman-Tsuji) Let ψ = χωi as above. For k ≥ 1 with

k ≡ imod p− 1, we have

gψ
(
κ(γ0)

k − 1
)

= −
(
1 − χ(p)pk−1

)Bk,χ
k

= Lp(ψ, 1 − k),

therefore for any s ∈ Zp

Lp(ψ, s) = gψ
(
κ(γ0)

1−s − 1
)
.

Proof. Since ΘF

(
fηd

(X)
)

= Col(fηd
)(1+X) =

∑
Col(j)(T )ej · (1+X), by Lemma 7.3.3

we have:

Dk Col(fηd
)(1 +X)|X=0 = Col(i)

(
κ(γ0)

k − 1
)
. (7.7)
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Put X = eZ − 1, then D = (1 +X) d
dX = d

dZ . Applying Dk−1 to (7.7) we get

gψ
(
κ(γ0)

k − 1
)
ξχ(ζd) = Dk−1ξχ(DΘF fηd

)

= Dk−1

(
∞∑

n=1

(
1 − χ(p)pn−1

)
Bn,χ

Zn−1

n!

)∣∣∣∣∣
Z=0

ξχ(ζd),

hence

gψ
(
κ(γ0)

k − 1
)
ξχ(ζd)

= Dk−1ξχ(DΘF fηd
)

= Dk−1
∞∑

n=1

(
1 − χ(p)pn−1

)
Bn,χ

Zn−1

n!
ξχ(ζd)

∣∣∣∣∣
Z=0

ξχ(ζd)

=
(
1 − χ(p)pk−1

)Bk,χ
k

ξχ(ζd).

This completes the proof. 2

71



Bibliography

[Col79] Robert F. Coleman. Division values in local fields. Invent. Math., 53(2):91–116,

1979.

[Col83] R. Coleman. Local units modulo circular units. Proc. Amer. Math. Soc., 89(1):1–

7, 1983.

[CS06] J. Coates and R. Sujatha. Cyclotomic fields and zeta values. Springer Monographs

in Mathematics. Springer-Verlag, Berlin, 2006.

[Gre92] Cornelius Greither. Class groups of abelian fields, and the main conjecture. Ann.

Inst. Fourier (Grenoble), 42(3):449–499, 1992.

[Iwa72] Kenkichi Iwasawa. Lectures on p-adic L-functions. Princeton University Press,

Princeton, N.J., 1972. Annals of Mathematics Studies, No. 74.

[Iwa86] Kenkichi Iwasawa. Local class field theory. Oxford Science Publications. The

Clarendon Press Oxford University Press, New York, 1986. Oxford Mathematical

Monographs.

[KL64] Tomio Kubota and Heinrich-Wolfgang Leopoldt. Eine p-adische Theorie der
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