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Chapter 1

Introduction

Kubota-Leopoldt p-adic L-functions are, for the p-adic analysis, the functions correspond-
ing to the complex variable L-functions associated to Dirichlet characters. Today we
know at least three distinct constructions of these functions : the original by Kubota and
Leopoldt and two power series expansions. The first expansion was discovered by Iwa-
sawa, and uses sequences of Stickelberger elements. The second expansion was done by
Iwasawa and Coleman for the special cases of the powers of the Teichmuller character,
and has been recently generalized to all relevant Dirichlet characters by Tsuji in [T'su99].
I describe these three constructions and show that they lead to the same object. About

the structure of the document I can say:

1. Chapter I: Formal Power Series. I start with the basics of formal power series
as completions of a polynomial rings giving in the last sections special interest to

power series over C,, the completion of the algebraic closure of Q,,.

2. Chapter II: p-adic Interpolation. In this chapter the Kubota-Leopoldt p-adic
L-function is defined. I am following Iwasawa’s red book [Iwa72] for the classic

construction.

3. Chapter III: Stickelberger Elements and p-adic L-Functions. Here the sec-
ond construction is presented. The main technical tool is Theorem A3 Tl which relates
a power series to an element of a group algebra. The p-adic L-function will arise in

this way.

4. Chapter IV: The Compact-Open Topology. This chapter is mainly technical.
The main tool is the p-adic maximum principle treated in the first section and the
rest of the chapter I follow [Col79]. In Theorem 5321 give a useful interpretation

of Coleman’s continuity criterium for the cyclotomic case.



5. Chapter V: Coleman Local Theory. In this chapter I follow [Col79] and [Col79].
It deals with power series modules such as K ((T))1, Ox|[[T]], M and Galois actions
defined on them. I define the norm and trace, give their basic properties and con-

struct the Coleman homomorphism.

6. Chapter VI: Coleman-Iwasawa-Tsuji Characterization of the p-adic L-
functions I present the third construction here. I follow [Tsu99|] to obtain a power
series via the Coleman homomorphism and then proving that it has the interpolation

property, therefore it must be the p-adic L-function.



Chapter 2

Formal Power Series

2.1 Some generalities about Power Series

In this section let R a commutative ring with 1 and R[[T]] the topological ring of formal

powers series with the T-adic topology.

Definition 2.1.1 For N € N, we define the N-th truncation map as

Py: R[T] — R

ZanT" — ZanT"

n<N

Let f = Z axT* € R[T] and g € TR[[T]]. For simplicity let’s denote fxy = Pn(f) and
neN

fn(g) = Z ang" € R[[T]], then for N > M we have fn(g9) = fur(g) mod T™ therefore
n<N

(f]\r(g))NeN is a Cauchy sequence in R[[T]] with respect to the T-adic topology.

Definition 2.1.2 For f € R[[T]] and g € TR[[T]] we define the power series f(g) as the

the limit f(g) = A}im Pn(f)(g).

Remark 2.1.1

1. By definition f(g) is the unique series in R[[T]] such that f(g) = Pn(f)(g) mod TV
for all N € N, and this property characterizes f(g).

2. Let gn = Pn(g), then fn(g9) = fn(gn)mod TV and f(g) = fn(gn)mod TV,

Proposition 2.1.1 The map R[[T]] x T R[[T]] — R|[[T]] defined as (f,g9) — f(g), is

continuous with respect to the T-adic topology.

Proof. Let F,f € R[[T]] and G,g € T R[[T]] such that ' = fmodT" and G =
gmod TV, then it is enough to prove that F(G) = f(g)modT?. Now the congruences



imply that Fy = fy and Gy = gy and last remark F(G) = Fy(Gyn) = fy(gy) =
f(g)mod TN,

Corollary 2.1.1 1. For g € T R|[T]] fized, we have that g. : R[[T]] — R|[[T]] defined
as g«(f) = f(g) is a R-algebra homomorphism.

2. Let f € R[[T]] and g,h € T R[[T]] then (f(g))(h) = f(g(h)).

Proof. Both parts follow by continuity since they are true for polynomials. a

Definition 2.1.3 We define R((T)), the ring of Laurent series with coefficients in R, as
R[[T)]r i.e. the localization of R[[T]] at the multiplicative set of powers of T.

Definition 2.1.4 f =>"a,T" € R((T)), we define the order of f as
ord f = min{n € Z | a,, # 0}.
Lemma 2.1.1 R[[T]]* is the set of f =) a,T" € R[[T]] such that ag € R*.

Proof. Let f=> a,T" g=> b,I" € R[[T]], then fg =1 if and only if apby = 1 and

forn > 1, Zakbn_k = 0. That means that if ag € R* and taking by = agl, forn>1

k=0
n—1
we have b, = —ay ! Z bpa,—z. Therefore when ag € R* we can inductively construct
k=0
g € R[[T]] such that fg = 1. O

Definition 2.1.5 f =) a,T" € R((T)), we define the order of f as
ord f = min{n € Z | a,, # 0}.
Lemma 2.1.2 R[[T]]* is the set of f =) a,T" € R[[T]] such that ag € R*.

Proof. Let f =) a,T" g=> b,I" € R[[T]], then fg =1 if and only if apby = 1 and
for n > 1, Zakbn_k = 0, that means that if ayp € R*, taking by = ao_l and for n > 1,

k=0
n—1

by = —ag "’ Z bran—k we can inductively construct g € R[[T]] such that fg = 1. O
k=0

Remark 2.1.2
1. Every f € R][[T]] not 0 factors as f = TN g with N = ord(f) and g(0) # 0.

2. If R is a field in last factorization, by lemma[2Z1.2, we have that g € R[[T]]*.

3. If R is a field, by the last remarks, R((T')) is the fraction field of R[[T]].



2.2 Formal Derivatives

In this section we will restrict to study formal power series over a field K of 0 characteristic.

As usual, we define the formal derivative # : K[[T]] — K[[T]] as

% (Z anT") = (Z anT")/ = Z na, T .
Here some other useful properties:

Remark 2.2.1
1. By definition, f' =0 if and only if f € K.

2. % is linear and continuous with respect to the T-adic topology.

3. We have a product formula: for f,g € K[[T], (fg)' = f'9+ ¢’ f. Indeed, since it is

true for polynomials, it follows by continuity.

Lemma 2.2.1 Let f,g € K[[T]]. If g € T K[[T]] or f € K[T] then (f(9)) = f'(9)d’-

Proof. By induction is easy to get (¢") = ng" !¢’ so the conclusion is true for f = T™,
by linearity it is true for any f € K[T|. If g € T K[[T]], f(g) is a limit of series f,(g)

where f, are polynomials, then it follows by continuity. O

Definition 2.2.1 We define the Exponential and Lambda series respectively as

exp=3" % e K[[T])* and A = Z(—1)“+1% e TK[T]).
n=0 n=1

Remark 2.2.2
1. Is easy to see that exp = exp’ and N = (1 4+ 1)~ L.

2. exp and is the only series f € C,[[T]] such that f' = f and f(0) = 1 (Because for
f=>a,T", f' = f imply that ap+1 = (n+ 1)ay).

3. For f € TK|[[T]], F = exp(f) is well defined, F(0) = 1 (so F € KJ[[T]]*) and by
Lemma[ZZ1 F' = exp(f)f', then F'/F = f'.

Definition 2.2.2 For f € K[[T]]* we define its logarithmic derivative as §(f) = f'/f.

Notice that if h € K[[T]]* then d(h) € K[[T]], and by the product formula for derivatives,
if f,g € K((T))* then 6(fg) = 6(f) +d(9)-

Lemma 2.2.2 Let f,g € K[[T]]*. 6(f) = d(g) if and only if f/g € K*.



Proof. Let h = f/g € K[[T]]*, then 6(f) = d(gh) = 6(g) + 6(h) therefore we have
equivalences: §(f) =0(g) <= 6(h) =0<=h' =0<= h e K*. O

Remark 2.2.3
From last lemma we can conclude that for G € KJ[[T]|* and f € T K[[T]] we have:
0(GQ) = d(exp(f)) if and only if G = G(0) exp(f).

Theorem 2.2.1 The power series exp satisfy the following relations:
1. Forn € N, exp(n\) = (1 +T)". In particular exp(\) =T + 1.

2. For f,g € T K[[T], exp(f + g) = exp(f) exp(g).
8. For f,g € TK[[T]], A(f[+]g) = A(f) + A(g), where f[+]g= (14 f)(1+g)—1.

Proof. (1) Note that for f = exp(nA) we have 6(f) =nX = §((1+7)™). Hence, by last
lemma f = (1+T7)".

(2) Let H = exp(f+g), F = exp(f) and G = exp(g). Clearly they are well defined and lie
in K[[T]]*. Now by last remark 6(H) = f+g = 6(F)+46(G) = §(FG), therefore H = FG.
(3) Let F = X(f),G = A(g) € T K[[T]]. Since

exp(f +g) = exp(f)exp(g) = (1 + f)(1 +9) = (f[+]g) + 1,

we get A(f[+]g) = Mexp(f + g) +1). It is enough to show that A(exp — 1) = T, but it
follows from the fact that (A(exp —1))/ =exp’ /exp = 1. O

Remark 2.2.4

As well as for power series, for f = ZanT” € K((T)) we can define a formal deriva-
nez
tive f = Z:nanT"_1 which also is K-linear, continuous and satisfies the usual product

nez
formula 1'.e.e for f,ge K((T)), (fg) = f'g+df.

2.3 Convergence

From now on, let p a fix odd prime, v the p-adic valuation on @p and @p, the algebraic
closure of @Q,. As is well known that the p-adic valuation can be extended in a unique
way to Q) and U(Q;) = Q, where v denotes such extension. Since @p is not complete, we

define:

Definition 2.3.1 We define C, as the completion of @p.



Let v and | | denote the unique extensions on C, of the p-adic valuation and the cor-
responding absolute normalized value. For any positive real number r, we define the

following sets:

By {CeCpllcl <},

B, = {(eC,|0<[]<r}.

Let p@ = {p? | ¢ € Q}. Since it coincides with the set of absolute values of elements of
C),ifre p@ we can define

Sr={CeCp || =7}

o o
Definition 2.3.2 f = Zaka € Cp[[T]] converges at & € C,, z'fZakfk converges. In

such case, as usual, we will denote f(&§) = Zaké’k.
k=0

It is well known that this happens if and only if |az&¥| — 0. Also, if A converges at some

¢ # 0 if and only if A has a positive radius of convergence (which may be infinite).

Definition 2.3.3 Let K a complete subfield of C,,.
We define K[[T]], as the set of f € K|[[T]] which are convergent at every point of B,..

Lemma 2.3.1 Let f = Zaka € Cp[[T]r. The associated function defined on B,

f:C— f(C), is continuous.
Proof. Let (,,( € B, such that (;, — ¢ . Note that for a,b € C,, |al, |b] < s we have

lak Tt — pEFL| < |a — b| Jnax la?b*=7] < |a — b|s*.
<<

Now since (,, — ¢ we can take s > 0, [(| < s < 1 and N € N such that for n > N,
|Gm| < s then
1
S anch ~ X anc| < suplanlch ~ ¢ = > (suplanlst ) 16, .
keN S \keN

Since s < R the supremum is finite, therefore lim f({,) = f({). 0
Lemma 2.3.2 Let f = ) a,T" € C,[[T]] be convergent on B,. If f(&,) = 0 for a
sequence (&n)nen € Cp, such that 0 < |&,| < r and lim &, =0 then f =0.

Proof. Taking a subsequence if necessary we can assume |1] > & > .... If f # 0 we

can take m minimal such that a,, # 0 then

k— k—m—1
_amzzak‘gn m:énZakén " ’

k>m k>m



> i

k>m

< |&n| sup |ag€l™m7t < || sup |agg . (2.1)
k>m k>m

Since 3" ap&l is convergent we have sup |ak£f_m_1| < oo, therefore the last inequality
m

>
implies that a,, must be 0, which is a contradiction. a

Lemma 2.3.3 (Unicity Lemma) If f,g € C,[[T]] converges on B, and f(&,) = g(&n)

for a sequence (§,) C B, which converges to some £ € B, then f = g.

Proof. If ¢ =0, we may apply last lemma to h = f— g taking an appropiate subsequence.
If £ # 0 we can reduce to the previous case taking F' = f(T'+¢) and G = g(T'+¢) € Cp[[T7]
we have that they are convergent on B,_|¢ and satisfiy F'(§, — &) = G(§, — ). By the

previous case F' = G, therefore f = g. a

Lemma 2.3.4 \ converges for all |(| < 1.

Let v(¢) > 0 and ¢ = p*(©) = 1/|¢| < 1. Since v(n) < E—Z and v(¢) = ﬂ;—; we have

¢ Inc Inn 1 "
S O e L Y S
U< n no(Q) —vln) = nlnp Inp Inp "\ 7
¢ < < hence E (—1)"C—n must be convergent.
n|— n’ n

That means that

Lemma 2.3.5 For alln € N we have,

n—p logn n
— < N < ——.
p—1 logp up(nt) p—1

1
In particular the exponential series converges for |(| < p 1.

Proof. Since [n/p*] is the number of multiples of p* less or equal to n, is easy to see that

=[] [3] 3] -~

p p
Now, let n =ag +a1p + ...+ a, with 0 < a; < p, then for k¥ < r we have

[n/p"] = ax + agpap + ...+ arp”".
Therefore
r r r _ r 7j—1 ' 1 r _ n
up(n!) = Z[H/Pk] = Zzajpj_k = Zaj ZPZ = EZ%’(P] -1)< o1
k=1 k=1 j=k j=1 = §=0

For the other inequality, note that since n/p* — 1 < [n/p*] we have

r —r
n n np n—p logn
v, (n! Zg — =1 = - —7r > - .
() k:1<pk > p—1 p-1 p—1 logp

10



Chapter 3

p-adic Interpolation

From now on p is a fixed prime, assumed odd.

3.1 Dirichlet Characters
Definition 3.1.1 (Dirichlet Characters) Let n and integer, n > 1. A map
x:N—C
s called a Dirichlet Character to the modulus n if
1. x(a) depends only upon the residue class of amodn.
2. x is compleatly multiplicative i.e. for all a,b € N we have x(ab) = x(a)x(b).

3. x(a) # 0 if and only if a is prime to n.

Remark 3.1.1
1. Let n € Z, n > 1. There is a one to one correspondence between the Dirichlet char-
acter to modulus n and the usual characters of the multiplicative group (Z/nZ)X.

Therefore there are exactly p(n) Dirichlet characters to the modulus n.

2. If m | n, any X € Hom((Z/mZ) X,(CX) induces another homomorphism one has by
composition with the canonical homomorphism,

(Z/n2)" — (Z/mZ)* > C*

Definition 3.1.2 A Dirichlet character x to a modulus n is called primitive if it is not
induced by any character to a modulus m with m < n. The integer n is the called the

conductor of x and is denoted by f,.

11



For n prime to p we have the following isomorphisms:

(Z)mop" T 2)* = (Z/moZ)™ x (Z/p"T'Z)"

Definition 3.1.3 Let x a Dirichlet Character. The character x is said to be of first kind
if the p-th part of f, is 1 or p and of second kind if f, is a power of p.

Proposition 3.1.1 Fvery Dirichlet character x has a unique factorization x = 0 where

0 is of first kind and 1 is of second kind.

3.2 Generalized Bernoulli Numbers

Classically the Bernoulli numbers B,, and Bernoulli polynomials B,(X) are defined by
T T

their generating functions F'(7') = Te 1 and F(T,X) = F(T)e™ respectively. For a
e J—

Dirichlet character x, with conductor f = f,, the formal power series F (T") and F, (T, X)

are defined as

X Te(a—l—X)T
FX(T):ZX(Q)m and  F(T,X) = F,(T)e :ZX(a)ﬁ.

a=1 a=1

Definition 3.2.1 The generalized Bernoulli numbers By, , and generalized Bernoulli poly-

nomials By, (X)) respect the character x are defined as

P(T) =) Buy—y and BT, X) = > Bnx(X) -
n=0 ’ n=0 ’

Proposition 3.2.1 The Bernoulli polynomials satisfy by the formulas:

1. B (X) = Z <Z> Bn_k,XXk, in particular By, ,(0) = By, .
k=0

kf

1

2. Zx(a)a" =1 {Bnt1,x(kf) = But1,x}-
a=1

Proof. The first part is a consequence of the standard product formula for series. Let
us prove the second one:

f
F(T, X + f) = Fy(T, X) = F(T) (X DT — XT) = Z x(a)Tela+ T

a=1

12



looking at the coefficients corresponding to 77! we get

/
Byi1 (X + f) = Bupix(X) = (n+ 1) Y x(a)(a+ X)".

a=1

Finally evaluating at X = jf for j =0,...,k and summing,

k—1
Butix(kf) = Bup1x(0) = (n+1) ZZX (a+jf)"

j=0a=1

kf
= n—i—lz
=1

O

The previous proposition can be used to characterize p-adically the Bernoulli numbers.

Let
Sy (X) = —

therefore, by the previous proposition,

(Bn+1,x(X) - Bn—l—l,x) ;

1 2l

Sn,x(kf) = 7”L—+1 (Bn-i-l,x(kf) - Bn-i—l,x) - Z X(a)an’ (31)

a=1

Corollary 3.2.1 As an element of Q,(x),
1
B, = lim —8S, .
= lim T Snad P

Proof. By Proposition B2} Bpt1,(X) = Bnt1,y + (n+ 1)B,,, X mod X2, then

1
n+1(

Sn,x(fph) = Bn,x(fph) — Bn,x) = B,y mod p?"

3.3 The Normed space Py

For any power series A = " a;T* € K|[[T]] set ||A|| = sup |ag|.

Definition 3.3.1 Let Py denote the set of A € K|[[T]] such that ||A|| < co.

Remark 3.3.1
Let A, B € Pk and a € K, then:

1. J|A|| > 0 and ||A|| = 0 if and only if A = 0.
2. [|A+ Bl < max{[|A[l, [|B|[} and [[aA] = [a][|A].

3. [AB| < [lA][B]-

13



4. Py is a subalgebra of K[[T]] and K[T| C Pg.

1 and 2 and 3 are trivial and for 4 taking m,n such that |a,,| = ||A]| and |b,| = ||B||, if
AB =) ¢ T" then

lerl = max |as[[be] < |an][bm| = [lA[l] B

Proposition 3.3.1 The K-algebra Pk is complete respect to || ||.

Let (A,) € Pk be a Cauchy sequence with respect to || || say A, = >_ anxT*. Let us split

the remaining of the proof in 3 steps:
i) For each k € N, the sequence (a, ;) C K is convergent.
i) If a = nhi& an, then A = S aTF € Py.
iii) Finally, A,, converges to A.
Proof.

i) Taking any e > 0, there exists N € N such that n,m > N implies that ||A,—A,| < e,
in particular |a, ; — am k| < €. That means that, for fixed &, (a, ) C K is Cauchy,

hence convergent.

ii) Since (A, )nen is Cauchy, it is bounded, say by C' > 0. Then for all n and all k,
lan k| < ||An|| < C, therefore |ai| < C so A € Pk.

iii) For € > 0 and N such that n,m > N, ||A, — Ay|| < e for any k € N |a, 1 — apm k| <
|A;, — Al < € so fixing k and taking limit when n goes to infinity we get that for
m > N, |a — amk| < € hence ||A— A,,|| < . Since this happens for any € > 0 means

that A, converges to A. a

Definition 3.3.2 We define the combinatorial polynomials (Z) as

<Z> _ %:1:[:@ ey

Clearly we have that || (:np) | <|4|- By Lemma we have the

1 v(n!) 1

1

n!

Given any sequence (b,) C K, there exists a unique sequence (c¢,) such that

T

o ™" n
e Zb“ﬁ = ZC“F

14



This means that,
Cn - b; (_1)n—i by, . - C; 1
E‘i;?!(n—i)! and H_Zﬂ(n—z’)!’
therefore . .
Cn = Z " bi(—=1)"" and b, = Z " .
i=0 : i :

With these notations we have:

1
Lemma 3.3.1 (Interpolation) Let 0 < r < |p|>=T and |c,| < Cr" for some C > 0.
1
Then there exists a unique A € Pk convergent for |§| < 6 = |p|P=T /r such that for all
n €N,

Proof. Let Ax(T) = Z ;

k

=0
T

“\; H§|Ci|

Aj— A <
14; = Apal < max

T
( >ci. Clearly Ag(n) = b, and using lemma [2.3.5]

1 i -1 )
.—‘ < Jelprt < C(pl77)" = €57,
7!

For j > k,

¢ <:ZF> H < o5k, (3.3)

since § < 1 this means that (Ay) is Cauchy, then exists A € Pk such that Ay — A respect
to ||||. Let A= a;T7 and Ay = 3 a;; 17, as we have seen a;, — ay as j increases, in
the other hand since deg(Ay_1) < k—1 we have ay, 1 = 0 then for j > k using the bound

B3) we get

lajk] = laje — agp—1] < |4 — Ap_a|| < C57F,

taking limit as j increases we obtain
lag| < CoF. (3.4)

This means that A(&) converge for [£| < §, in particular in the integers.

Claim: For a fix element { € C, such that [£] < J, Ax(§) — A(E).

Let bj = aj — ajy, then A(E) — Ax(€) = Db, £&’. Is enough to prove that sup |bj,k£j| —0
J

as k — oo. For j > k, using the bound (3.4))

b ké’| = la;&7| < C(67HE) < C(6¢))"

15



and for j < k, (using the bound (B.3]))

: . , —k el <
b €7| < A = Aglll) < 05~ EDe < o if €] <1,
C(6Henk  if ¢ > 1.

Therefore if we call m = max{d~*, (§71|¢|)} < 1 then
JA(E) = AR(©)] = sup |b; &7 | < CmF,
j

this means that Ax(§) — A(§) as k — oo. 0

3.4 p-adic L-function: Classical Approach

Let x a Dirichlet character of conductor f and K = Q,(x)ie. K = Q(x(1),x(2),...).Consider
w : Z — C be a fixed embedding of the Teichmiiller character in C.

Definition 3.4.1 The twisted characters of x are the Dirichlet characters x, induced by
xw™ " i.e. for a prime to p,

Xn(a) = x(a)w™"(a).
Let p { n, since w has conductor p, f, = fy,|pf but x = xnw™ hence f|pf, so in general

for any n, f, = p®f with a = 0,1. Finally let

by = (1 - Xn(p)pn_l)Bn,Xn

and

Lemma 3.4.1 For any n > 0,
cal < 5 pI"
cnl < ——|p|™.
" o

Proof. By Corollary B.2.1] and using the fact that f, = p®f and (3.1]),

. 1

Tf ,Xn(p f = hm ZXTL 7

replacing this limit in the definition of b,,

bp = (1_Xn(p)Pn_1)Bn,xn



Eliminating the repeated terms and using that x,(a)a™ = X(a)( a)”,

h
f
1 ®
b, lim —— Xn(a)a” = lim —— 3.5
ity 5 = L 5 5
(a,p)=1 (a,p)=1
Now, replacing (B.5]) in the definition of ¢,
n th
6 = (D) i Y waa)
P 7 h—oo D f p—
(a,p)=1
p"f " /n
= lim — x(a <> D" a)
im 7 3 x@ 3 (7)vra)
(a,p)=1
h
= lim g x(a)((a)—1)" = lim ! cn(h)
oo p'f o h—oo phf
(a,p)=1
p"f
where ¢, (h) = Z x(a)({a) —1)", clearly is an integral element of K.
a=1,
(a,p)=1

Claim. For all n € N, ¢,(h) = 0mod p"t"2.

Since (a) = 1mod p then ((a)—1)" = 0mod p™ hence c,(1) = 0mod p". Let us proceed by
induction on h. The case h = 1 is done, if h > 1 let us assume that ¢, (h) = 0mod p™ /2.
By standard division each 1 < a < p"t1f can be uniquely written as a = u + p/ fv where

1<u<phf,0<v<p—1andu=amodp”f, then w(u) = w(a) and
(a) = (u)+p"fw(u) v,

then,

(a) —1)" = -~ (m () — 1)F (" fo(u)~Tv)*.
(=0 =3 () (0 -1’6

k-i-(n—k)hf’

Since (u ) = 1 mod p the k-th term of last sum is divisible by p now forn—k > 1,

k+(n—kh=n+(n—k)(h—1)>n+h—1, hence
((a) =1)" = ((w) = 1)" mod p"*+"~,
and since a = umod £, x(a) = x(u) then
w@)({a) = 1)" = x(w)({u) — 1)" mod "+,

Summing up along 1 < a < p"*1 f such that (a,p) =1,

phrLf p—1 p'f
> x(@)((a)=1)" = x(w)({u) = 1)" mod p" ",
a=1, v=0 wu=1,
(a,p)=1 (u,p)=1
cn(h+1) = pep(h) = 0Omodpth—!



The claim is proved.

Since ¢, (h) = p"*t™=20,,(h), for some 6,,(h) with |6, (k)| < 1, we can conclude

1 1 1
= ———len(h)| = lim ——— p"+h_29n h)| < ——=|p"
h—*m!p"+hf\‘ Gl h—*m\phf!‘ Ql !pr\’ |

Corollary 3.4.1 There exists A, € K[[T]] convergent for || < |p|_P%1(> 1) such that,

Ay(n) = (1= xa(P)P" ") Bnx,-

Proof. Takingr = |p|and C' = \pT1f|’ we can apply the interpolation lemma (lemma[3.3.1])
1
for b, an ¢, as above, since the previous lemma says that |c,| < Cr™ and r = |p| < |p|»—1,
1
hence there exists such A, € K[[T]] convergent for |¢| < |p|»—1|p|~! = \p]_% which takes

the prescribed values at the non negative integers, A, (n) = by,. O

Theorem 3.4.1 There exists a unique p—adic meromorphic function Ly,(s,x) on B(1,r) C

C,, where r = \p]_%, such that:

1
1—= ify=1
P

1. Ly(s,x) = . i .
if X

o0
a_ noo
S_1+ ann(s—l) wzthal—{
n—=

Bn n
2. l@(sgx)==—(1—-xnuﬂp"‘1)—7f¥-

Proof. Take for A, the one of the Corollary B.4.1] then

1

Lp(s:x) = =7 A1 =),

holds the conditions. The unicity follows from Lemma 2.3.3] O
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Chapter 4

Stickelberger Elements and p-adic
L-Functions

We fix the notation (, = e’ € C. We fix once and for all an embedding Q — C, so that

Cn is also an element of C,,.

4.1 The Cyclotomic Character
Lemma 4.1.1 We have isomorphisms
op  (Z)p" L) — Gal(Qp(¢pn)/Qyp),

given by oy (a) = Gpn — (fn.

Proof. Clearly oy, is a group homomorphism and its kernel consists in the a € (Z/p"Z)*
such that (jn = (pn but by definition of (,n this is equivalent to say that a = 1 mod p"Z,
hence oy, is injective. For the surjectivity take o € Gal(Qp((pr)/Qp) ice. o € Aut(Qp(¢pm))
and o acts trivially in Q, hence sigma is determined by its value o((y») which must be

another p" root of 1 s0 o ((yr) = (fn With a # Omodp.
Corollary 4.1.1 For 1 < m < n the Galois isomorphisms
On,m * Z/p" "L — Gal(Qp(Cp”)/Qp(gpm))a

are given by op m(k) : (pn — C;f[kpm = anfmgpn,

n—m

Proof. Let o € Gal(Qy(¢pn)/Qp(Gpm)), o(Cpn) = (o with a € (Z/pZ)*. Since ({pn )P " =
(pm must be fixed, a = 1mod p™ so a = 1 + kp™ mod p" where k runs through Z/p™Z. O
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Let Qp((p) = U Qp(Gpn) and G = Gal(Qp(Cpe)/Qp) then we have the following canon-

neN
ical isomorphisms

G = lim Gal (Q)(Gr)/Qp) & lim(Z/p"Z)* = 7).

Definition 4.1.1 We define the canonical character r : G — /s

Let p, € Qp(¢n) be the group of p"-roots of 1 and N, = NQp(Cpn)lQp(Cpn—l) . Since

Ny (Gpn) = H (Cpn = (yn—1 we have an inverse system {N, : ft, — ftn—1}.
=]

Definition 4.1.2 We define the Tate Module as Zp(1) = lim p,,.

By construction Z,(1) is naturally a Z,-module (Z, acting by exponentiation) and admit

a generator namely the sequence ¢ = ((pn).

4.2 The Preparation Theorem

Let (K,v) be a finite extension of (Qp,vp) in C,, with valuation ring O and maximal

p = (m). For f € O[[T]] say f =>_ a,T™ we can define the so called p and A invariants as

pu(f) = min{v(an)|n € N} and A(f) = min{n € N|v(an) = u(f)}-
Now, Let us denote O[Ty the set of polynomials of degree less than N in O[T].

Lemma 4.2.1 (Division lemma) Let f,g € O[[T]], with u(f) =0 and X = X(f). Then

we have a decomposition
g=qf+r

where q € O[[T]] and r € O[Ty Further such decomposition is unique.

Proof. By hypothesis f = fy + T*u where v € O[[T]]* and fy € 7O[T]y. Now g =
hoT* + ro with 7q € O5[T] so by taking gy = hou~! and reducing mod 7, we get

g ="1q0ul + 70 = [ + 7.
That means that for some g; € O][T]] we have

g=qof +ro+mg,
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applying the same argument to g1 we obtain 71 € O[T]y and ¢q1,g2 € O[[T]] such that
g1 = q1f + r1 + wgy, therefore

g = (qo + 7qu)f + (7‘0 + 7T7’1) + 7T292.

Repeating the process we obtain (¢,) C O[[T]], (1) C OA[[T]] such that ¢ = Y ¢,7",
r =Y gym" are convergent, r € O[Ty and g = qf + 7. O

Definition 4.2.1 A polynomial P € O[T is said to be distinguished if P = T"+a, _1T" '+
...+ ag with a; € p i.e. P is monic and P — T%9/ € p[T].

Theorem 4.2.1 (p-adic Weierstrass Preparation theorem) Let f € O[[T]] not zero,
w=p(f) and X = X(f). We may factor f uniquely as

f=m"P(T)u(T)
where P € O[T] is distinguished of degree X\ and v € O[[T]]*.

Proof. Dividing f by ##, it is enough to check the case when u(f) = 0. Now, we
can apply the division lemma to 7% and f we get g € O[[T]] and r € O[T], such that
T* = gf +r. By reduction mod p we get

= T)\ - g?a
but by hypothesis f is divisible by T, then so does 7. Since deg7 < degr < \, we have
that 7 = 0 i.e. 7 = Omodp. Now set P = T* — r(T), clearly it is distinguished and since
T* = Gf the constant term of g cannot be O0modyp so g € O[[T]]*. Taking u = 1/g we
obtain f = P(T)u(T) as was to be shown. O

Remark 4.2.1
1. For f € Ok|[T]] not zero, the factorization f = 7 P(T)u(T) with P € O[T] distin-
guished and u € O|[T]]* is called the Weierstrass Factorization of f and P the

Weierstrass Polynomial of f.

2. If w € O[[T]]* then |u(C)| = 1 for all ( € By (by Lemma 212 u(0) € O* ie.
|u(0)| = 1, then for ( € By we must have |u(z)—u(0)| < |(| < 1 therefore |u(¢)| =1).

Corollary 4.2.1 If f € O[[T]] is not zero then it has the same zeros of P in By, and each

zero has the same multiplicity.

Proof. By the preparation theorem f = 7#P(T)u(T) with P a polynomial and u €
O[[T]]*. By part 2 of Remark 2] the zeros of f in By are zeros of P. Pick a € B
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among the zeros of f and set g € Ok/[[T]] such that f = (T — a)™ g with g(a) # 0 and
g = mQ(T)v(t) the Weierstrass factorization of g. Since Q(a) # 0 and (T — a)™Q/P €
Ok|[[T]]*, this quotient cannot have zeros neither poles therefore P = (T' — a)™Q i.e. m
is the common multiplicity of a as zero of f as well as zero of P. O

Last Corollary gives us another proof of the uniqueness Principle:

Corollary 4.2.2 Let f,g € O[[T]]. If f(¢) = g(¢) for infinitely many ¢ € By then f = g.

Proof. Let h= f—g. If h # 0 by last corollary it must have at most finitely many zeros
since they are the zeros of its Weierstrass polynomial. But this contradicts the hypothesis,
therefore h =01ie. f=g. O
Let [p"] = (T +1)P" — 1. Clearly these polynomials are distinguished. For any f € O[[T]],
by the division lemma (Lemma {.2.T]) there exists ¢, € O[[T]] and f,, € O[T],» such that
f = qunlp™] + fn, hence there are well define K-algebra morphisms

en: O[T]] —  O[T)/[p"]
f —  fpmod[p"].
Since [p"] is a factor of [p"*!], the canonical protections O[T]/[p"*!] — O[T]/[p"] con-
stitute an inverse system and induces a K-algebra morphism

O|[T)) — lim O[T]/ (1 + T ~1).

Both sides have natural topologies, O[[T]] the one induced by the maximal ideal (p,T)
and lim O[T]/[p"] the one induced by the inverse limit. The following result can be found

in [Was97, p. 114]

Theorem 4.2.2 The last morphism is an algebraic and topological isomorphism.

Proof. This morphism is surjective because for every coherent sequence in the inverse
limit, we may take a sequence of representatives of each term (f,)nen and by definition it
must be a cauchy sequence of polynomials so must have limit f € O[[T]] and the coherence
implies that f = f, mod[p"]. For the injectivity note that any element of its kernel must

be divisible for every [p"], hence must be 0. O

4.3 Group rings and Power Series

Let d prime to p. For each n € N set g, = dp"*!, K,, = Q((,,) and T, = Gal(Kn/Ko) and
A = Gal (K(]/Q). Since K(/Q is tame at p the restriction map Gal(Kn/Q) — Gal(KO/Q)
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induce a canonical split exact sequence
11— Gal(Kn/Ko) — Gal(Kn/Q) == Gal(KO/Q) —1,

Hence we get a canonical isomorphism Gal(Kn / Q) = I, x A, which fits in the diagram:

o

Gal(K,/Q) I, xA (4.1)

U'nT ]’ynX(S

(Z/9nZ) ——TU, x (Z/pdZ)"

where U,, = {a modgq, | a = 1modpd}, Y = O'n|ﬁn and o,,0 are given by
on(a) : Gg, = (g, and §(b) : (g — ng.

Let Koo = U Q(¢g,) and T’ = Gal(K/Ko). We have topological isomorphisms:
neN

[ =1limT, 2limU, =1+ pgZ, = (1 + pd)?».
Let v : (1 4 pd)?» — T such isomorphism, then it is totaly characterize by its action

(@) : G — (oA,

From diagram (4.1) we get

Gal (Ko /Q) = T x A

/| |

Ly ——— (1 +pdZ,) x (Z/pdZ)™

Note that v = (1 + pd) is a topological generator of I' i.e. T' = 7?”.

Lemma 4.3.1 The Groups Gal(Ko/K,) =I'?" = ’ygnz” and T'y, = (vp(1 4+ pd) ).
Proof. Note that Gal (KOO / Kn) has index p™ in I'. Since the only subgroup of index p"
of Zy, is p"Z,, then the corresponding subgroup of I' must be I'?", hence

Gal(K,/Ko) =T7" =~ ™.

Now, canonically T',, =2 T'/T?" = (4I'"" ), therefore I',, = (7, (1 + pd) ). O

For F' a finite extension of Q,, consider the group algebras Op[I';] with the topology
induced by Op. Note that the canonical homomorphisms {I';, — T'y, };m<p induce an

inverse system of topological algebras {Op[l';] — Op([[y]}

m<n’
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Definition 4.3.1 We define Op|[[']] as the topological Op-algebra lim Op[T,].

Clearly the morphisms Op[['| — Op[I',] induced by the canonical projections are coher-

ent with the inverse system, therefore we get a canonical morphism
Op[l] — OF[[I'].

By the same argument that we will use in Lemma [6.3.17] we have that last morphism is a
dense immersion therefore we may consider Op|[I'] as a dense subgroup of Op[[I']] doing

the identification:

v(a) S (’yn(a modp”))neN.

Theorem 4.3.1 There exists a unique isomorphism of compact Op-algebras

Op[[T]] = Or[[I'],
such that the isomorphism sends 1 +T +—— ~vy = y(1 + pd).

Proof. Consider the algebra-morphism Op[T] — Op[I',] given by 1+T —— ~,,(1+pd).
By Lemma [.31] they are surjective and ~,(1 + pd) has order p™ in T',,, hence monic
polynomial [p”] = (1 + T)P" — 1 is in the kernel and has minimal degree, therefore it is a

generator of such kernel and we get an isomorphism
b - OF(T)/[p] — OF[Tu]

Such isomorphisms are clearly compatible with corresponding inverse systems, then they
induce an isomorphism

lim Op([T]/[p] — lim O[T,).
which sends (1 + 7 mod[p" ])nEN +— (0 (14 pd)) therefore by Theorem E3.1]
OF[[T]] 2 lim O (T)/[ "] 2 lim O[] = Or[[T),

and the resulting isomorphism sends 1 + T —— (1 + pd). O

4.4 p-adic L-Functions: Iwasawa’s Approach

Let p be an odd prime and d an integer prime to p such that d # 2mod 4. In this section

we will continue with the notation: ¢, = p"*d, K, = Q({,,), Koo = U K,, and the

neN
groups G = Gal(KOO/Q), G, = Gal(Kn/Ko), I = Gal(Koo/Ko), I, = Gal(Kn/Ko),

A = Gal (Ko / Q). We let o, for a prime to qg, denote the element in Gal(Koo / Q) which

sends each (g, — (g as well as its restrictions in Gal (K,/Q).
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Definition 4.4.1 (Stickelberger Element) The Stickelberger element 0, is defined as

qn
n = ~ > actk. =) {qi}ac?lhﬂz € QplGnl, (4.2)

qn CL:1, ac Wn n
(a7q0):1

where W,, C Z is any set of representative of (Z/an)X.

Now consider the inverse system of algebras {Q,[G,] — Qp[Gm]}m<n Where the maps
are the induced by the respective restrictions.

Corresponding to the decomposition Gal(Kn/Q) =T, x A, we write:
0a = 0(a)yn(a), with d(a) € A,v,(a) € T,.

We will use the same notation o, indistinctly as an element of Gal(Q((p=)/Q) as well as
its canonical image in Gal(Ko/Q(y)).
It is well known [Was97, pp. 93] that for ¢ prime to ¢, we have

(1—co; )0, € Zy[Gal (K, /Q)].
An adaptation of the same argument gives as:

Lemma 4.4.1 Let ¢ prime to qo. We have that,
Mo = —(1 = cvn(c) ™ )én € Zy[A x T).

Proof. With the previous notation,

1 qn B B
gn:q— Z ad(a) ty,(a)™t. (4.3)
n a=1,
(a,q0)=1

Since ¢ is prime to gy we may consider in the sum (@3] the change of summing index

b
a = bc mod gy, then 4 _ —C} and d(a) = 6(b), hence

qn qn

gn: Zn: {@}5(136)_1’}%(1)0)_1: Zn: {@}5(1))_1’}%(1))_17”(6)_1'

b=1, n b=1, an
(b,g0)=1 (b,q0)=1
Then:
qn ac a
(P> ({q—}‘c{q—b‘“@ i) () € 2yl x T,
a=1, n n
(a,q0)=1
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Let us fix cg = 1 + pd and 6* = wh~'. Consider the idempotent:

}:9 1 e Ky[A]

éeA

where Ky = Q,(0) Let us define

f0) = —— i @01 (@) Vn(0)
aqo 1
M (0) = n {a} {ac()})H Ha)yn(a) " ynlco) Tt € Op[T].
(aqo

By definition, €¢g«&, = &,(0)ep- and g=1p, = 17, (0)ep~.
In [Was97), pp.119] is proven that or m > n, the restriction map Ky[I';,] — Kp[l',,] sends

§(0)n — Em(0) and 1 (6) — 1 (6).

Since both sequences are coherent and, by Theorem (4.3.1]), we are able to associate them

power series:

(6(0)) e — F(T,0) for 0 £1,

)
(Tln(e))neN — g(T,0),
(1= commlco) ™) ey — M(T0).

Theorem 4.4.1 Let x = 0y an even Dirichlet character with 6 of first kind and v of
second kind, and let Cy = (o)™t = x(1 4 qo) ™1, then

Ly(s, x) = f(Cp(1 +q0)* — 1,0).

Proof. See [Was97, pp.123]. O
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Chapter 5

The Compact-open Topology

5.1 Zeros of Power Series and the p-adic Maximum Principle

In this section K is a complete extension of Q, in C, and f =) a, T" € K[[T]] convergent

for |¢] < R. Since for |{| < R, |a,¢™| — 0, then sup |a,,¢"| is really a maximum and
neN

1f(O)] < rggglané"l-

Definition 5.1.1 1. For 0 < r < R we define My(r) = maI%(]an\T" and the growth
ne

function associated to f, My : v —— Ms(r).

2. r < R, is called regular if M¢(r) = |an|r™ for only one m € N and it is called

critical if its not regular.

3. For each v < R the coefficients ay, such that M¢(r) = |ay,|r™ are called dominant

for the radius r.

4. For f with R > 1 we define the extreme indexes of f as
A(f) = min{n € N||a,| = Mf(1)} and v(f) = max{n € N||a,| = Ms(1)}.

In the following let us denote for r € |C,|, S, and B, the sets of ( € C, such that || =1
and |¢| < r respectively.

Remark 5.1.1

1. The growth function is always non decreasing.

2. For a series convergent for |(| <1, M¢(1) = sup|ay,| = || f|| (as in the first chapter).
neN

3. For || =, |f(Q)] £ My(r) and the equality |f({)| = My(r) holds for any regular

radii, hence the zeros of f lie on the critical radii.
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4. The condition R > 1 guaranties that the extreme indexes are finite hence we can

define the number A(f) = v(f) — A(f).

5. My(1) < 1 if and only if f € Og|[[T]] and |f|| < 1 if and only if f € pg[[T]].
Further if f € Ok][[T]] with R > 1 and ||f|| = 1 the extreme indexes has the

following interpretation: If f = fmodp, then f € k[T] and the extreme indexes are

A(f) = ordo(f), v(f) = deg(f)

Lemma 5.1.1 Let f = ZanT” € K[[T]]. Then critical radii from a discrete sequence
0<ri<re<...<R.

Proof. Let 0 < r < R, since |a,|r™ — 0 there is N € N such that for n > N,
lan|r™ < Mg(r)/2. So there must be a m < N such that My (r) = |ap|r™. Now for n > N

and 0 < s < r, we have:
lan|r™ < am|r™ = s"7" <" < am|/|an] = |an|s™ < |am|s™.

Then if s < r is critical radius must satisfy |a;|s’ = M,(f) = |aj|s/ for 1 <i<j <N
i.e. it must satisfy one of the equations s/~* = |a;|/|a;], 0 < i < j < N so there are only

finitely many choices for s. g

Let r < R and consider f,.(T) = f(rT) then f, is convergent for |(| < R/r. Since 1 < R/r
we can define A\,.(f) = A(f;), vr(f) = v(f) then

Ar(f) = min{n € N||a,|r" = My(r)},
vr(f) = max{n € N||ap|r" = Ms(r)}.

Let us fix f = ZanT" € K[[T]] and denote A\.(f) = A\, and v,-(f) = v
Lemma 5.1.2 Ifr <t are two consecutive critical radii and r < s < t then
Vp = Ag = Vs = A¢.

Proof. Let N € N be such that for any n > N, |a,|t" < M¢(r). Then for r < s <t
and n > N, |a,|s™ < Ms(r)(s/t)" < M¢(s). This means that for each radius in ]r,¢]
the dominant terms always have indexes less or equal to V. Consider the dominant term
|am|s™ = My(s) ie. for m #n < N |ap|s" < |am|s™. By continuity there is a € > 0 such

that for m #n < N and |s — t| < € we have |a,[t" < |a,,[t"™. Now for each n € N set

A, = {s €]r,t[| an, is dominant for the radius s} C]r, [,

28



by the previous these sets are open and ]r, t[= (J,,c An- In particular the complement of
A, is also therefore, and since |r, ¢[ is connected, A, =]r,t[ i.e. all the radii s €|r,t[ have

the same dominant term. Finally, note that for m < n < N and s €]r,7’[ we have
|an|r™ = lan|s"(r/s)" <lam|s™(r/s)" <lam[r™(r/s)" ™",

hence m = v,. An analogous argument shows that m = A;. a

Let 0 <rg <ry <re <...< R be a increasing sequence stoping at some N with ry =1

or infinite such that limr, = R. For such sequences we have:

Proposition 5.1.1 Let p : [0, Rl— R continuous function such that all its restrictions
P = Pllrnrsa] @r€ conver and continuously differentiable in their respective domains.

If for all n € N we have that p_(rn) < pl(rn) then p is convex.

Proof. Let g: [0, Rl— R defined as

plt) ift#mr, forallneN,
g(t) =

p_(rp) if t =mr, for some n € N.

By definition g is increasing and for each z € [0, R[, the function g only has finitely many
x
discontinuities in [0, x] and p = / g(t)dt. Fix zg,x1 € [0, R] with zy < 21 and t € (0,1).
0
With these constants consider y : [xg, z1] — |20, 21] defined as y(s) = zo + t(s — xp). We

must show that:
p(y(z1)) < p(xo) +t(p(z1) — pz0))- (5.1)
Note that y(zg) = xo, y(s) < s and 3’ = ¢. Inequality (5.1)) is equivalent to the following:
y(z1) 1
/ g(s)ds < t/ g(s)ds. (5.2)
y(z0) T
Let w : [y(xo),y(z1)] — [0, x1] be the inverse function of y and g = g o y, then

3 " oyis = / " gt atas = [ o

(:C()) (xO) o

Since ¢ is increasing, for each s € [0,1] we have that g(s) = g(y(s)) < g(s) i.e. g < g.
Therefore comparing the integrals of g and g we obtain (5.2]). a

Corollary 5.1.1 The function My : [0, Rl— R is continuously convex and smooth expect

at the critical radii.
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Proof. Let p= My, ri <r < ry consecutive critical radii and m = A\, <n = v,. Since r
is critical we have p(r) = |an|r"™ = |ay|r™. By the last lemma for s €]ry,r[ and t € (r,72)
we get p(s) = |am|s™ and p(t) = |a,|t". Since ay, and a, are dominant coefficients for the
radius r, My is continuous in |ry,r[. Clearly the f is smooth in |s, r[, |, ¢[ and looking at

the derivatives at s,t we have

P (1) = mlan ™ < nlanlrt = gl (), (5.3)

therefore by Proposition [5.1.1] p is convex. a

Lemma 5.1.3 Let g = anT” € Ok|[T)]. Then g has exactly A\ = \(g) zeros in By,

counting multiplicities.

Proof. Without loss of generality we may take g/||¢|| instead of ¢ in order to get ||g| = 1.
By the preparation theorem (theorem .2.T]) there exists P € Ok [T distinguished of degree
A and a unit u = ZunT" such that ¢ = P(T)u(T). By part 2 of Remark [£2.1] g and
P share the same zeros in By (with the same multiplicities). Now, P have A zeros in C,
(counting multiplicities) and since it is distinguished P = T* + Z ¢;T" with |¢;| < 1. For

<A
each zero ¢ of P we have that:

i< = |Z; al’| < Difl<a§<|6i||C|i < Hi"i<a§<|C|i,
but it happens if and only if |¢| < 1 (because for |¢| > 1, |[¢|* > [¢] for A > ). Therefore

P, as well as f, has A zeros in Bj. a

Corollary 5.1.2 For || < R and r < R, f has exactly A\, zeros in the ball B;.

Proof. Taking g(T") = f(rT), it converges for || < R/r. Since 1 < R/r the coefficients
of g are bounded so we can assume g € O [[T]] then the result follows from the previous,

since by definition A.(f) = A(g). O

Theorem 5.1.1 (Zeros in critical radius) Ifr < R is a critical radius of f then f has

exactly v, — A, zeros in the sphere |(| = r.

Proof. Let r < R be a critical radius and » < ¢t < R be the next one. By the corollary f
has exactly A, and )\; zeros at the balls B, and B; respectively. Since the radii s €]r, ¢[ are
all regular, f must have A\; — A\, zeros in the sphere |(| = r, and by Lemma 5.1.21 \; = v,

therefore f has exactly v, — A, zeros in 5. a
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Corollary 5.1.3 Let r < R be critical and § € C, satisfying one of the following condi-

tions: (i) [€] < My(r). (i) €] = My(r) and | — £(0)] = My(r).
Then there exists ( € S, such that f(¢) = €.

Proof. Let h = ZanT" and g = f — & = (f(0) — &) + h. Note that f takes the value
n>1
€ in S, if and only if g has a zero in it too. By last theorem it happens when r is critical

with respect to g i.e. when g has more that one dominant term for such radius. Since r is

critical with respect to f we have that My (r) = M¢(r) then
Mp(r) < Mg(r) = max{|f(0) — &], My(r)}.
Now, conditions (i) and (i7) imply that |f(0) — &| < My(r), therefore
My(r) = Mi(r) = My(r).

Last equality implies that f and g will share the same dominant terms of positive degree.
If the constant term of f is not dominant then f must have at least two dominant terms
of higher degree then so does g; If not we must have |f(0)] = M(r) and f must have at
least another dominant term wish shares with A and g, hence in both cases the constant

term of ¢ is dominant and shares the other dominant terms of f. O

Corollary 5.1.4 Let r is a critical radius of f. For everyt € R such that t = |§| < M, (f)
for some & € Cp, there exists € S, such that |f(¢)| = t.

Proof. Ift =0 it is just last theorem. If ¢ > 0 then t € p®N)0, M,.(f)], so choose £ € S;

according the following cases:
1. If t < My(r): Take any & € Sy, trivially we get [£| < My(r).
2. If Jag| <t = My(r): Take any & € Sy, we always get |{ — ag| = My(r).
3. If |ag| = t = My(r): Take & = —ag, then we have that |£ — ag| = |2||ag| = My(r).

In each case the £ chosen fulfills the conditions of Corollary B.1.3] therefore there exists
¢ € Sy such that |f(¢)] = |¢] =t. 0

Theorem 5.1.2 (The Maximum Principle) Letr < R, r € p@ then

My(r) = sup [f(C)] = sup |f(C)] = max[f(C)].

I¢l<r I¢I<r I¢l=r

Proof. Let (| < r, then |f({)| < M¢(|¢]) < My(r) which implies

sup | f(¢)] < sup |f(C)| < My(r).

I¢l<r I¢I<r

Now fix ¢ € S,. We may choose a sequence ((,)nen C B, such that
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(i) The sequence 1, = |(,| is a decreasing sequence of regular radii.
(i) lim ¢, =C.
n—~o0

By (i) we get lim r, = r and by regularity |f((n)| = My(r,). As My is continuous
(Corollary B.1.1]) we get

My(r) = Jim Mj(r) = Jlim [£(G.)| < sup 1O
<r

Finally, if r is regular we have |f(¢)] = My(r) for any ¢ € S, and if it is critical, by
Corollary b.1.4] there exists ¢ € S, such that |f(¢)] = My(r). O

5.2 K((T)); and the compact-open Topology

Let B’ = {¢ € C,|0 < [¢| < 1}. Recall that K((T')); is the subring of K((T)) constituted

by Laurent series of finite order pole that converge at every point of B’. Put
p® = {ll=p" [¢e B} ={p" g€ Qand ¢ <O}.

For € > 0 and 0 < a < b consider the family N of sets
Niea.b) = {f € K(T):1 | fora<[¢|<b. |F(Q)] <.

This family of sets satisfies the conditions of a system of neighborhoods of 0 therefore they
allows to define a topology in K((T"));. (see [Wil98]).

Definition 5.2.1 We define the compact-open topology as the topology induced by the
system N of neighborhoods of 0.

Remark 5.2.1
1. The compact-open topology has basis

{f+N(ab)|fe K({(T)),e>0and0<a<b<l1}

2. The compact-open topology turns K((T')); into a topological ring.

3. The natural immersion of K into K((T)); is continuous.

Lemma 5.2.1 Let f = ZanT” € K((T))1. Forr € p@ let
nez

1fllr = sup [f(C)]-
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1. Forr € p@ , ||f|, = sup |a,|r™.
nez

2. For0<r' <rep¥, sup |f(Q)]=max{|fllv £}
r<fcl<r

Proof. (1) Since f € K((T)); for some N € N we have TV f = Z b,T" € K[[T]] then
neN

by = an_n and V| f||, = Mypn ¢(r) = sup |b,|r"™, hence
neN

1£1lr = sup |an_n|r" N = sup |an|r™.
neN ne”L

(2) Let p: (0,1) — R defined as p(r) = || f|l»- Let g € K[[T]]* such that f = TVg and
r1 < r < r9 be consecutive critical radii of g. By definition there exists ¢1,co > 0 and
ny < ng € Z such that for every s €]rq,r[ we have p(s) = c18™ as for every t €|r,ro| we

have p(t) = cot™2. Since r is critical c17™ = p(r) = cor™2, therefore

pl(r) = nicrr™ ™ < ngear™ Tt = pl (1),

We have that p is convex because it satisfies the conditions of Proposition B.1.1] in par-

ticular for every s €]r’,r[ we have ||f||s < max{||f],, | f]l-} and it is equivalent to have

sup | f(¢)] = max{|[f], |fllr}- =

r'<|¢|<r
Corollary 5.2.1 1. Forr € p@ and e > 0, the sets
V(re) ={f e K(T))1| Forall ¢ € S, we have |f(¢)] < e},
are open and constitute system of neighborhoods of 0 for the compact-open topology.

2. The ring K((T'))1 with the compact-open topology is a second-countable topological

ring i.e. every point admits a countable system of neighborhoods.

3. A sequence in K((T'))1 converges if and only if it converges uniformly in each sphere

S, with r € pQ .

Proof. (1) Clearly the sets V(r,e) are open and by part 2 of Lemma 5211V (a, b, &) =
V(a,e) NV (b,e), hence any neighborhood of 0 must contain one of them.

(2) It follows from part 1 and the fact that p@ is countable because {V(r,q)|r € p®~
with ¢ € Q+} gives a countable system of neighborhoods of 0.

(3) Since for a fixed 7 € p%~ the family {V(r,¢) | € > 0} is a system of neighborhoods of

0 for the topology of uniform convergence on S,, (3) follows directly from part (1).

Definition 5.2.2 We define K[[T']]1 as the ring K[[T]|NK((T'))1 endowed with the relative
topology with respect to open-compact topology of K((T')):.
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Theorem 5.2.1 The compact-open topology turns K[[T]]1 into a complete topological ring.

Proof. The only non trivial part is the completeness. Let (f,)nen € K[[T]]1 be a Cauchy
sequence, f, = > a, xT*. Fix r € p¢ and pick ¢ > r also in p¥ , then:

i) For j €N, ||fn — fmllr = sup |an i — ami|r™ > 77|an ; — am j| which means that each
(anj)nen C K is Cauchy. Since K is complete, it has a limit a; € K, so that we

may consider a power series f = g apT".

ii) Since (fn)nen is Cauchy, (|| fnll¢)nen is bounded, say by C > 0. Not that for all n and

all 4, |an;|t/ < || fall: < C, therefore |a;|t/ < C and this implies that lim |a;[r/ =0
n—oo

| NG e\
Ard = la:lt? [ = <Cl-).
i =1l (5) < c(5)

Since r € p¥~ can be chosen arbitrarily we must have that f € K[[T]];.

because

iii) For ¢ > 0, N € N such that n,m > N, ||fn, — fm|/r < € and for any k € N we have
lan e — amk]rk < || fn = fmllr < € then fixing j and taking limit when n goes to
infinity we get that for m > N, |a; — amj| < ¢ hence ||f — fm|» < e. Since r € p@"

as well as € > 0 are arbitrary, we get lim f,, = f. O
n—oo

Definition 5.2.3 For f € K((T)): we define Vy, the set of series dominated by f, as
the set of g € K((T))1 such that |g(Q)] < || flli¢| for all { € B’

Lemma 5.2.2 1. For f € K((T))1 and g € Vy, ordg > ord f.
2. Vi is a complete subspace of K((T));.
3. Forr e p¥ , if | fllr <e then V; C V(r,e).
4. Fore>0 andr € p¥ ezists N € N such that
Vi NTNK[[T)]; C V(r,e).

Proof. (1) Let f =3 - ya,T" and g = > b,T" € V. Since the critical radii of f
are isolated we may find r > 0 such that every s € (0,r) is regular with respect to f,
then A\; = vy, = kK > —N for some fixed k. It will be enough to show that for j < —IN
we have b; = 0. For this note that for every s €]0, 7], |bj|s? < |lglls < || f|ls = |ax|s* then
b;] < lax|s*~7. Then for any j < k, taking limit when s goes to 0, we get b; = 0.

(2) Let ord(f) = N by the previous part, V; C TV K[[T]]; which is complete, then it is
enough to show that Vy is closed. For this take (g,) € V} converging to g € K((T))
and pick any 7 € p? . Then for any ¢ € S, we have |g,(¢)| < ||f]l», therefore [g(¢)| =
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lim |g,(¢)| < ||f]l»- Since r is arbitrary we must have that g € V.
(3) Taking g € Vy and any [¢| =, |g(¢)| < [|f|l» < € then g € V(r,¢).
(4) Fix s € p¥, s > r and R > || f||s by part 2, V; C V(s, R) then

V; NTVK[[T])y €V (s, RA)NTVK[[T])y C V(r,R(r/s)V). (5.4)

For the second inclusion take g € V (s, R) such that g = TVh with h € K[[T]];. Applying
the maximum principle (Theorem B.1.2)) to h we get ||g|l,r=N = ||h|» < ||h]ls = l|lglls™,

then ||g, < |lglls(r/s). From (54) for a fixed N, as soon as it is big enough, we get
ViNTNK[[T] € V(re). O

As in Definition 2.T.T] set the N-th truncation map Py : K((T))1 — K((T))1 as

Py <Z anT”> = a7,

nez n<N

Remark 5.2.2
1. Py is continuous, since for any r € p% and f = 3 a,T" € K((T))1, by part 1 of

Lemma 521 || Py (f)|r = sup |an|r™ < sup|an|r™ = || f||-
n<N nez
2. Py(Vy) C Vy, since for g € Vy and ¢ € B" we have

1Pxn (9) (O] < 19O < I flj¢)-

The following proposition gives us a useful criterium for convergence in K ((7));.

Proposition 5.2.1 Let g € K((T))1 and (gn)nen € V¢. Then (gn) converges to g if and

only if for all N € Z, (PN(gn)) converges to Pn(g).

neN

Proof. Since the truncations Py are continuous, the sufficiency is clear. For the other
implication, by linearity of Py, it is enough to check the case g = 0. For this fix € > 0 and
r € p¥ . Since g, € Vy then g, — Pn(gn) € V; N TN K|[[T]];. By part 4 of Lemma
for a fixed N, big enough, we have g, — Py (gn) € V(r,/2). Now, since nh_)ngo Pn(gn) =0,
for n big enough we have that Pn(g,) € V(r,e/2), therefore g, € V(r,¢). O

5.3 The Compact-Open topology in Ok|[T]]

In Og|[[T]] we can consider two topologies: the compact-open topology, as a subspace of

K|[[T]]1 and the (p, T)-adic topology. The following theorem relates both topologies:
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Theorem 5.3.1 In Og|[[T]] the (p,T')-adic topology and the compact-open topology coin-

cide. In particular Ok|[[T]] is compact with respect to the compact-open topology.

Proof. Since both topologies, the (p,T)-adic and compact-open are given by systems of
neighborhoods of 0, {(p, T)N | N € N} and {V(r,e) N Ox|[[T]] | r € p@ ,& > 0} respec-

tively, it will be enough to prove the following claims:

Claim 1: For e > 0 and r € p¥ exists N € N such that (p, 7)Y C V(r,¢).

N
Let f € (p,T)N. By definition f = ZgnkaN_k with g € Ok|[[T]], then for ¢ € S,
k=0

L Nk L N
701 = s () < gl ma .o .
Since g € Og|[[T]] implies that ||g||, < 1, we have that f, < max{piN,rN }. Therefore

taking N big enough we get ||f||, < e.

Claim 2: For all N € N we have V(1/p,1/p™) N Ok[[T]] € (p, T)V.
Let f € V(1/p,1/p"N) N Ok[[T]]. Since f € Ok[[T]] we have

N-1

f= Z arT* mod(7, p)N.
k=0
Now, since || f|l1/p, < piN for k < N we have that |ax/p"¥ %] < 1. In particular ay = app™*
for some o) € Of. Therefore for k < N we have a;T% = ayp™*T* € (p,T)V, so

femDN. 0

As in the end of Section E2] set [p"] = (1 +T)P" — 1.

Definition 5.3.1 For m € N we define Q,, as the set of roots of [p™*!] in C, and

, = Q0 \ {0} Also we define Q= | ] Qp and ' = Q\ {0}.
meN

Remark 5.3.1
1. Each Qm:{CgmH —1|0<a<p™}and Q CQ CN3C ... C .

2. H u = H H (Gn — 1) = 0. Indeed let ®, € Z[T] be the p"th-cyclotomic

uEQ/ n:1 (a7p):17
agpn+1
polynomial i.e. ®,1(T) = H (T — Cpns+1). Since for n > 1, @541 (T) = @n(T7)
(a,p)=1,
aSanrl
we have H (Cpn — 1) = ®n41(1) = p, which implies that H u=0.
(a,p)=1, uesY
aSpn+1
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3. Each f € K[T]/[p™"] induces a well defined map f : Q,, — Of, so for such f’s

we may define a norm || f||,, = sup |f(u)].
UEQm

4. Let (fu)nen and f be in K[T]/[p™*!]. Since Q,, is finite we get: (fn)nen converges

to f with respect to || ||, if and only if for all u € Q,y,, (f"(u))neN converges to f(u).
5. For f = Zaka € K[T)/[p™""], we may consider the norm || f||x = sup |ag|
0<k<pm+l

which is well defined by the uniqueness of the Euclidean division in K[T].

6. K[T)/[p™] with respect ||||x is homeomorphic to KP"'" via the following map

m—+1

KP —  KI[T]/[p™*]

(5.5)
(ao,al,...) — ag+a T +...

7. |l and || ||lm are equivalent since K is complete and K[T]/[p"™*!] is a finite dimen-

sional K vector space [Neu99, p.132], therefore they induce the same topology.

8. The map (&.5) sends Oi’(MH to O [T]/[p™*Y]. In particular Og[T]/[p"™'] is compact
with respect the || ||, topology.

Consider the canonical commutative diagram:

Ok[[T]] —2 lim O [T]/[p"+]
x l”"
Ox[T]/[p™+]

Theorem 5.3.2 (Convergence Criterium) Let f,, f € Ok[[T]]. Then:
(fn)nen converges to f if and only if for all u € <, (fn(u))neN converges to f(u).

Proof. The first implication is clear. For the converse, note that by Remark [5.3.1] the
hypothesis implies that for each m > N, lim ¢, (fn) = pm(f) and since @, = Ty 0,
n—oo

lim Fm(@(fn)) = Wm(@(f))

n—oo

But by definition of the product topology this implies that lim ¢(f,) = @(f) then the

conclusion follows from the continuity of ¢ =1. O

Remark 5.3.2
If lim g, = g in lim O/[T]/[p" "], taking fn, = ¢ (gn), f = ¢~ *(g) and u € Q' we have

fn(uw) = om(fn) (W) = Tm(gn) (W) — Tm(9)(w) = em(f)(u) = f(u).
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Therefore the last convergence criterium is equivalent the continuity of the inverse of the
map

Ox[[T]] %+ tim O [1]/[p" ).

Definition 5.3.2 A testing sequence is a sequence (a;)ien C B’ with all its terms different
such that for any sequence (gn)nen C Ok |[[T]] we have that nh_)ngo gn = 0 if and only if for
all i e N, lim g¢,(a;) = 0.

n—00
Theorem says that €)' is a testing sequence, the following result from [Col79] charac-

terizes such sequences.

m
Theorem 5.3.3 Let (a;)ien C B'. (a;) is a testing sequence if and only if lim H a; = 0.
m—o0

i=1
Proof. Suppose that (g,) does not converge to zero. We claim that without loss of
generality exists a ¢ > 0 such that |g,(0)] > § for all n > 1. Indeed, since g, € Ok|[[T]]
there must be a k € N such that the k-th coefficients of g, does not converges to 0 i.e.
if we define h, = T~ (g, — Pi(gn)) has a subsequence such that |h,(0)| > & for some

d > 0 as we claimed, and if for any a € B’ such that g,(a) — 0, hy(a) — 0. Now

set A; = |a1| and for m > 1 A, = ﬁ |a;] ﬁ la; — aj| The lemma will follow from the
following assertion: - =
Claim: Let f = Y b;77 € Og[[T]]. If |f(a;)] < Ap for 1 < i < m, the we have that
5O < [T el
Ifm= 1Zt:ﬁen la1| = A1 > |f(a1)|, then

[£(0)] < max{|f(a1) = FO)], [f(a)]} < |f(a1)] < lasl.

(in general for ¢ € B', |f(¢) — f(0)] < |¢|) Now, suppose that the assertion is true for

m > 1, since f — f(ams1) = (T — amsn)g for some g € O, [[T]] then F(as) — f(ams1) =
(a; — am+1)g(a;), now using the hypothesis that |f(a;)] < Apms1 for 1 <i < m+1 we find

|ai — ama|lg(ai)| < max{|f(a:)l,|f(ams1)]} < Amia

for 1 <7 <m. then
19(a:)| < Amilai — amit| ™" = [ama1|Am < A,

m
for 1 < i <m. By induction |g(0)| < H la;|, therefore

=1
m+1
1£(0)] = |f (@m+1) = amr1g(0)] < T lail,
=1
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as we asserted.
Now in our case take m € N such that § > |A4,,| > 0, since g,(a;) — 0 for each 1,
and exists N € N such that for 0 < ¢ < m and n > N, |gn(ai)| < |Am| by the claim

lgn(0)| < |Apn| < 0, which is a contradiction. O

5.4 Continuity with respect to the compact open topology

Proposition 5.4.1 The map K((T))1 x By — C,, (f,{) — f(¢) is continuous with
respect to the product and the p-adic topologies.

Proof. Take (f,,(,) converging to (f,¢) in K((T"))1 X By, then there are 0 < s <7 < 1
such that s < |(,], |¢| < r for all n. Now we have that

and by the maximum principle

Therefore f,,(¢,) converges to f((). O

Consider the n-th coefficient function ¢, : K[[T]] — K characterized by the equality

h=> cn(h)TT,

for all h € K[[T]]. Let f = Zaka € K[[T]] and g € TK[[T]]. As in Definition 2.1.2]
there is a well defined series f(g) € K[[T]] such that f(g) = fx(g) mod TN+ where fy
denotes the truncation Py(f). Last congruence implies that cx(f) = cx(fn) for all K < N.

Lemma 5.4.1 Let f € K[[T]], g € T K[[T]] and R, > 0 such that f,g converges in Br

and B, respectively, then:

1. For0<s<a<riff=|gla <R then |ex(f(9))I1s" < | fllag(s/c)N. In particular

f(g) converges in B,.

2. If R =00 or R > sup|lg||s then for s <r and { € By we have
s<r

3. If g € T Ok [[T]* then for any f € K((T))1, f(g) € V.
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Proof. Let uscall h = f(g) and h,, = fn(g9) = Z arg”®, then:
k<n

(1) Since cny(hy) = Z aren(g®) we have |en(hy)| < suplag|en (%), but |en ()] =
k<N
len ()] and [en (g™)a™ < [|g"[la < [lgl2, then

N k
< m < .
len (h)]a™ < kgaglaklllg\\a <|fls

Hence |en (R)[s™ < ||fllg(s/a)N as we stated.

(2) Let ¢ € Ss such that s < r, and fix «, 8 as in part 1, then for k&, N € N and k > N,
lex(R)|s* < [|fllg < (s/a)N. Since ck(h) = cx(hn) for k < N we have that h(¢) — hn(¢) =
Z er(h)CP — Z cr(hy)CF, then

k>N k>N

h(¢) = hn (O] < g;ag{!%(h)lska jer(h)s*} < max{ || f1g | fllg}(s/e)™

since || fnllg < || fllg we get |h(¢) — hn(C)| — 0, so we obtain

(/) (©) = lim (f2(0)(Q) = lm_ fu(9(C)-

n—oo

Finally for § = g(¢), by definition f(¢) = lim fo(£) = f(9)(C)-
(3) Since g = Tu(T) with u € Og[[T]]* by part 2 of Remark 22Tl we have that |g(¢)| = |(]

then | (£(9))(Q)| = 1£(9(O) < 1f gy = I1£1li¢- O

Proposition 5.4.2 The map Ok|[[T]] x T Og[[T]] — Ok|[T]] defined as (f,g) — f(9)

s continuous with respect to the compact open topology.

Proof.  Let (fn,gn) converges to (f,g) in Ox[[T]] x T Ok|[[T]] and n € €. By Proposi-
tion [6.5] the evaluation is continuous, then we have nh—>n;o gn(n) = g(n) and nan;O fnlgn(n)) =
f(g(n)). Now taking |n| < r < 1 we have that ||g,||gn|» < r < 1, then by last lemma
nh_)ngo (fn(9n))(m) = (f(g))(n) hence by our convergence criterium (Theorem [5.3.2)) we can
conclude that nan;O fgn) = f(9). O

Corollary 5.4.1 Let f € K((T))1. The map f. : T Okl[[T]] — K((T))1, g — f(g), is

continuous with respect the open compact topology.
Proof. First, note that for g € T Ok|[[T]] and ¢ € B’, |g(¢)| < |¢| hence we have

[(F(@) O =1£(gO) < [ £llg»

therefore f(g) € V. Let g, — ¢ in T Og[[T]], by Theorem is enough to show
that for all N € N, lim Px(f(g9n)) = Pn(f(g)). For this fix N and set fy = Pn(f),

note that there is a ¢y € K such that fx € eyOk|[[T]] hence by the previous proposition
lim_fx(gn) = fn(g), then by continuity of Py we get Py (f(gn)) = Pn(fn(gn)) —
Pn(fn(9)) = Pn(f(9))- O
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Corollary 5.4.2 The map A\, : T Ok|[T]] — K|[[T]] is continuous.

Proof. By Lemma 2.34] the map A € K[[T]];, hence A\, must be continuous. O

Lemma 5.4.2 Lets <r <t all inp® . There exists C > 0 such that for any f € K((T))1

we have

c
17 < —max{[[flls 1/} (5.6)

Proof. Let f=3Y .,a,T"so f' =3 ., na,T" . Now for n > 1,
n
C
™ = alale ()< Sl
t T
n
C:

alacalr ™ = el (2) < S,

where C7 = supn(r/t)" and Cy = supn(s/r)". Then C' = max{Cy,Cs} satisfies O
n>1 n>1

Proposition 5.4.3 The Formal derivative on K((T))1 is continuous with respect to the

compact-open topology.

Proof. It is clear from Lemma [5.4.2] O
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Chapter 6

Coleman Local Theory

6.1 Generalities and Notation

In this chapter we will study several Galois action associated to a finite abelian unramified

extension of Q,, on several rings on power series. Let us recall the definition:
Definition 6.1.1 A Galois extension E/Q, is unramified if
[E:Qp = [kg : Fp).

Let E/Q, any finite Galois extension and n = [E : Q,]. Here are some general remarks:

Remark 6.1.1
1. We will use the usual notation OF for the ring of integral elements over Z, of F, pp

for its maximal ideal and kg = Op/pE, its residual field.

2. It is well known that n = ef where e is the ramification index and f the inertia
degree, given by pOg = p%, and f = [kg/F,] (See [Neu99]). By definition in the

unramified case n = f and e = 1, in particular p is a uniformizer for F.

3. Consider the canonical surjective homomorphism Gal(E/Qp) — Gal(k:E/IF‘p) [Neu99,
p. 56]. It is an isomorphism if and only if E/Q, is unramified.

4. kg is a finite extension of I, therefore it is a finite field with p! elements and has
a Frobenius automorphism g defined as pg(a) = aP for all a € kg which fixes

KEP =T,

5. The automorphism ¢ € Gal(k;E/IFp) has a unique lift ¢ € Gal(E/Qp), which is a
generator of Gal(E/Qp), and is called the Frobenius element of Gal(E/@p).
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Let us fix the notation for this chapter:

Let K an unramified finite Galois extension of @@, in a fixed algebraic closure C,, with

f=[K/Q), A =Gal(K/Q,) and Frobenius element ¢. By the previous discussion

A:<()0> :{17()07"' 7(:0f_1}'

Let K, = K[!, Koo = UK, and G, = Gal(K,/K), Go = Gal(Ko/K) = lim Gy,.
As K is unramified we have G, = Gal(@,,(gpoo) /Qp) = Z, as topological groups, given
canonically by the cyclotomic character k : Goo — Z,; defined by its action on p-th roots

of unity, o ((yn+1) = C;Ei)l

6.2 The multiplicative Z,-action on 9

Let Mg be the set of units of Ok |[[T]] and M be the set of principal units of Ok [[T7]]
i.e. the set of f € Mk|[[T]] such that f(0) = 1modpg.

Remark 6.2.1
1. Since Ok|[T]] and Ux = 1 + pOg are compact and the sum is continuous, My =

Uk + TOk|[[T]] is compact.
2. Mg = Of My and since O is compact, then My is compact.

The multiplicative group 9k admits a natural Z-action given by exponentiation i.e.
(n,f) € Z x Mig —— f™. The aim of this section is to extend this natural action to

a Zy-action.

Lemma 6.2.1 For o € Z, there is a well defined series (1 +T)* € Zp[[T]] such that for

every sequence (ap)nen C N, o, — a we have that (1 +T)* — (1 +T)%.

Proof. Let 7 : Z, — TK[T]], 7(a) = aX and € = exp(7) ie. ¢ : Z, — Mk,
e(a) = exp(a)). By Proposition the map ¢ is continuous since exp® and 7 are
continuous. By Theorem 2.2.1] for n € N (1 +T7)" = exp(n\) = ¢(n), therefore for o € Z,,

the power series e(«) has the desired property i.e. can be taken as (1 + 7). O

Corollary 6.2.1 There is a unique continuous Zy-action on Uy which extends the natural

Z-action given by (n,u) € Z X Ug — u™ € Ug.

Proof. Since for a € Zy,, (1+T)“ € Zp[[T]] it must converges in Bj, then we can define
u=14+¢ €Uk, u* = (1+T)%C(). Let ex : Z, x Uy — Uk given by ex (o, 1+ () =
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(1+T)*(¢). By Lemma 23Tl ek is continuous, hence by continuity it is a well define

Zy-action on Uy totaly determined by its restriction over Z x Uk. a

Theorem 6.2.1 There is Z, continuous action on the multiplicative group Mg that ex-

tends the natural Z-action.

Proof. For f € My we can write f = f(0)(1 + g) where g € T Og|[[T]] and clearly this

decomposition is continuous. By the previous lemmas we have a continuous map
(a, f) € ZP x Mg — f(0)*(1 +¢)* = f(0)*((1 +T)%),(9) € Mk

By continuity, it is a well defined Z,-action on Mg and it is totaly determined by its

restriction over Z x M. O

Definition 6.2.1 We define the exponential Z,-actions on Uk and My as the unique Z,

actions that extends the respective natural Z-actions given by exponentiation.

Now, for a € Zp, let us consider the power series [o] = (1 +T)% — 1.

Remark 6.2.2
For o, 3 € Zp, we have [o]([3]) = [af] = [8)([a]). This is clear by continuity of the

exponentiation since it is true for a, 3 € 7Z.

6.3 Galois Structures on K((7T));

Remark 6.3.1
1. Since each Ok|G,] is an Ok free module of finite rank we can endowed them with

the canonical Topology induced by Of.

2. The product H Ok[Gy] is a compact topological space with respect to the product

neN
topology. Further it is a topological Ok-algebra (with term-to-term operations).

3. The product topology in H Ok|[G,] has as basis:

neN

{Uy x Uy x ... | U, C Okg[G,] are open and U,, = O|G,] for n big enough}

Note that for m < n the restrictions GG,, — G,,, induce ring homomorphisms on the group
algebras m,, ,, : Og[Gn] — Ok|Gp]. This constitute an inverse system of rings, so we

can consider its inverse limit lim Ok [G),] as the subset of H Ok [Gh).
neN

Definition 6.3.1 We define the Iwasawa Ring Ok [[G]] as lim Ok[G),] endowed with
the inverse-limit topology i.e. the topology induced by the product topology.
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Each Og[G,] acts on K, naturally extending the action of G,, by linearity i.e. for z € K,

and 0 = Zj 10505 € OK[Gn]7 0-x= Zajo-j(x%

0 - < . . <
6| < max lajl|oja] < [a]

which means that these actions are continuous. Also these actions are compatible with
respect to restrictions and we can extend them to an action of Ox[[G]] on K in the

following way: for z € Ko, = U K, and 0 = (0,)nen € Ok [[G)], since x € K, for some

neN
m, we can define 0 - x = 6,, - © (which is well define by compatibility). For G, = lim G,

let us consider Ok [Go] with its natural action on K, i.e. the linear extension of the

action of G

Lemma 6.3.1 Og[G] is densely immersed in Ok|[[Gso]] in a canonical way such that

the actions on K., are compatible.

Proof. First note that the natural projections Go. — G, extend to algebra morphisms
Ok [Goo] 2 Ok[G,] in a compatible way with respect to restrictions, then by the univer-
sal property we have a map O [Goo] —— Ok [[Goo]] such that m,¢ = ¢, i.c. the following

diagram commutes:

Ok |[Gy]
© has dense image because the arrows ¢, are surjective. For the injectivity of ¢ take
N
0 € kerp, 0 = Z a;jo; with 0; € G, all different, then there must be a m € N such that
j=1

0j|k,, are all different so by Dedekind’s independence lemma ([Mil08, pp.52]) the oj|k,,

must be linearly independent. Then

0= n(0 Z U]\Kx = a=...=any=0=0=0.
7j=1
Finally, the actions are compatible because both coincide on O |[G,,]. a

From now on we will consider Og |G| as a topological subring of Ok [[Go]]-

Remark 6.3.2
1. By Lemmal6.21l for 0 € G, there we can consider the power series:

[5(0)] = (1+ 1)) —1 € TOK[[T]),
therefore for any f € K((T)); there is a well defined power series

o-f=f(x()) € K(T)H
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2. Forue Qie u= anH — 1 and o € G we have
(0 N)(w) = f([r(0))(w) = f(Garr — 1) = o(f(w)).

3. For 0 € Go and f € K[[T]]; we have that (o - f)([a]) = o - f([a]). This is a
consequence of Remark [6.2.2 since (o - f)([a]) = f([s(o)a]) = f([a] o [k(0)]) =
- f([o])-

Theorem 6.3.1 There is a unique continuous structure of Ok [[Goo]]-module on K((T))1

which extends the K-module structure such that for all f € K((T))1 and 0 € G, we have
o f=f([r(e)]) = F(L+T)") —1).

Proof. Let 0 € G and [k(0)] € TOg[[T]]. By part 3 of Lemma B.4Tl for f € K((T))1
we have that f([k(0)]) € V} then by linearity for any § € Og[G ]| we have that 6-f € V; C
K((T))1. In particular we have an O [G]-module structure on K((T"));. For extending
the action of Og[Go] to an action of Ok[[Gx]], by Lemma 631 it is enough to prove
that it is continuous on Ok [Gs]. For this purpose take (0,, fn) € Ox[Gs] X K((T))1
such that (0, f,) — (0, f). Note that

en‘fn_e‘f:Hn'(fn_f)+(9n_9)’f'

Now taking ¢ > 0, 0 < r < 1 and g, = f, — f, for n big enough we have g, € V(r,e),
then 6, - g, € Vg, € V(r,e) which means that lim 6, g, = 0. For the remanning case we
n—oo

need:

Lemma 6.3.2 For (0,)nen € Ok [Goo] such that lim 6, = 0 and f € K((T))1 we have
n—oo
that lim 6, - f = 0 with respect to the compact-open topology.

Proof. Suppose first that f € Og((T')). Since Ok[[G]] acts continuously on K, for
any x € Ko, nh_)ngo 0,(x) = 0. Now using part 2] of Remark we have that for any
0 € Ok |[Goo) we get (0-f)(u) = 6(f(u)) then for u € , nh_)ngo(enf)(u) = nan;O On(f(u)) =0.
By Theorem we may conclude that 6, - f = 0 as we wanted. For the general case,
taking f € K((T')); we have that the truncations P, (f) € a,Or ((T)) for some a,, € K*
and since for any 0 € Ok [Goo), P (8- f) = P (8- Po(f)) we have that nh_)ngo Pn(0n-f)=0
for any m € N. Therefore by Proposition [5.2.1] we get nh—>n;o 0, f=0. O

6.4 The Norm Operator

Let O,,p, denote the ring of integral elements of K,, and its maximal ideal respectively

and Qy = {(J.s1 — 1|a € Z} i.e. the set of non zero roots of [p"*1]. For f € Ok|[T]] and
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u € Ok let us denote u[+]T = (1 +u)(1+7T) — 1 and
fu(T) = f(u[+]T) = f(1+u)(1+T) - 1) € Ox[[T]].

We will say that f € Og|[[T]] is 2, invariant if f, = f for all u € Q,, i.e. if for 1 < a < p"*!
we have f(T) = f( gnﬂ(l +T) — 1), for example [p"*!] is always (2,, invariant.

Lemma 6.4.1 If f € Og/[[T]] is Qo-invariant there exists a unique g € O|[T]] such that
f=9(lp])

Proof. Uniqueness: if g([p]) = h([p]), g and h coincide in U Oy, since [p](Qpt1) = Dy,

neN
we have that h|g = g|q, therefore by the unicity lemma, Lemma 2.3.3] we get g = h.

Existence: Let us suppose that for 0 < i < n — 1, we have a; € Ok such that

|
—

n

F= alpl +[p]" fa, (6.1)

i

Il
o

for some f,, € Ok|[[T]] (for n = 0 such presentation is trivial) and consider g, = f,, — f(0).
By the preparation theorem (Theorem [£.2.1]) for g, exists u € N, u € Og|[[T]]* and P €
Ok|T) distinguished such that g, = p*P(T)u(T). On the other hand since f and [p] are
Qp-invariants, by equation (G.I]) f,, must be Qg invariant. But then P vanishes in Q, so it is

divisible by [p] (because it is divisible by T" and the minimal polynomial of (, —1). Taking

an = fn(0) we have that f,, = a,, + [p]fni1 therefore we get f = Zai[p]i +[p]"fr+1- In

=0
this way we construct a sequence (a,,) C K such that
f=>_ailp]" € [\[p]"Ok(T] =0.
=0 n>0
Setting g = ZaiTi we have f = g([p]). O

=0

Let K[[T]{® and Og[[T]]% be the subrings of K[[T]]; and Ox[[T]] respectively of Qo-
invariant power series. Last lemma implies that [p]* : Og[[T]] — Ox[[T]]% is an

algebraic ring isomorphism.

Lemma 6.4.2 1. Foru € Q) the maps from K((T))1 to itself: f+—— fu, are continuous

ring homomorphisms with respect to the compact-open topology.

2. The ring isomorphism [p]* : Og[[T]] — Ok[[T]]* is a topological isomorphism

with respect to the compact-open topology.
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Proof. (1) Since the maps f — f,, are ring homomorphisms, they are continuous if and
only if they are continuous at 0. For this let nlin;o fn=0in K((T)); and ' € Q then for
any u' € ' we have ,}Ln;o(f")“(u/) = nh—>nolo fn(u[+]u") = 0. Since u' is arbitrary in ' by
Theorem we have get 111Ln010 (fn)u=0.

(2) Let nh—>nolof” = 0 in Og|[[T]]. For any u € €, Ji%fn([p](u)) =0 but [p](Q) = Q
hence, by Theorem [(.3.2] nh_}nolo fn([ p]) = 0. Lemma says that [p]* is a bijection,

hence a continuous isomorphism, but by Corollary 5.31] Ok|[[T]] is compact, then [p]

must be a topological isomorphism. a

Theorem 6.4.1 The ring homomorphism

[p]*: KT — K[T]
o — f(p))

s a topological isomorphism with respect to the compact-open topology.

Proof. By Corollary 5411 [p]* is continuous and it is clearly and homomorphism. Let

K- O[] = {a f| (o f) € K x Og[[T]]} and K - Ox[[T]]% = K - Og[[T]] N K[[T]]}".

By Lemma it is easy to see that [p]* maps K - Og/[[T]] onto K - Og[[T]]*. Since

both sets are dense respectively in K[[T]]; and K[[T]]{*, then [p]* is surjective. We only

need to prove that [p]* has continuous inverse in K - (’)?{0, since by continuity it can be
Qo

extended to a continuous map defined in K[[T]];° and it will be the inverse of [p]*. For

this we will need the following claim:

Claim: Let h € K[[T]]1, r € p@, p_ﬁ <r<1andt=7r"P. Then ||hl, = IR ([p])]:-
p

Let ¢ € S¢ie. [(| =t, then [p]({)=(1+()P —1= Z <g>(k Note that

()¢

1
Since p~ »-1T < |(| we have that for 1 < k < p — 1: %|C|k < %|C| < |¢|P therefore r is a

P ifk=p
SICF 1<k <p—1.

regular radius for [p] and [p](S:) C S, in particular |h([p])||¢ < ||h||;. Now by Theorem
B.1.2] there exits £ € S, such that ||h]|, = |h(€)|. Now taking ¢ a root of [p] — & we have

[p](¢)| = r, since My, is strictly increasing we must have that |¢| = ¢, therefore

I11llr = [RE)] = [R([P]()] < IR(Dlle < 1]l

Returning to our case by part 2 of Lemma ([ p]*)_l is well defined in K - O[Q{O and

by linearity we only need to check continuity at 0. For that purpose let us prove that
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for any f, € K - Og|[T]] such that lim f,([p]) = 0 we have lim f, = 0. By last claim
for any r, p_% <7 < 1 we have ||fullr = || fa([p])]],1/0, but for any s € p% we have

lim || fn|ls = 0, therefore lim f, = 0. O
Theorem 6.4.2 There exists unique map Norm Nrg : Ok[[T]] — Ok|[[T]] such that

Neg(F)([p]) = ] fur (6.2)

u€Np

Further, this map is continuous and multiplicative i.e. Nri(fg) = Nrg(f) Nrg(g).

Proof. Let F: Ok|[T]] — Ok]|[T]] defined as F(f) = H fu. Clearly F'is multiplica-
u€e)
tive and, by part 1 of Lemma [6.4.2] continuous. For f € Ok[[T]], since (fu)w = fu+]u

F(f) € Og[[T)]®. Therefore by Lemma we can define a continuous map Nrg =
Fo ([p]*)~! which satisfies (6.2).

Remark 6.4.1

1. ord(Nrg(f)) = ord(f). Since F = Nrg(f)([p]) = H fu we have that ord ' =
u€N
pord f = Z ord fy, on the other hand for u € €, ord f, = ord f, therefore we

u€
may conclude.

2. Letny, = (yn+1—1, since [p](nns1) = un we have Nrg (f)(nn) = Nrg kn + 1n(f(nn41)),

further by induction we get

Ntk (£) () = Nug ke + kn(f (nsr)).-

Let Ag = %iﬂlzp[Gn] (respect the canonical restrictions), since the inclusions Z,[G,] —
Ok|G,] are compatible with the Lemma [631] for the case K = Q,,we get that Z,[G] is
canonically densely immersed in Ag.

Now by Lemma for f € Mg and a € Z, then (a, f) — f* is a well defined and
continuous action, and it is easy to see that for f € My, o - f € Mg. Hence we have a
structure of Z,[G]-module on the multiplicative abelian group M. For this action we

will use the following notation: For 0 =Y ayoi, € Zp|Goo] and f € M we will denote

f9 — fZakok — H(Uk . f)ak‘

Lemma 6.4.3 There is a unique Z,|Goo|-homomorphism log : My — K|[[T]] such that

exp, log = Idsy,
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Proof. Note that for g € Mg we have the factorization ¢ = u(l 4+ f) and the map

g+— (u, f) € Uk x T Ok is continuous. Therefore we can define
log g = logyc + v f,

which is continuous by the continuity of A, in TOk[[T]] and the continuity of logy in U
Now since K is unramified the exponential map expy : pOx — U [1< is the inverse of log

and by part 1 of Theorem ZZI we have exp(\.(f)) = 1 + f, therefore
exp(log g) = exp(log u) + exp(A«(f)) = u(l + f) = g.
By part 2 of Theorem B2 for 1+ f,1+ g € 1 + TOx we have that
log((1+ f)(1+9)) = Mf[+]g) = A(f) + A\(g) = log(1 + f) + log(1 + g).

In particular for n € N, log((l + f)") = nlog(l + f), therefore by continuity we get
log((l + f)o‘) = alog(l + f) for any a € Z,, hence log is a Z,-homomorphism. Now for
a € Zy, (o] € T K[[T]], by Corollary 2.1.1] part 2l we have for any h € T K[[T]] that

Then for f € Mgk and 0 € G, we have

log(o - f) =log(f([1(0)])) = (log(f))([k(0)]) = o - log(f).

Then log is a Z,[Gs]-homomorphism. O

Theorem 6.4.3 The set My has a unique structure of continuous A -module which ex-

tends the Zp|Goo] action i.e. f € Mg, a € Z, and 0 € G we have

a-f=f"ando-f= f([x(0)])

Proof. As in Theorem [6.3.1] (since Zp[G o] is dense is Ag) the continuity of the action
of Z,|G) is enough to get an extension to a unique continuous action of Ag on Mg . For

this, let (6p, fn) € Zp[Goo] x Mg such that §, — 6 and f, — f. Notice that

(fa)0m =(fuf1)0 fOn (6.3)

Let us prove that (f,,)? — f%: Take u € €', for any g € My and § = 3 apoy, by Lemma
231 and Remark [6.3:2] we have that

g"(w) =[]l 9)™ (u) =[] g(o(w))™.
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Now since fn(o(u)) — f(o(u)) and using the continuity of Z, multiplicative action we

have that
(f) () =[] fulo ()™ — T flow)™ = fo(w),

then by Theorem (.3.2] we have fo» — f? By equation (6.3)) it is enough to show that if
gn — 1 then g%» — 1, but since log is continuous we have log(g,) — 0 and by Theorem

6.3.1 and Lemma .43 log(g%) = 6,, - log(gn) — 0, therefore using Lemma B.2.3] we get

gor = exp, (log(g%")) — 1,

as we wanted to prove. O

Remark 6.4.2
1. If 0 € Goo, f € K((T))1 and u € B’ then we have (- f)u = fu([k(0)]) =0+ fu-
Note that (o - f)u = f([r(0)]), = f([5(0)](u[+]T)), therefore

(0 flu=f(1+ )1+ TN 1) = £, ([(0)]).

Proposition 6.4.1 The map Nrg leaves invariant Mg and My, further Nrg restricts

to a Ag endomorphism of My i.e. for all @ € A and f € Mg,
Nrg(0-f)=6-Nrg(f).

Proof. Since Nrg is multiplicative, it leaves invariant 9ty and since it preserve Og[[T]
we have Nrg (Mg ) C Ox[[T]]NMk. Now since Nrg = F([p]*)_1 (see Theorem [6.4.2)) the
first coefficient of Nrg(f) is the p-th power of the first coefficient of f, then Nrg(9Mx) C
M. Since Nrx is multiplicative it does commute with the Z-action on Mk, therefore by
continuity it must commute with the extended action of Z,. Now, by last lemma we have

(Nege (o ) ([p)) = [ @ Hu= [ £ulls(e)]) = (o - Nex(£) ([p)),

u€o u€fo

hence Nrg (o f) = o-Nrg(f). We have proven that the norm commutes with the Z,[G |-
action therefore by continuity of the norm it must commute with the Ag-action i.e. the

norm must be a Ag-endomorphism. O

Theorem 6.4.4 There exists unique map Trg : K[[T]l1 — K][[T]]1 such that

Tre(H)([p) = 3 fu (6.4)

ueNg

further it is a continuous Ok [[Goo]]-homomorphism.
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Proof. Let S: K[[T])y — K[[T]l1, S(f) = Y _ fu- By part 1 of LemmaBZZ S is a
IS oA
continuous ring homomorphism and as in the case of the norm is ¢ invariant, then by

Theorem 6.4.1] we can take Trx = S o ([p]*)~!, which is a continuous endomorphism of

Ok |[T]] satisfying (6.4]). By part [B] of Remark and Remark we have that

(0 Trx f)([p]) = (Trie f([p])([K(0)]) = (Z fu> k@) = o-(fu) =D (0 flu

uey u€e ueg

Therefore (o - Trx f)([p]) = (Trx (o - f))([p]) hence o - Trg f =0 - (Tri f). O
Remark 6.4.3

1. Since Trg leaves Ok [[T1]] is invariant, Try is a continuous Ok [[G|]-endomorphism

of O [[T]].

2. Let np, = (ynt1 — 1. As well as in the case of the norm we have
(a) Tri f(nn) = Trg, .1 /K, (f(Tanrl))'
(b) For f € Ok[[T]], Tri(f) = 0mod p" O [T].
3. For g(T) € Okl[T]] then Tri(g[p]) = pg. Just note that since h = g([p]) is Qo

invariant, Tri (h)([p]) = ph. Therefore, by definition of Trg, Trx(h) = pg(T).

Proposition 6.4.2 For f € My we have Tri(log f) = log(Nrg f).

Let f=14+ge My =1+TOk[[T]]. Then f([p]) =1+g([p]) and f, =1+ g(u[+]T) €
M, hence by part 2 of Corollary 2.1.T] we have

log(fu) = Mg(ul+]T)) = (A(9)) (u[-+]T) = log(f)u,

log(f[p]) = Ag([r])) = (M9))([p]) = log(f)([p])-

Therefore

[p]*(log Nrc f) = log((Nrx f)([p])) =log [] fu= D_ log(fu)

[ISION) IS

= " (log f)u =(Trk(log £))([p]) = [p)*(Trx log f),

u€eNp
Since [p]* is injective we must have that Trx (log f) = log(Nrg f). Now the general case

follows from the fact that Nrg, Trg and log are Z,-homomorphisms. O

Let us consider the extension of the Frobenius ¢ : K((T"))1 — K ((T')):1 given by its action

on coeflicients i.e.

© <Z anTN> => (an)T".
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Remark 6.4.4
1. ¢ is a ring homomorphism and ¢(f) = fP mod p.

2. Since A = Gal(K /Qp) = Gal(Koo /ono) (the isomorphism is given by restriction)
we can lift ¢ € Gal(Koo/ono), which acts as the usual ¢ on K and trivially on all
p-th roots of unity.

3. Since for every a € Ok, |¢o(a)| = |a| we have that ||o(f)|l» = || f||- for any r € p¥,

in particular ¢ is continuous.

4. ¢ commutes with evaluations i.e. if f € Ox((T)) and g € T Ok|[T]] then (f(g)) =
(cpf) (¢g). This follows by Proposition and the continuity of ¢ (since it is true

when f, g are polynomials).

5. ¢ commutes with Nrg. Since ¢ is a ring isomorphism we have

e(Ne(£)([p]) = [ e(fu) = TI ©(F)u = Nex(o())([p].

[ISION) u€o

because p(fy) = o(f(u[+]T)) = o(f)(u[+]T) = ©(f)u. On the other hand

(N (f)([p]) = ((Nrx £))([p]),

then by Lemma[6.2.2 we have Nrg ¢(f) = ¢ Nrg(f).

Lemma 6.4.4 Let n > 1, g = 1mod p"Ok|[[T]] and h € Mg, then:

1. Let f € Og[[T)). If f([p]) € PN Ok|[T]] then f € pN O|[[T]].

2. Nrg(g) = 1mod p" M Ok |[[T]]
Nri (h)

) W = 1mod p"Ok|[T]] i.e.

PPN (f) = T N () mod pt.

Proof. (1) Let f = > a,T™. Since [p] = TP modp, if f([p]) € pOk[[T]] then f([p]) =
Zan[p]" = ZanT"” = Omod p, therefore f € pOk|[[T]]. Now if f([p]) € pV Ok|[[T]]
taking h = Iﬁf we have that h([p]) € pOk|[[T]] then, by the previous case h € pOk|[[T]]
therefore f € pNOk|[[T]].

(2) By part 1 it is enough to show that F/(g) = 1mod p"*!. For this take u € Qo C po, then

[
[

9
9

u[+]T = Tmodpy and g, = g(u[+]T) = gmod p"pg. Therefore F(g) = g = 1mod p"py
but this means that the coefficients of F(g) — g? lie in p"po N O = p" Ok ie. F(g) =

n+1 n+1

1modp and by part 1 Nrg(g) = 1modp
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(3) First let us prove the case n = 1: Without loss of generality we may suppose that
h=>a,T" € Ok[[T]], because if h = hgT~" for some N > 0 and ho, T € Ok/[[T]] then
with our assumption we have:

Nrg(h) _ (NrK(TN)>_1NrK(h0) Nrx (ho)

() ST ) o) plhe) MO

Now, ¢(h) = ZafLT" and hP = ZaﬁT"p mod p, then ¢(h)(T?) = h?Pmodp. On the

other hand F'(h) = h” modpyp, and since both series have integral coefficients we must
have that F'(h) = h? mod p, then Nrg (h)(TP) = h” mod p. Therefore

Nrg (h)(T7)

() (T7) = 1 mod p,

NI‘K(h)
¢(h)

and ¢g,+1 = Nrg(g,) for n > 1. We have seen that gy = 1 modp

then, looking at the coefficients, it is easy to see that = 1mod p.

Nrg(h)
¢(h)

and since the norm and ¢ are multiplicative we have that

Now let g1 =

Nr (h)
9n = n—1 )
QD(NTK (h))
then by part 2 is easy to conclude that g, = 1 mod p™. a

From part 3 of last Lemma we have that
P PN (f) = o FTY NET () mod p*,
hence we are able to define

Definition 6.4.1 Let us define Nr% : Mg — Mg as NrP(f) = lim ¢ " Nrii(f) and
M. as the set of f € My such that Nrg(f) = ¢f.

Remark 6.4.5
1. From definition Nrg (Nr%2(f)) = ¢(Nr2(f)).

2. If f € MY, then Nr® f = f, therefore N maps My onto M.
3. Since Nr(f) = f mod pOk|[T]], we have that M7, C M.

4. Since Nrg and ¢ are continuous we have that E)ﬁf} is closed. Further, since Mg is

compact we have that 9%, is compact.

Proposition 6.4.3 Nry : Mg — ﬂﬁf} is a continuous a Ax-homomorphism.
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Proof. Since Nrx and ¢ are Ax-homomorphisms and the continuity of the Ax-action
on My, by definition of N*°, it is must be a Ax-homomorphism. Hence it is enough to
check the continuity in 1. For this take a sequence (fy,)nen C My convergent to 1, then
for N € N there exist ng € N such that for n > ng f, = 1mod p” O|[[T]] therefore by
part 2 of Lemma and definition of Nr7% we have that

Nr2(fn) = o N NrX(fn) = Lmod p™ Ok [[T7]].
But, this means that lim Nr%(f,) = 1. O

Proposition 6.4.4 Let M =1+ pOk|[T]]. The sequence

Nr%e
1 — My — QRK:ZW}’} — 1
(3

18 a split exact sequence of topological A -modules, where i is the inclusion.

Proof. We only need to prove that ker Nr7® = 9. 1. By part 3 of Remark [6.4.5] we have
that ker Nrg C 9. For the other inclusion take f € 9. Note that iterating part 2 of
LemmaB.24 we get Nt%(f) = 1 mod p* O [[T7]], therefore N1 (f) = 1ie. f € ker Ni®2. O

6.5 Local units and the Coleman Homomorphism

Let U™ be the principal units of K, i.e. U™ =1+ Pn.

Remark 6.5.1
1. Notice that for m < n, Nrg k‘nm(U(")) C U,,. Further, since for | < m < n we have
Nrg kml Nrg knm = Nrg knl, then the principal units constitute an inverse system

with respect to norms.

2. Each G,, acts naturally on U™ and, as in Corollary [6.2.1], we may define in U™ a

canonical continuous Zy-action, therefore we have a continuous Z,|Gy]-action.

3. Note that the canonical morphisms Z|G] — Z[Gy] induce continuous Zp[Gool-
action on each U™ . Therefore each of them can be extended to a continuous Ag-

actions on the respective U™.

4. For m < n the Z,|Gul-actions on U™ and U,, are compatible with Nrg, /i,
U™ — U, then, by continuity of the norms, they are compatible the respective

A g -actions, therefore we can induce a canonical topological Ag-action on lim U (),

—
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Definition 6.5.1 We define the group of local units Zx as lim U™ with the canonical

A -module structure.
Lemma 6.5.1 Let 1, = (yn+1 — 1. For every (an)nen € U}QC>O there is a unique g €
Ok|[T]] such that g(un) = ¢"(cu,).

Proof. The uniqueness follows immediately by the Corollary 4.2.21 For the existence,
first note that ¢ leaves p invariant, the ¢"(ay,) € U™. Now since 7, is prime in O, there

exists f,, € Og/[[T]] such that
Now, for any n,k € N by Remark we have

(0" Nrke frin) () = ¢ " Neg kn + kn(fosk(ntr)) = ©"(an). (6.5)

Let g, = ¢ " Nr'’%(f2,) and m = n + j with 7 > 0, note that by we have
K

(77 Nrje gm) (1) = ™™ Neg™ fom(ma) = @™ (cn),
and by 3 of Lemma

go_j Nrfk Gm =@ ™ Nr?z“ fom = ¢ " NI'E fom, mod p™ !,

then for m =n + 7, " (o) = (p 7 Nr]k 9m) (M) = gm () mod p™*, then

£ (@0) = gnm)] < (6.6)

Finally, (gm)men € Ok|[T]] (compact by Corollary [(£.3.1]) admits an accumulation point

g € Og|[T7]], then by @.8) g(n.) = ¥"(an). .

Theorem 6.5.1 There is a topological A -isomorphism ol : U11<,oo — Sm% such that

for u = (up)nen € U11<,oo we have

(Q:U[K(u)) (nn) = (Pn(un)

Proof. Let ¢, : M? — U™ defined as ¢,(f) = ¢ "f(w,). By part 2 of Remark
the ¢, are Zp[Goo]-morphisms and by Proposition and the continuity of ¢, they
are continuous. Therefore they are topological Ag-morphisms. Now iterating part 2 of
Remark B.4T], we have Nr&(f)(w,) = Nrg, ., /K, f(Wnik) therefore for n = m + k and

f € MY we have

On(f)wm) = ¢ " NIR @ PN (f)(wm) = @ " NeRHF Ny e (F)(@imak)
= Nrg,/k, ¢ " Nrg(f) () = Nrg, s, @ (F) (@),
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then the following diagram commutes:

h LNrKn/Km

Unm

Then they define a continuous Ag-morphism, ¢ : ML — U }QOO which is injective by the
uniqueness lemma (Lemma [2.3.3)), surjective by last lemma. Since 9% is compact ¢ is a

topological A g-isomorphism, therefore so does ' = ¢~ 1. a
. _ . 2(f)
Lemma 6.5.2 Let O : TOk|[[T]] — K][[T]]1 defined as O(f) = f — Y where

O(f) = (/) (1 +T)" —1).

For any f € T Ok|[[T]] we have that ©(A(f)) € Ok[[T]].

Proof. Since for each n > 1 factors uniquely as n = with £ > 0 and (a,p) = 1
have A(f) = S (—1)m1 L = 1)*H = T)] is closed, i
we have \(f) Z( ) ” Z Z [[T]] is closed, is

n=1 (a7p) kZO
enough to show that for any f € Ogl[[T ]],

k

@6: J;%) € Ox|[T]).

k=0

For this purpose we need the following claim:

Claim: For f € Og[[T]] and k € N we have ®(f?") = f**"" mod p*+1.
Let g be defined by [p] =T? + pg and f =) a,T™. Since

o(f) = ef([p) = D_¢(ap)(TP +pg)" = > ahT™ = fPmodp,

k41

the claim is true for k = 0. Now, for a k > 0 assume that ®(f7") = f**"" + p*1h, with

hi € Ok[[T]], therefore

k+1 k+1
)

(Y = o ((p]) = () = (T + P )P = T 4 pF Py,

for some hy12 € Ok|[[T]], hence the claim is true for k + 1.

We can restate the claim in the following way: for every k € N we have that

prt! p
£k+1 - @";—k € Ok|[T]].

k
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this means that for each N > 1 there is a gy € Ok/[[T]] such that

N k N k N k N
fr fr fr fr

@<Zp—k =) F T = -y

k=0 k=0 k=0
pN
Since A}im F = 0 and ¢ and [p] are continuous we have that © is continuous and
00 : N k
id . o .

Lemma 6.5.3 The map Oq : Mxg — Ok|[[T]] defined as
Oa(f) = ©(log f),
18 a continuous Ax-homomorphism.

Proof. Since log and [p]. are continuous Ax homomorphism, so it is ©gq. Therefore it
only remains to check the integrability of its image. For this let g € T'Og][[T]], by Lemma
we have that Oq(l + g) = O(A(g)) € Ok|[T]]. Now for f € Mg we may write
[ =a(l+ g) where a =1+ h(p) with h € TZ,[[T]] and g € T Ok|[[T]], then

Oq(f) = ©log(1 + h(p)) + Olog(1+ g) = O(A(h))(p) + O(A(9)) € Ok[[T]).

For the following we will need an integral version of the normal basis theorem:

Lemma 6.5.4 Let E/Q, a finite Galois unramified extension of degree f. Then there
exists a 0 € Op such that 0,0(0),...,0'71(0) is a Z,-basis of O.

—f—1

Proof. Let 6 € kg anormal primitive element kg / [F, i.e. an element such that 0,6",...,6"

is a I, basis of kg. Fix 0 € Op a lifting of 9, then the set
R = {10+ byp(6) + ... + by 7H(0) [0 < b <p—1},

is a system of representative of kg in Op. Since p is a uniformizer of pg, for each a € Op

00 f—1
we have that a = Zajpj with a; € R, hence a; = ij,kcpk(ﬂ) with 0 < bjp < p— 1.
5=0 k=0

f-1,00
Therefore a = Z( bj,kpj> ©"(6) then
k=0 \j=0

O = Zp0 + Zpp(0) + ... + Zpp' 1(8).

-1
Now if Zakgpk(H) = 0 for ay € Z, we may assume that at least one oy, € Z;, but
k=0
_ -1
reducing mod p it contradicts the fact that 6, 6’,....8" area IF,, basis of kg, therefore
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0,0(0) ...,/ 1(0) must be linearly independent over O. O

Lemma 6.5.5 Let b€ K and n € Z. Consider the equation in K :
b=a—¢(a)p" (6.7)
1. If n # 0 then the equation has always unique solution.
2. If n =0 the equation is solvable if and only if Trg g, (b) = 0.
3. If n # 0 the equation has a solution in Q, if and only if b € Q.

Proof. By last lemma there is a § € K such that 6,(6)...,0/71(0) is a Z,-basis of

-1 -1
Ok, therefore a Q,-basis of K. Let b = Zbkcpk(e) and a = Zakcpk(e). By linear
k=0 k=0

independence equation (6.7)) is equivalent to the system of equations in Q,
by = ap — ap—1p" for 0 <k < f —1 where a_y = ay_;.

In matrix notation:

1 0 0 0 —p
aop bo
" 10 0 0
ay b1
0 —pm 1 0 0
a9 = b2
0 0 —p" 0 0
af_ br_
0O 0 0 1 /= /=

(1) Since the matrix of the system has determinant 1 — p"/=1 for n # 0 the system is
always solvable.

(2) For the case n = 0 if the equation has solution we must have Zbk = 0 and since

k
the matrix has rank n — 1 then the equation has solution if and only if > b, = 0.
-1
Now, Trg/q,(b) = Zbk Tr/q,(0), hence the existence of a solution is equivalent to
k=0
TI‘K/Qp(b) = 0.

(3) It follows from the fact that the matrix preserve the space of vectors (ag, a1,...,a5-1) €

Qg such that a; = 0 for k # 0.

As before, let ¢; : K[[T]] — K the first coefficient projection i.e. ¢1(f) = f/(0).
Lemma 6.5.6 O(K[[T]]) = ker(Trg g, oc1)-

59



Proof. Note that for f =" a,T" € K|[[T]] we have

a a k
o(f) = Z O(a,T") = <a0 - (P(po)> + (a1 —(a1)) T + Z(aka - %) (6.8)

k>2

Note that for n > 2 the n-th term of ©(f) is given by

() = an = = 3 planlen([p 1Y), (6.9)

k>2

p—1 p—1
and since [p] E Z <p>Tj then [p]k — Z <p> <p>T]1++Jk therefore for

=1 Jiage=1 M I
kE<n<k(p—1) we have

w)= 2 () ()= oty 0o
et M I Omodp if k<n<k(p—1)
1<ji<p—1

and 0 otherwise. So in equation ([6.9]) we get for n > 2:
1
n(O() = an — plan)p" " == > plar)en([p]"). (6.10)

p .,
E§k<n

Now given g = > b,T™ € K][T], for solving the equation ©(f) = g, with f = ZanT”
n
by ([6.8) and (6.I0]), we need to solved simultaneously the system:

bg = ag — (’D(ZO), b1 = a1 — ¢(ay) and b, = a,, — <,0(an)p"_1 for n > 2.

1
where b, = b, + — Z o(ak)en ([ p]¥) which is well determined when we know aj, for
Dlk<n
2<
k <n. By Lemma[6.5.5] the only condition we need is that Trg g, (a1) = 0, therefore that

f € ker(Trg q, oc1). O

Theorem 6.5.2 The following sequence of topological A -modules is exact:

Ie% (C]
| — Z,(1) 2w 9mye 22 Ok [[T]) 2 7, (1) —> 1,

where ag(a-C) = (1+T)%, Br(f) = Trg g, f'(0) - ¢ and ¢ = ({yn+1)nen-

Proof. Tt is clear that a is injective and S is surjective. By Lemma[6.5.2] we have that
Oa(Mx) C Ok|[[T]] and by Lemmal[6.5.6lits image is exactly ker Sx. Then we only need to
A
check exactness at M. Since log(1+T)* = a) and O(a\) = a®(\) =\ — (p]) =0 we
p

have that ©qax = 0. It remains to prove the other inclusion. For that take ¢ = uf € Mg
o0
with f =14 a1T mod T2, then logg = logu + a;T + Zaka. If ©q(g) = 0 by equation

k=2
(6.8)) we have that:
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log u

1. (p—1)logu =logu — =0, hence logu =0 1i.e. u=1.
2. a1 = ¢(a1), hence a; € Z,,.
3. For k > 1,if ay,...,a; € Qp by equation (6.9) we get ary1 € Qp.

Therefore f = g € Q,[[T]]. Now let h = log f — a1\ then h = 0mod T2 and ©(h) = 0 i.e.
ph(T) = h([p]). Since

h=0mod TF = h([p]) = 0mod T?*,
we must have h = 0, then log f = a1 A ie. f=(14+T)" =ag((™). O
Lemma 6.5.7 Og[[T]] = Ok[[Gs]] - (1 + T) + O [[T]]® as Ok [[Guo]]-modules.
Proof. First, note that by Theorem we have that
O ([T = [p]"(Ok([TN) = {9([p]) | g € Ok [[T])}.
Now, let a € N. If a is prime to p, take o, € G such that k(7,) = a, then
0o (14+T)=(1+4+T7)" € Og|[[Gso]] - (1 +T),
is a monic polynomial of degree a. If a = pb we have that
[p]* = ((1+T)" =1)" € Ok[[T]™

is a monic polynomial of degree pa. Therefore the O [[Go]]-submodule Ok [[Goo]] - (1 +
T) + Ok[[T]]®% contains monic polynomials of any degree, so must be dense in Og[[T]],

but since it is compact they coincide. a
Definition 6.5.2 We define ¥ = ker Trx = {f € Ok|[[T]] | Trx f = 0}.

Theorem 6.5.3 7 is a principal Ok [[Goo]]-module generated by 1+ T.

Proof. Let h = Trix(1+ 7). Since h([p]) = Z ¢(14+T) = 0 we have h = 0, then
=
(1+T) € ker Trg and since it is a Og[[Goo]]-module, Ok [[Go]] - (1 4+ T) C ker Tr. Now

by part Bl of Remark if h = g([p]) € O[T]]* we have Trg(h) = pg, but it implies
that
O[T n ¥ =0,

therefore Ok [[Goo]] - (1 +T) N Ok[[T]* = 0. By last Lemma we get
Ok ([T]] = Ok [[Gx]] - (1 +T) ® Ok [[T]]™,

then we must have Ok [[G]] - (1+T) = 7. O
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Theorem 6.5.4 We have that ©q(IMY.) C ¥. Further the sequence of Theorem [6.5.2

induces the following exact sequence of Ok|[[Go]]-modules:

Bk

L= Z,(1) g 20y P 7, (1) 1

Proof. Let f € My . Taking trace of Oq, we get
1 *
Tri O, (f) = Tri(log f) — ESDTrK([p] log f).

By part ] of Remark we have Trg ([p]*log f) = pf and by Proposition
Trx (log f) = log(Nrg f) therefore

Trg Oay (f) = log(Nek f) — log(ef) log<N;f;f ) (6.11)

Then f € MY, if and only if Trg Oq,(f) = 0i.e. Oq,(f) € ¥. About the exactness, since
ar(Zy((1)) C MY, the sequence is exact in MY, For g € ker Bk, there is a f € mg such
that g = Oq,(f) then by ([611]) g € ker Bx N ¥ if and only if f € MY, so the sequence is
exact at ¥, therefore it is exact. O

The following diagram summarizes much of the maps we have defined:

Oq
My

— Ok|[[T]] (6.12)

M ¥ = Okl[Go)] - (1 +T)

Since Ok [[Go]] is compact, and the action on 147 is injective and continuous, there exists

a well defined continuous map Col : U[l{po — Ok|[[Gso]] characterized by the relation
OqaCol(u) = (14 T)C®),

It will be useful in the next chapter.
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Chapter 7

Coleman-Iwasawa-T'suj
Characterization of the p-adic

L-functions

7.1 Coleman semi-local Theory for Abelian number fields

Proposition 7.1.1 Let K/Q a finite extension and for p|p let (Ok), be the completions

of Ok at p. The projections Oxg — (Ok )y induce a canonical isomorphism
Ok @2 Zp = [[(Ok)p-
plp

Proof. Both Z,-modules are free and have the same Z,-rank since (Og), has Z,-rank
epfp and n = Zp‘p epfp. So it is enough to check that the canonical map is surjective, but
this follows by the Chinese reminder theorem.

Let F' be an abelian number field unramified at p and A = Gal(F/Q).

Remark 7.1.1
1. Since A is abelian decomposition groups of each p|p coincide, so we can set A, as

the common decomposition group.

2. Since F/Q is unramified at p we have a Frobenius element element ¢ € A, charac-

terized as the automorphism of F' which satisfies p(a) = a? mod p, for all p|p i.e.
v(a) = a? mod pOp.

Further ¢ is a generator of A,,.
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If p|p let us denote F}, the completion of F' at p and Op = (Op), the ring of Z, integral

elements of Fj.

Definition 7.1.1 We define the topological ring

6}7 = H(’)p gOF(XJZZp
plp

endowed with the product topology.

From now on fix p’|p. For each p|p the rings O, and Z,[A] has natural structure of Op[A,)]

modules, further since A/A, permutes transitively all the primes above p we have that
Or = [[ Op = Op @7,1a,) Zp[A]- (7.1)
plp

Last isomorphism describes the Z,[A,]-action on Op. Indeed this A-action explicitly can
be describe in following way: Let .7 a set of representatives of A/A,, then for § € A there
is a unique decomposition 6 = 7o where 7 € .7 and 0 € A,. Therefore there is a well

define action
6+ (ap)pp = (7(aq)),, € Or, (7.2)

where g = o~ 1(p).
Lemma 7.1.1 1. Let M a Zy[Ap]-module. Canonically we have:

M = H My = My ®7,(a,] Zp[A].
plp

2. The Zp[Ap|-module Zy[A] is flat.

Proof. (1) Since canonically M=~ HM ®z(a,] Op, by the isomorphism (Z.I]) we get
plp

M = M @z, [] Op 2 My ®2,a,) Zo[A].
plp

(2) Follows directly from (1) since the localizations and finite products are exact. 0

7.2 Kummer theory for abelian unramified extensions

For n > 0 let F,, = F(Gn+1), Gy = Gal(Fn/F) and as before put Fio = (U, Fn and
G = Gal (FOO /F ) Lemma [T.T.1] allow us to generalize almost everything we have done

in last chapter to the semi-local case for example:
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Theorem 7.2.1 The additive group Op[[X]] admits a continues Op|A][[Goo]]-action such
that for all 0 € Gso and f € Op[[X]],

o f=f((1+x)D) 1) (7.3)

Proof. First, since F is unramified at p we have canonically that G, = Gal (Fp/,oo / Fp/).
Now by Lemma [T we get Op[[X]] = OF, [[X]] ®z,(a,] Zp[A], hence it has a natural
structure of O, ,[[G]] module satisfying (Z3), and clearly we may extend this action to
an Op, [[Gu]] ®z,(a,) Zp[Al-action and therefore to an Or[A][[Goo]]-action. 0

Now, set

Mp = {f € Op[[X]] | f(0) = 1mod p}.

Canonically g = H Mp, = smpp, ®z,(a,] Zp [A], hence it has natural structure of topo-

plp
logical Zp[A][[Goo]] induced by the Z,[[Go]]-action on Mg, , therefore it satisfies (Z.3)).

Let Np : Mp — Mp the map induced by Nrp, ie. Np = Nrg, ®z,(a,11dz,(a) and
My = {f € Mp | Np(f) = ¢f}, where ¢ is the induced by the Frobenius acting on

coefficients. Note that canonically D% & Hzmﬁp = szip, ®z,(a,] ZplA]
plp

Definition 7.2.1 We define the semi-local units of F' as

Ur = [[ Uk,

plp

The Z,[[Goo]]-structure of U }700 induces canonically a Z,[A][[Gw]] structure n %, so in

such context we get:

Theorem 7.2.2 Let 1, = (i1 — 1. There is a topological Zy[Al[[Goo]]-isomorphism
Colp : Up — MY such that for u = (up)nen € %r and f, = Colp(u) € M7, we have

fn(nn) = " (un).

Proof. Take Colp = €olp, ®7,(a,) Idz,|a]- By Theorem[G.5.Iland the flatness of Idz,(a],
Colr has the desire properties. O

Let ® be the continuous endomorphism of Or[[X]] defined as

(f) = () ((1+X)P +1)

By Lemma we have a Z,[A][[Goo]]-homomorphism O : M — Op[[X]] defined by
P
0r(f) = (1) tox(s).
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From the diagram (6.12) we get

Therefore, for u € % , there exists a unique element Col(u) € Op[[Guo]] satisfying
Op(Colp(u)) = Col(u) - (1 4+ X),

which defines a Z,[A][[G]]-homomorphism Col : % — Or[[Gs]]. As every homomor-

phism, Col admits a unique extension to the total quotient rings

Col : Q(%r) — Q(Or[[Ga]])-

Since Q(%r) = lim(F, ® Q,)* = p” x Up we have that for x = p" u € lim(F, ® Q,)* with
u € Ur and every o € Gq,

(1-0)-z=p uo(pu) ™ =uc(u)™ € %.
Hence, the image of Col really lies in
Or[[Gx]]™ = {z € Q(OF[[Gx]]) | Vo € Gu, (1—0)z € Op[[Gso 1}
so we get the following an extension of €ol as Z,[A][[G]]-homomorphism:
Col : hm( ®Qp)* — (5F[[Goo]]N

Let T'y = Graul(F%C>O / Fp) = Z, . Since they are canonically isomorphic we may write I
instead of I'y, doing the corresponding identification in each case.

For a Zp-module Note that the cyclotomic character x : I' — Z; induces a natural
topological generator vy € I' such k(y9) = 1+ pd where d = [F : Q]. By Theorem
4311 for each p|p, we have an isomorphism of compact Op-algebras Op[[I']] = O,[[T]]
which identifies the topological generator 79 € I' with 1 4+ 7. Further, since we have a

canonical isomorphisms OF H O,][[T]] and (’)F H Op[[[T7]], therefore we get

plp plp
an isomorphism of compact O algebras which sends vg in 1 4+ T,

Or[[T]) = OF[[T]],



Since Gy = Gal(Fy/F) = Gal(Q((y)/Q), we may consider the Teichmiiller character
w:Go—Zy. For 0 <j<p—2,let

denote the idempotents of Z,[Go]. Since G = I' x Gp, the idempotents induce the

following decomposition of @F-algebras as Zy[Gp]-module @F-algebras

[\

p—2
Or[Goo] = €D €,0r[[T])[Go] = €D Or[[Te;
j=0

hS]
]
hS]

1%

Orl[Tle;. (7.4)

<
Il

o
<
Il

o

The last isomorphism is induced by vg — 1 + T

Lemma 7.2.1 The isomorphism given in (7)) extends uniquely to an isomorphism of

Op-algebras
p—2
5 =0r[Tleo & ) Op [1T])e;. (75)
j=1

Proof. As a morphism of Op-algebras it extends uniquely on the total quotient field and

therefore on Op[[G]]™. Since Op[[Guo]]™ is a Zp|A]-module we have

p—2
Orl[Gool™ = P ¢, Or (Gl
j=1
p—2 p—2
Then, each z € Op[[Gx]]™ have a unique decomposition z = Zejzn = Zx(”ej. By

i=1 i=1
definition (1—70)z € OF[[Goo]] then eg(1—70)z € eoOr|[Goo]] = Op[[[]]eq therefore there

exits 7(?) € Op|[[T)] such that egz = (y9 — 1) 717 (©eq. It is enough to show:
Claim: For 1 < j < p — 2 there exits ) € Op[[T]] such ejx = ~We;.

Since w’ # 1 there exists a 7; € G such that w’(7;) # 1, hence

p—2 p—2
(1 =)z € Orl[G]] = ) Orl[l']e; = D OF[[T]]e;.
7=0 7=0
Now the j-th component of (1 — 7;)x is given by
, Wi _
e;j(1—1)z = L W ()T 1 = 1) = 1L(T]):U(J)ej € Or|[[I[']e;.
p—1 T€G) p—1

Since 1 — w’(7;) is a unit we have that e;jz = y9e; with 49 € Og[[T]].
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We have proved that o € Op[[G]]™ it have a unique decomposition

p—2

z=(10—1)""0+> Ve
=1

with v®) € Op[[I]] and clearly all such z lie in z € Op[[G]]™ therefore we get (ZH). O

Definition 7.2.2 For u € lim(F, ® Q,) and 0 < i < p — 2, we define Col (u) as the

power series such that under isomorphism [7.5,

p—2
Col(u) — Z Col(j)(u)ej.
j=0

7.3 p-adic L-Function: Coleman-Iwasawa Approach

Let ¢ a Dirichlet character of first kind i.e p? { fy, d the prime-to-p part of fy,, F = Q((y)
and A = Gal(F/Q). We regard 1) as a character of G = Gal(@(gfp)/Q) and put x = ¢|a.

Then uniquely we can write
P = xw'

with some 0 < ¢ < p — 2. Using the notation of last section F;,, = F(Cpn+1) we have:
Lemma 7.3.1 gy, =1 — (107 "((y) € F,. The sequence

Nd = (Nd,n)neN

is coherent with respect to norms.

Proof. Since Gal(F,/F,_1) = {04 | 0a((pn+1) = (Cyn+1}, we have

Neoy (1= Grune™(Ca) = J] (1= ¢ ™(Ca))

a€F),
= 1— (G ()"
since ¢(Cq) = ¢ we get N, g,y (1 — G ™(Ca)) =1 — Grip™™(Ca)- O

Remark 7.3.1
1. Ifd #1 then n, q € U}n. Therefore ng € Ur.

2. The sequence 14 has Coleman power series fy, = €ol(ng) is 1 — (4(1 + X)), since

Qpn(f??d) =1- Cp"*lgd = fnd(Cp"+1 - 1)'
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Let & = Y s5en X(071)8 € Z[C4)[A]. &, acts naturally (on coefficients) on F[[X]] and since
£(¢q") = x(a)é(¢y), for every y € Op there is a unique J € Zp[x] such that

Ex (y) = g&x((f)

Definition 7.3.1 For v = xw' as before, we define Gy as

9u(T)Ex(Ca) = —& (Col® (1))

For f € Op[[X]], let

d
DF(X) = (1+ X) - F(X).
Lemma 7.3.2 Let f,, = Col(n4), then:
0 zn—1
E(DOFfr) xoez 1 = Z_:l(l - X(p)pn_l)anfox(Cd)-

Proof. By Remark [[31] f,,, =1 — (4(1 + X) therefore

O(fna) = p(fn) (14 X)P = 1)) =1 = 1+ X)P.

Now, by definition of ©r and D we have:

e Llef)
D(1-f)lafu = 7= 308
Ca(1+ X) ¢h(1 4+ X)P

I
=

<d<1+X)—1_<§<1+X>p—1
B 1+ X)L+ X)
Z(1+Xf—1 Z1+szn—1

a:l

Applying &, to both sides (since £((4*) = x(a)€(Ca))s

I I
SX(DGand)=< 1(1(62)(—,[_1 > 1+;J;pX) >§x(cd)

a=1

Finally, setting X = eZ — 1 we get:

f Za f Zap
EX(DQFfTIdNX:eZ_l = <a:1 ?;C;)i 1 — 2 Xe(Zan;)e_ 1 ) fX(Cd)
o) Zn_l o 7 n—1
- (Z Bl )Y B P2 ) £c(Ca)
n=1 ’ n=1 '

Lin this step we are using the general fact Zﬁ:l(CdT)“ = Tf L 7—76aT’, hence Za 1 (;C}T)la %C%—Tﬂ.
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Lemma 7.3.3 Let f € Og[[T))(1 + X). If

(Zﬁj > (14 X)

with B € Ox|[T]]. Then we have

DE£(0) = B;(r(70)" — 1) (7.6)
For all k> 1 with k= jmodp — 1.

Proof. Let = (1+T7)" and f = (T)e;-(1+X). Since 5(T)e; corresponds in Ok [[Go]]

to Z w! ()7 7148, hence we have that
p—1
T7€Go
:—Zwﬂ )T ) - (14 X) :—Zw] 1—|—X“(70T1).
T7€Go T7€Go

Now, since DF (1 + X)® = o* (1 4+ X)® and s(771)*¥ = w=*(7), we have

DEf = = 3 R (L X))
T€Go
- p% Y W) (E)R(E)" (1 + X)T08T)
T€Go

Therefore

Dkf(o){ B(k(vo — 1)) k‘E]:HlOdp—l
0 k# jmodp—1

By linearity (Z.€) holds for linear combinations of e; with polynomial coefficients. By

continuity of the derivative and the action it must hold for general power series. O

Theorem 7.3.1 (Iwasawa-Coleman-Tsuji) Let 1) = xw® as above. For k > 1 with

k=imodp — 1, we have

9o (50 1) = —(1 X)) 25X = L1 ),
therefore for any s € Z,
Ly(,5) = gy k(7)™ = 1).

Proof. Since Op(f, (X)) = Col(f,,)(1+X) = S ColW)(T)e; - (1+ X), by Lemma [7.3.3)
we have:

D¥ Col(f,)(1 + X)|x—0 = Col® (r(y0)* — 1). (7.7)
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Put X =e” — 1, then D = (1 + X)% = %. Applying D¥~! to (T17) we get

[ (H(’Yo)k - 1)§x(Cd) = Dk_lfx(D@and)

00 Zn—l
_ Dk—l (Z(l _ X(p)pn_l)Bmx—n' ) gX(Cd)?
el ’ Z=0
hence
G (/-i(’yo)k - 1)5}((@)
= Dk_lfx(D(aand)
00 n—1
= D1 Z(l — X(P)pn_l)Bn,XZTgx(Cd) Ex(Ca)
n=1 ‘ Z=0

= () TR (o)

This completes the proof.
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