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1 Approximation by rational numbers.

It seems, that the problem of approximation of given number by numbers of
given class was firstly stated by Dirichlet. So, we may call his theorem as ”the
beginning of diophantine approximation”.

Theorem 1.1. (Dirichlet, 1842) For every irrational number ζ there are in-
finetely many rational numbers p

q , such that

0 <

∣∣∣∣ζ − p

q

∣∣∣∣ <
1
q2

.

Proof. Take a natural number N and consider numbers {qζ} for all q, 1 ≤ q ≤
N . They all are in the interval (0, 1), hence, there are two of them with distance
not exceeding 1

q . Denote the corresponding q’s as q1 and q2. So, we know, that
there are integers p1, p2 ≤ N such that |(q2ζ − p2)− (q1ζ − p1)| < 1

N . Hence,
for q = q2 − q1 and p = p2 − p1 we have |qζ − p| < 1

N . Division by q gives∣∣∣ζ − p
q

∣∣∣ < 1
qN ≤ 1

q2 . So, for every N we have an approximation with precision
1

qN < 1
N . Due to irrationality of ζ every rational number may satisfy this bound

only for finitely many N . Hence, the inequality has infinitely many solutions.

Remark 1.1.1. It is possible to give slightly better bound:
∣∣∣ζ − p

q

∣∣∣ < c
q2 ,

here c = 1√
5
≈ 0.4472. This may be proved using countinious fractions. This

c is the exact bound and cannot be inproved for ζ equal to the golden ratio
1+

√
5

2 ≈ 1.618. Those statements are due to Hurvitz. See [1, 2] for details.

Remark 1.1.2. The irrationality of ζ is neccecary: if ζ = x/y, and p/q is an
approximation, we obtain

∣∣∣x
y −

p
q

∣∣∣ =
∣∣∣xq−yp

yq

∣∣∣ ≥ ∣∣∣ 1
yq

∣∣∣ ≥ 1
q2 for all denominators

of approximations except the finite number of them. But surely there are only
finitely many good approximations with bounded denominator!

Of course, some numbers may have much better approximations. This was
used by Liouville to prove existence of transcendental numbers.

Theorem 1.2. (Liouville, 1844). Let α be an algebraic number of degree d ≥ 1.
Then there is a constant c = c(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ >
c

qd
for every choice of integers p and q.

Proof. Suppose, that
∣∣∣α− p

q

∣∣∣ ≤ 1, in other case we may change p and decrease
the absolute value of the difference for the same q.

Let F (x) = a0(x − α1) . . . (x − αd) be the irreducible (over Q) polynomial
with root α = α1. Then F (p

q ) is non-zero fraction with denominator qn, whence∣∣∣F (p
q )

∣∣∣ ≥ 1
qd . On the other hand, we have
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∣∣∣αi − p
q

∣∣∣ =
∣∣∣αi − α + α− p

q

∣∣∣ ≤ |αi − α| +
∣∣∣α− p

q

∣∣∣ ≤ max
i 6=1

|αi − α| + 1 = C.

This implies ∣∣∣∣α− p

q

∣∣∣∣ =
F (p/q)

|a0|
∣∣∣α2 − p

q

∣∣∣ . . .
∣∣∣αd − p

q

∣∣∣ . . .
≥ 1/qn

|a0|Cd−1
.

So, we may take c = 1
|a0|Cd−1 and we are done.

Corollary 1.2.1. There exists transcendental (non-algebraic) number.

Proof. Take the number α = 1
21 + 1

22 + 1
26 + . . .+ 1

2n! + . . .. This series converges
and defines a real number. Denote by an the sum of first n summands of this
series. It is rational number with denominator q = 2n!. The remainder of the

series may be bounded as
∞∑

i=n+1

1
2i! <

∞∑
i=(n+1)!

1
2i = 2

2(n+1)! = 2
qn+1 . On the other

hand, if α is algebraic of degree d, we must have
∣∣∣α− p

q

∣∣∣ > c
qd for some c. Now

choosing n ≥ d such that 2
q < c leads to contradiction.

Remark 1.2.1. In 1871 Kantor proved (using the set theory just invented) that
the set of algebraic numbers is countable, but the set of transcendental numbers
is uncountable. Hence in fact almost all real numbers are transcendental. See
[3] for details.

The next direction of improving was the exponent d in Liouville’s theorem.
We state four theorems without proofs, which may be found in [2]. Those
statements will be as follows: for every algebraic number α of degree d, every
positive ε and any constant c there are only finitely many solutions of the
inequality ∣∣∣∣α− p

q

∣∣∣∣ <
c

qk+ε

and will differ only in the value of k. Note, that Liouville’s theorem gives
k = d.

It is easy to see, that finiteness of the number of solutions does not depend
on the value of c

Theorem 1.3. (Thue Theorem, 1909) k = n
2 + 1.

Theorem 1.4. (Siegel Theorem, 1921) k = 2
√

n.

Theorem 1.5. (Dyson Theorem, 1947) k =
√

2n.

Theorem 1.6. (Roth Theorem, 1955) k = 2.

Remark 1.6.1. We have seen, that for some algebraic numbers α and some c

even the inequality
∣∣∣ζ − p

q

∣∣∣ > c
q2 may always hold, but now there is no known

example of such α other, than quadratic irrationalities.

3



Remark 1.6.2. If for some c we have finitely many solutions, then we may
decrease it and find c1 (depending on α and ε) such that the inequality

∣∣∣α− p
q

∣∣∣ <
c1

q2+ε has no solutions. We have seen, that Liouville theorem gives us a possible
value of such c1. On the other hand, even Thue theorem is ineffective: there is
no known way to determine such c in general.

Remark 1.6.3. Lets state one of effective results (Bennett 1995): the inequality∣∣∣ 3
√

2− p
q

∣∣∣ < 1
4 6√32q2.5 has no integer solutions.

2 Wirsing conjecture and Wirsing theorem

From now on and until the end of the memoir we will use the following notations:
f � g iff for some c = c(ζ, d) we have f ≤ cg.
f ∼ g iff f � g and g � f .

All implied constants may depend on ζ and d.
Lets reformulate Dirichlet theorem:

Theorem 2.1. (Dirichlet, revisited) For every real number ζ, which is not an
algebraic number of degree 1, there are infinitely many algebraic numbers of
degree at most 1 ( denoted by α), such that

|ζ − α| < cH(α)−2

for some positive c = c(ζ). Here H denotes the height of algebraic number, i.e.
maximum of absolute values of its minimal integer polynomial coefficients.

It’s quite clear, that this theorem is the same, that the original one. Alge-
braic numbers of degree at most one are rational numbers, their height may be
evaluated as H(p/q) = max(p, q) if p and q are coprime, and if ζ−p/q has small
absolute value, then qζ ≈ p and q−2 ≤ H(p/q)−2 ≤ min(1, 4ζ−2)q−2 for good
approximations, so it doesn’t matter what to write - q−2 or H(p/q)−2.

So, now it seems logical to generalise it from degree one to higher degrees.
Wirsing Conjecture, 1960
For every real number ζ, which is not an algebraic number of degree at most d,
there are infinitely many algebraic numbers α of degree at most d, such that

|ζ − α| < cH(α)−f(d)

for some positive c = c(ζ, n) and f(d) = d + 1 .
This conjecture still unproved now.
One of first result was a theorem by Wirsing himself, for which we will give

a sketch of proof here.

Theorem 2.2. (Wirsing, 1961) Wirsing conjecture is true for all d and f(d) =
(d + 3)/2− ε.
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Remark 2.2.1. In fact, Wirsing obtained a slightly better result. He showed,
that f(d) may be taken equal to d+6

4 + 1
4

√
d2 + 4d− 4 − ε ≈ d

2 + 2 for d large
enough. See the next chapter or [5] for further details.

Proof. (Sketch) Let ζ, d be fixed. For every polynomial P (x) = b0

∏k
i=1(x−βi)

of degree k = deg(P ) ≤ d we define

pi = |ζ − βi|

and

Mζ(P ) = b0

k∏
i=1

max(1, pi).

Obviously, Mζ(P ) = M(P (x + ζ)), where M(P ) is the Mahler measure of P .
Then Mζ(P ) ∼ H(P ) and |P (ζ)| ∼ H(P )

∏k
i=1 min(1, pi).

Lemma 2.2.1. Let P (x) = b0

∏k
i=1(x − βi) and Q(x) = b0

∏l
j=1(x − γj) be

coprime polynomials, 1 ≤ k, l ≤ d.
Putting pi = |ζ − βi| and qj = |ζ − γj |, assume that p1 ≤ p2 ≤ . . . ≤ pk and

q1 ≤ q2 ≤ . . . ≤ ql. Assume also that p1 ≤ q1 ≤ 1.
Then one of the following holds:

1. p1 � |P (ζ)|H(P )−1 and β1 ∈ R,

2. q1 � |Q(ζ)|H(Q)−1 and γ1 ∈ R,

3. 1 � |Q(ζ)|2 H(P )dH(Q)d−2,

4. p2
1 � |P (ζ)| |Q(ζ)|2 H(P )d−1H(Q)d−2 and β1 ∈ R,

5. p2
1 � |P (ζ)|2 |Q(ζ)|H(P )d−2H(Q)d−1 and β1 ∈ R.

The proof is straightforward and uses only lower and upper bounds for the
resultant of P and Q.

The proof of the Wirsing theorem may now be finished as follows: due to
the theorem of Minkowski there are infinitely many polynomials P , such that
|P (ζ)| � H(P )−d. Then, of course, this estimate is true for at least one irre-
ducible factor of P . Taking in every case the factor with the maximal height,
we may deduce, that we have infinitely many irreducible polynomials with such
property.

If some polynomial R(x) is divisible by P (x), then we know, that H(R) �
H(P ). Assume, for example, that H(R) > c1H(P ) in that case and take the
symmetric convex body in Rd+1:

|r0| , |r1| , . . . , |rd| ≤
c1

2
H(P ),

∣∣r0ζ
d + . . . + rd

∣∣ < c2H(P )−d.

If c2c
d
1 is large enough, then there is a non-zero integer point in it, hence,

there is a polynomial Q, such that H(Q) � H(P ), and Q(ζ) � H(P )−d. This
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polynomial is not divisible by P because absolute values of all its coefficients do
not exceed c1

2 H(P ), hence H(Q) < c1H(P ). Hence P and Q are coprime (P is
irreducible).

Now we may use the previous lemma for them. Assume, for example, that
(4) holds. Then we obtain:

|ζ − β1| � H(P )−d/2H(P )−dH(P )(d−1)/2H(P )(d−2)/2 = H(P )−(d+3)/2 �
H(β1)−(d+3)/2.

Case (5) gives the same, cases (1) and (2) give even better bounds (with the
exponent d+1, as in the original hypothesis), and case 3 leads to a contradiction.
See [2] for further details.

3 Mahler and Koksma functions and original
Wirsing idea

Lets introduce two new definitions.
Definition. Let ζ be real number. Mahler function ωd(ζ) is the supremum

of all real numbers ω, for which there are infinitely many polynomials P (x) (of
degree at most d, with integer coefficients)satisfying the inequality

0 < |P (ζ)| � H(P )−ω.

Remark 3.0.1. The Minkowski theorem gives ωd(ζ) ≥ d if ζ is not an algebraic
number of degree at most d. On the other hand, it is known, that for almost all
(in sence of Lebesgue measure) ζ we have ωd(ζ) = d (Sprindzuk, 1963, see [10]).

Definition. Let ζ be real number. Koksma function ω∗d(ζ) is the supremum
of all real numbers ω, for which there are infinitely real algebraic numbers α of
degree at most d satisfying the inequality

0 < |α− ζ| � H(α)−ω−1.

We will write ω and ω∗ (without arguments) instead of ωd(ζ) and ω∗d(ζ) in
this section. Moreover, we suppose that ζ is transcendental.

Looking through arguments in Wirsing proof we see, that in fact we proved
ω∗ ≥ 1

2 (ω + 1). To see it we need only change d to ωd(ζ) in all exponents.

Theorem 3.1. ω∗ ≥ ω
ω−d+1 .

Proof. Choose pairwise distinct real numbers ζ0 = ζ, ζ1, . . . , ζd.
Let γ = ω(1 + ε)2 > d. For every H we may find (due to the Minkowski

theorem) an integer polynomial P (x), such that
|P (ζ)| � H−γ ,

|P (ζi)| � H for i = 1, . . . , d− 1,

|P (ζd)| � Hγ−d+1.
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Notice, that P (ζ) 6= 0.
From this system we may find coefficients of P . Because the determinant of

the corresponding system is a non-zero constant, we have

H(P ) � d
max
i=0

P (ζi) � Hγ−d+1.

On the other hand H−ω(1+ε)2 � |P (ζ)| � H(P )ω(1+ε) (the latter is true
due to definition of ω if His large enough). Hence H(P ) � H1+ε.

Lemma 3.1.1. Let A be positive real number. Let P (x) = a0x
s + . . . be integral

polynomial with roots α1, . . . , αs . Then∏
|ζ−αi|>A

|ζ − αi| ∼
H(P )

a0

and ∏
|ζ−αi|<A

|ζ − αi| ∼
|P (ζ)|
H(P )

.

(Constants in ∼ may depend on A)

Proof. The first part after suitable linear transformation becomes the state-
ment, that Mahler measure and height of polynomial are equivalent norms,
which is well-known. The second part follows from the first obviously.

Now choose such small A, that |ζi − ζj | > 2A for i 6= j. Then we have∏
|ζj−αi|<A

|ζj − αi| ∼
|P (ζj)|
H(P )

� H

H1+ε
= H−ε.

Hence, every small circle with center in ζj , j = 0..d − 1, contains a root of
P (x). Hence, every such circle contains exactly one root. This gives for the
nearest to ζ root α of P (x)

|ζ − α| ∼
|P (ζ)|
H(P )

� H(P )−1H−γ � H(P )−1− γ
γ−n+1 � H(α)−1− γ

γ−n+1 .

So, we are done.
Now we have two estimates for ω∗. The first one becomes bigger while

ω increases, the second one – becomes smaller. Hence, the minimal value of
max( 1

2 (ω + 1), ω
ω−d+1 ) occurs then both expressions are equal.

This gives
(ω + 1)(ω − d + 1) = 2ω

which has a root ω = d+
√

d2+4d−4
2 . This leads to

ω∗ ≥ 1
2
(ω + 1) =

d + 2 +
√

d2 + 4d− 4
4

.

So, we may take f(d) = d+6+
√

d2+4d−4
4 − ε, as it was announced in the

previous section.
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Remark 3.1.1. If ω = d, we obtain ω∗ ≥ d
d−d+1 = d, so in this case the original

Wirsing conjecture is proven. Due to the Sprindzhuk theorem (see remark 3.0.1)
Wirsing conjecture is proven for almost all numbers.

4 Davenport-Schmidt method for the case d = 2

In 1967 H.Davenport and W.M.Schmidt wrote a paper about Wirsing conjecture
for d = 2, i.e. approximations by quadratic irrationals. Here we give a short
sketch of their ideas, and we send reader to [4] for complete proof.

Theorem 4.1. (Davenport-Schmidt,1967)
For every real number ζ, which is neither rational nor quadratic irrationality,

there are infinitely many real quadratic irrationals α, which satisfy

|ζ − α| ≤ CH(α)−3,

where C > 160
9 max(1, |ζ|2).

Remark 4.1.1. There is no special sence of 160
9 , it may be reduced. Exact

value (as 1/
√

5 for rationals) is unknown.

Remark 4.1.2. The proof doesn’t show an algorithm of constructing such good
approximations (like continued fractions for rationals). It is only an existence
proof.

Proof. (Sketch) We restrict ourselves to case 0 < ζ < 1. Suppose, that
for sufficiently large H(α) and some C1 > 160/9 we always have |ζ − α| >
C1H(α)−3.

Let x = (x, y, z) be a vector in Z3 with ||·||∞-norm. We consider two linear
forms:

P (x) = 2ζx + y and L(x) = ζ2x + ζy + z.

Lemma 4.1.1. There is a number C2 < 9/160, such that if gcd(x, y, z) = 1
and max(|x| , |y| , |z|) is sufficiently large, then |P (x)| < C2 |x|3 L(x).

Note, that technical proof of this lemma uses the exact expressions for P
and L very much.

After this lemma we introduce a sequence of minimal numbers, that is the
sequence of yi, such that L(yi) is the smallest positive value of L on the cube
|x| ≤ i. The sequence L(yi) is decreasing. And we select its maximal sub-
sequence, which contains every value only once. That gives us new sequence
{Lxi}, the corresponding sequence of points {xi} and a sequence of integers Xi

(x is minimum for |x| ≤ X if Xi ≤ X < Xi+1).
Denote Li = L(x) and Pi = P (x).
Due to the lemma, for sufficiently large numbers i we obtain |Pi| < C2X

3
i Li.

One more inequality, Li < 4
3X−2

i+1, may be obtained from the Minkowski theo-
rem. It leads, in particular, to xi 6= 0, otherwise −zi

yi
is very good approximation

to ζ.
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Lemma 4.1.2. If three consecutive terms

xi−1,xi,xi+1

are linearly dependent, then for at least one sign we have

xi−1 ± xi−1 = uxi

with integral u.

Lemma 4.1.3. There are infinitely many i such that xi−1,xi,xi+1 are linearly
independent.

Proof. Assume they are linearly dependent for i > N . From previous lemma
we obtain xi−1L(xi) − xiL(xi−1) = ±(xiL(xi+1) − xi+1L(xi)), which gives us
for every m > n > N

|xnL(xn+1)− xn+1L(xn)| = |xm−1L(xm)− xmL(xm−1)|

<
4
3
Xm−1X

−2
m+1 +

4
3
XmX−2

m → 0

So, L(xnxn+1−xn+1xn) = 0, and all minimums are on the same line, which
is impossible.

Lemma 4.1.4. For linearly independent points xi−1,xi,xi+1 we have
Pn+1LnXn−1 > 1

2 −
32
9 C2

To prove it, we need to look at the determinant∣∣∣∣∣∣
xn−1 Pn−1 Ln−1

xn Pn Ln

xn+1 Pn+1 Ln+1

∣∣∣∣∣∣
which is nonzero integer and estimate it.

Now we may prove the theorem. Lets take a large m such that

xm−1,xm,xm+1

are linearly independent and n > m - the minimal number, such that

xn−1,xn,xn+1

are linearly independent too. Using identities from lemma 4 we obtain

|PmLm+1 − Pm+1Lm| = |Pn−1Ln − Ln−1Pn|

< C2X
3
n−1Ln−1Ln + C2X

3
nLnLn−1 <

8
3
C2XnLn.

But also we have
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|PmLm+1 − Pm+1Lm| > (
1
2
− 32

9
C2)X−1

m L−1
m−1Lm − 4

3
C2XmLm

> (
3
8
− 8

3
C2)XmLm − 4

3
C2XmLm = (

3
8
− 4C2)XmLm.

This gives XmLm < XnLn, so we have an increasing subsequence of XiLi,
which in fact converges to zero — a contradiction.

5 Linear forms and the subspace theorem

One of the most useful ideas for proving the Wirsing conjecture is the following
one:

Let α be a good approximation for ζ and let P (x) = a0(x− α1) . . . (x− αk)
be a minimal polynomial of α = α1, k ≤ d. Moreover, suppose that α1 is the
best approximation to ζ among αi. Then we have∣∣∣∣P ′(ζ)

P (ζ)

∣∣∣∣ =
k∑

i=1

1
|ζ − αi|

∼
1

ζ − α

so, to produce good approximations we need to construct polynomials with
small ratio P (ζ)

P ′(ζ) .
A very powerful tool to study linear forms is

Theorem 5.1. (Schmidt subspace theorem, ????) Let L1, L2, . . . , Ln be linearly
independent linear forms in Rn with algebraic coefficients. Then the set of
integral solutions of the inequality

|L1(v)L2(v) . . . Ln(v)| < c ||v||−ε

for every c and every ε > 0 is contained in finite number of hyperplanes.

Remark 5.1.1. The proof is unconstructive, but Voita in 1989 proved, that all
solutions are contained in S1 ∪ S2 ∪ . . . ∪ Sl ∪ F , where hyperplanes Si may be
expressed constructively, l and Si does not depend on ε and F depends on ε
but is finite (and now cannot be expressed constructively).

Exapmple. Let

L1 = x1 +
√

2x2 +
√

3x3,

L2 = x1 −
√

2x2 +
√

3x3,

L3 = x1 −
√

2x2 −
√

3x3.

Take, for example, x3 = 0 and x2
1 − 2x2

2 = 1 (there are infinitely many such
positive x1 and x2 - solutions of Pell equation). Then

|(L1 · L2 · L3)(x1, x2, x3)| =
∣∣∣x1 −

√
2x2

∣∣∣ =
1∣∣x1 +
√

x2

∣∣ < max(x1, x2, x3)−1.
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So, we have infinitely many solutions in the hyperplane x3 = 0 for c = 1, ε = 1.
The same may be done for x1 = 0 or x2 = 0. On the other hand, it is possible
to show, that only finitely many solutions satisfy x1x2x3 6= 0.

Using of Schmidt subspace theorem allows us to prove Wirsing conjecture
for algebraic numbers ζ and f(d) = d + 1− ε.

Theorem 5.2. Let ζ be algebraic number of degree at least d + 1, c > 0 and
ε > 0 be given numbers. Then there are infinitely many algebraic numbers α of
degree at most d, such that |ζ − α| < cH(α)−d−1+ε

Proof. Denote |x| = max(x0, . . . , xd) - the norm on Rd+1. Consider linear
form L(x) = ζdxd + . . . + x0. We know from Minkowski theorem, that there
are infinitely many integer solutions of |L(x)| < c1 |x|−d for some c1. Hence,
we need only to prove, that there are only finitely many solutions of |L′(x)| =∣∣dζd−1xd + . . . + d1

∣∣ < nc1
c |x|1−ε among them (due to remark in the beginning

of this section, in all other cases we will have

|ζ − α| < nP (ζ)
P ′(ζ)

< c1 |x|−d c

nc1
|x|−1+ε = c |x|−d−1+ε ≤ cH(α)−d−1+ε

for α the nearest to ζ root of xdt
d + . . . x0 = 0).

Take d + 1 linear forms: L(x), L′(x) and first d − 1 coordinates (denote
as Ld, . . . L2 corresponding linear forms). They are linearly independent linear
forms with algebraic coefficients (here we use, that ζ is algebraic), so Schmidt
subspace theorem may be used for them. Because all solutions of the sys-
tem L(x) < c1 |x|−d

, L′(x) < nc1
c |x|1−ε

, Ld(x) ≤ |x| , . . . L2(x) ≤ |x| satisfy
|(L · L′ · Ld · . . . · L2)| < C |x|−ε it gives, that they are contained in finite num-
ber of hyperplanes. Now we will prove, that every hyperplane may contain only
finite number of solutions even of the first inequality - |L(x)| < c1 |x|−d.

Lemma 5.2.1. For every linear form L(x) = β0x0+. . .+βdxd, every constant c
and every hyperplane in Rd+1 there are only finitely many solutions of |L(x)| <
c |x|−d in that hyperplane, if L vanishes on integer points only at zero (in other
words, βi are linearly independent over Q).

Proof. On our hyperplane we have a discrete subgroup of Zd+1. We may
suppose, that its rank is exactly d (in other case we take some new elements
to this subgroup and then span hyperplane on them - it will only increase the
number of solutions). So, there is a basis, consisting of d linearly independent
vectors. It defines a norm on the hyperplane, which is equvalent to the induced
(from Rd+1) norm, because every two norms are equivalent. Hence we may
suppose, that our hyperplane is a horizontal one (we change coordinates that
way), and we have L1(x) < c1 |x|−d

1 < c1 |x|−d−1
1 for new norm and new linear

form.
Using of Schmidt theorem gives, that all solutions are contained in finitely

many hyperplanes (now they will have dimension d − 1), and we need only to
prove, that every such hyperplane contains only finitely many solutions. So,
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we have the same problem for dimension d and hyperplane of dimension d− 1.
Induction finishes the proof. The statement for d = 1 is ”|β0x0| < c1 has finitely
many solutions”, which is obvious.

So, the lemma is proved and the theorem too.

6 Hopeless approach and Schmidt counterexam-
ple

The next logical question must be ”is it possible to improve Schmidt theorem to
make it true for forms with arbitrary given coefficients”? If it would be possible,
we may use exactly the same way to prove Wirsing conjecture for f(d) = d+1−ε
and every (not only algebraic) ζ. Unfortunately, the answer is ”NO”.

First obvious reason to believe in it is that Schmidt theorem for dimension
2 is equivalent to Roth theorem. But we know, that Roth theorem cannot be
proved for transcendental numbers - it is wrong for Liouville counterexample.

Moreover, Schmidt in [6] gave a counterexample, and showed, that quotient
of linear forms (in any number of variables) MAY be always large. So, every
proof of Wirsing conjecture must use specific forms (coming from polynomial
and its derivative).

Theorem 6.1. (Davenport, Schmidt, 1968)
Let m ≥ 1, n ≥ m + 2 and let L,P1, . . . Pm be linearly independent forms

in x = (x1, . . .xn). Then there are infinitely many integer solutions of the
inequality

|L(x)| ≤ c(L,P1, . . . , Pm) max(|P1(x)| , . . . , |Pm(x)|) |x|−m−2
.

On the other hand, there are linearly independent forms L,P1, . . . , Pm such
that for every ε > 0 and every integer point (x) we have

|L(x)| ≥ c(ε) max(|P1(x)| , . . . , |Pm(x)|) |x|−m−2−ε
.

This theorem shows, that we may take f(d) = 3 − ε for all d in Wirsing
conjecture, which is not very interesting for d > 2.

The proof may be found in [6].

7 Modern approach to Wirsing conjecture

Since 1993 some new results in Wirsing conjecture were obtained by byelorussian
mathematician K.Tishenko. In his papers [11, 12, 13, 14] he proved many im-
provements in Wirsing conjecture, and the main part of his papers is about
small values of d. Lets give at first the short review of his results.
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Theorem 7.1. For d ≥ 11 function f(d) in Wirsing conjecture may be taken
equal to d

2 + γd where γd → 4 if d → ∞. More precisely, f(d) may be taken
equal to maximal real root of polynomial 2X4− (d+10)X3 +(d+20)X2 +(3d−
20)X + 6 = 0

All other theorems improve results for small values of d. We suppose also,
that ζ is transcendental number.

Theorem 7.2. For d ≤ 10 we may take f(d) equal to the maximal real root of
(3d− 5)X2 − (2d2 + d− 9)X − d− 3 = 0.

Theorem 7.3. For d ≤ 5 we may take f(d) equal to the maximal real root of
(5d− 9)X3 − (3d2 + 5d− 22)X2 + (d2 − 7d + 20)X + d2 − 2d + 5 = 0.

Theorem 7.4. For d = 3 we may take f(d) equal to the maximal real root of
4x5 − 30X4 + 72X3 − 70X2 + 43X − 4 = 0.

Remark 7.4.1. For d = 3 every next theorem gives better bound: approx-
imately 3.43, 3.60, 3.73. Surely, those results still far enough from 4 which is
Wirsing conjecture.

Here we give only the main guideline of work [11] and show where it may
be improved to obtain the result of 7.3. Moreover, we restrict ourselves to the
case d = 3. For proof details see original works [11, 12, 13] if you have nothing
else to do. All polynomials in this chapter have integer coefficients and degree
at most 3, if other is not stated directly.

Suppose,that there exists number ζ (not algebraic of degree 3 or less) such
that

∀c > 0∃H0 > 0∀α ∈ A,deg(α) ≤ 3,H(α) ≥ H0 |ζ − α| > cH(α)−A.
(The exact value of A will be determined during the proof).
This gives, that for every Q(x),H(Q) ≥ H0 the inequality

|Q(ζ)|
|Q′(ζ)|

> CT H(Q)−A

holds. Here CT = 49 · 6108 · ζ−972 but we will not think about constants very
much until the end of proof. Every numerated constant will be defined when
introduced.

We may suppose that 0 < ζ < 1/4.
We start with some preparations.

Lemma 7.2.1. Let L(x) = c3x
3 + . . . + c0, |L(ζ)| < 1/2. Then H(L) = ci for

some i 6= 0.

Lemma 7.2.2. Let L(x) = c3x
3 + . . . + c0, |L(ζ)| < 1/2. Suppose, that for two

different indexes i, j we have |ci| , |cj | < ζ2H(L). Then H(L) < ζ−2 |L′(ζ)|.

Lemma 7.2.3. For integer polynomials P (x) and Q(x) without common roots,
deg(P ) = m,deg(Q) = n, 2 ≤ m,n ≤ 3 one of the following holds:
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1) 1 < CR max(|P (ζ)| , |Q(ζ)|)2 max(H(P ),H(Q))m+n−2),
2) 1 < CR max(|P (ζ)P ′(ζ)Q′(dz)| ,

∣∣Q(ζ)P ′(ζ)2
∣∣)H(P )n−2H(Q)m−1),

3) 1 < CR max(|Q(ζ)P ′(ζ)Q′(dz)| ,
∣∣P (ζ)Q′(ζ)2

∣∣)H(P )n−1H(Q)m−2).
Constant CR depends only on ζ.

For proof we need only consider the resultant of P and Q. CR may be taken
equal to 6! · 46.

Lemma 7.2.4. Let G(x) = G1(x) . . . Gv(x) and denote deg(G) = l. Then
e−lH(G1) . . .H(Gv) ≤ H(G) ≤ (l + 1)v−1H(G1) . . .H(Gv).

Lemma 7.2.5. Let G1(x), G2(x) be integer polynomials of degree ≤ l and
H(G2) < e−lH(G1). Then G1, G2 have no common roots.

Lemma 7.2.4 is well-known, and lemma 7.2.5 is easy consequence of it.

Lemma 7.2.6. Consider the following system of inequalities:
|a11x1 + a12x2 + a13x3| ≤ A1

|a21x1 + a22x2 + a23x3| ≤ A2

|a31x1 + a32x2 + a33x3| ≤ A3

with the following properties of coefficients:
1) ∀j |a2j | , |a3j | ≤ Bj and B1, B2 > B3 > 0.
2) |a11| , |a21| ≤ |a31| and a31 6= 0.
3) A2 ≤ A3.
4) |∆| ≥ cB1B2 |a1n| > 0 (here ∆ is the determinant of matrix A = (aij).
Then for every solution (x1, x2, x3)of this system we have
|xi| < 6

cB−1
i max(A1B3

|a1n| , A3).

Proof follows from the Cramer formula after some computations.
Now we start construction of polynomials, that will be used in proof. We

will need two sequences of polynomials.
Fix h > H > (6!)15 · 490 · e540H0. Take as P̃0(x) the polynomial of degree

at most 3 and of height at most h with minimal absolute value at ζ. Then take
polynomial P̃1(x) of minimal height such that P̃1(ζ) < c−1

0

∣∣∣P̃0(ζ)
∣∣∣ and so on.

We obtain sequence of polynomials, whose heights are increasing and values at
ζ decrease at least as geometric progression. Finally, we renumerate P̃i, starting
from i such that H(P̃i) is large enough: if H(P̃k) ≤ H0 < H(P̃k+1), then we
denote Pi(x) = P̃k+i(x). Here c0 = 6ζ−9.

Lemma 7.2.7.
∣∣∣P̃i(ζ) < H(P̃i+1)

∣∣∣−2 A−1
A−2

.

This follows from Minkowski theorem and ”minimality” of Pi in the sence
of value at ζ.

Lemma 7.2.8. |Pi(ζ)| < H(Pi+1)−3.
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Proof. Simply take A = 4. We may take A bigger, than real value. If real
value is bigger than 4, we are already done.

Remark 7.2.2. In the proof we will use lemma 7.2.8. But lemma 7.2.7 may
give better bound. Using it, we may obtain result from [12]. This is almost
unique change in proof between two articles.

Lemma 7.2.9. For every number i |ai,j | ≥ ζ2H(Pi) for at least two indexes
j ∈ {1, 2, 3}.

Note, that first lemma of this chapter shows, that there is at least one such
index.

Lemma 7.2.10. Pi(x) is irreducible over Z for every i.

Lemma 7.2.11. |Pi(ζ)|−1
< H(Pi+1)(2A+1)/3H(Pi)2/3 for every i.

Lemma 7.2.9 will be used to construct one more polynomial sequence, Qi.
Take index j such that |ai,j | ≥ ζ2H(Pi). Let Qi(x) = b3x

3 + b2x
2 + b1x + b0

be polynomial of minimal height, such that |Qi(ζ)| < c−1
0 |Pi−1(ζ)| and bj ≤

c−1
0 H(Pi). It is easy to show, that height of Qi is realized by bk, where k 6= 0, j.

Lemma 7.2.12. H(Qi) < c−2
0 H(Pi)−1/2 |Pi−1(ζ)|−1/2.

For proof we use Minkowski theorem to construct some polynomial Q with
needed properties and use the minimality condition in definition of Qi.

Lemma 7.2.13. There are at least two indexes (j, k) such that |bj | , |bk| ≥
ζ2H(Qi).

Lemma 7.2.14. Polynomials Pi, Pi−1, Qi are linearly independent and the de-
terminant∣∣∣∣∣∣

bj bk Qi(ζ)
ai,l ai,m Pi(ζ)

ai−1,n ai−1,p Pi−1(ζ)

∣∣∣∣∣∣
is greater than ζ9 |Pi−1(ζ)|H(Pi)H(Qi). Here indexes are chosen to satisfy

conditions of lemmas 7.2.9 and 7.2.13.

Proof follows from writing determinant as sum of six summands and noting,
that one of them may be bounded from below and all others from above, that
gives the needed bound. Note, that in lemma 7.2.6 we will need determinant
bounded from below.

Now we may state main inequalities, that we will need.

Lemma 7.2.15. Let L(x) be polynomial such that
|L(ζ)| < |Pi−1(ζ)|1/2

H(Pi)1/2H(Pi−m)−2,
|L′(ζ)| < |Pi−1(ζ)|1−A/2

H(Pi)1−A/2H(Pi−m)−1,
H(L) < ζ−2 |L′(ζ)|,
where m is chosen strictly between 1 and i− 1 and satisfy
H(Pi−1) ≤ max(c3H(Pi−m−1),H(Pi−m)), c3 = 144c4

0ζ
−4.

Then |L(ζ)|
|L′(ζ)| < (c3ζ

−1)2AH(L)−A.
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To prove it we write sequence of inequalities, which gives
|L(ζ)| < c2

3 |Pi−1(ζ)|1/2+α1−α2 H(Pi)(2A+1)·α1/3−3α2+1/2H(Pi−1)2α1/3−2

for any choice of positive constants α1, α2. We take α1 = 3(A + 1)/2, α2 =
3A+1−A2. Then first and last powers transform respectively to (A/2−1)(A−1)
and A−1 (in fact we choose them to be solutions of corresponding linear system),
and the second – into (A/2−1)(A−1) because A is a root of suitable polynomial
(this is how the polynomial was constructed). Now everything may be easily
obtained from lemma conditions.

Remark 7.2.3. To obtain the first inequality we use in particular the bound
from 7.2.8. Using 7.2.7 instead of it gives another linear system and another
polynomial. This is the main change in [12] comparing with [11].

Remark 7.2.4. In general case we need to take

α2 =
7
2

+
3(d− 2)(A− 1)

d− 1
− (A− 1)(A− 2)

2
<
−A2 + 9A− 1

2
< 0

for A ≥ 9.
Wirsing original result gives A > d/2, hence this method is unsuitable for

large d (if we want to have for them results greater than 9). In fact, several
other lemma proofs work only for A satisfying some inequalities. That’s the
main reason, why almost all results in Tishenko papers stated only for small
values of d.

Lemma 7.2.16. Let A1, A2, A3 be positive numbers with following properties:
A1A2A3 = 6 |Pi−1(ζ)|H(Pi)H(Qi),
A1 ≤ 6ζ−4 |Pi−1(ζ)|H(Pi)H(Qi)H(Pi−m)−2,
H(P̃1) ≤ A2 ≤ A3 ≤ |Pi−1(ζ)|−1/2

H(Pi)H(Pi−m)−1.
And m is chosen to satisfy H(Pi−1) ≤ max(c3H(Pi−m−1),H(Pi−m)), 1 <

m < i− 1.
Then we may find non-trivial polynomial L(x) = u0x

3 + u1x
2 + u2x + u3

such that

|L(ζ)| < A1,
∣∣uij

∣∣ ≤ Aj+1for{i1, i2} = {1, 2},H(L) < ζ−2A3.

The proof is quite simple – we choose suitable system of linear inequalities
and use lemma 7.2.6.

This lemma gives immediately two new inequalities:
|Pi−m−1(ζ)| < c0 · 6ζ−4 |Pi−1(ζ)|H(Pi)H(Qi)H(Pi−m)−2,
|Pi−m−1(ζ)| < |Pi−1(ζ)|−1/2

H(Pi)1/2H(Pi−m)−2,
where m is chosen to satisfy H(Pi−1) ≤ max(c3H(Pi−m−1),H(Pi−m)), 1 <

m < i− 1.
To prove them we take A1 = 6ζ−4 |Pi−1(ζ)|H(Pi)H(Qi)H(Pi−m)−2 and

A2 = A3 = ζ2H(Pi−m). It is easy to check, that all conditions of previous
lemma hold, hence there exists corresponding polynomial L with needed prop-
erty. Same property for Pi−m−1 follows from minimality condition of sequence
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Pi. To prove second inequality we use the first one and the bound obtained in
7.2.12.

Finally, we state one more inequality:

Lemma 7.2.17.

|Pi−m−1(ζ)|H(Pi−m)H(Qi−m) < 6c2
0ζ
−2 |Pi−1(ζ)|H(Pi)H(Qi),

Where, as usual, m is chosen to satisfy

H(Pi−1) ≤ max(c3H(Pi−m−1),H(Pi−m)), 1 < m < i− 1.

After long preparations we may start proof of the main theorem. It will be
very short.

Lets choose sequence 1 = m1 < m2 < m3 < . . . such that

H(Pmk+1) ≤ max(c3H(Pmk
),H(Pmk+1)) < H(Pmk+1+1).

We find easily that H(Pmk+1+1)−1 < c−1
3 H(Pmk−1+1)−1, hence for every

even k
H(Pmk+1)

−1 < c
−k/2
3 H(P2)−1.

Taking i = mk in statement of lemma 7.2.17 and multplying all inequalities
for m1,m2, . . . ,mk we obtain

|P1(ζ)|H(P2)H(Q2) < 6kc2k
0 ζ−2k

∣∣Pmk+1(ζ)
∣∣ H(Pmk+1+1)H(Qmk+1+1).

Hence |P1(ζ)| < 6kc2k
0 ζ−2k

∣∣Pmk+1(ζ)
∣∣ H(Pmk+1+1)H(Qmk+1+1).

Now, using lemma 7.2.12, bound from lemma 7.2.8 and the bound

H(Pmk+1)
−1 < c

−k/2
3 H(P2)−1

we have

|P1(ζ)| < 6kc2k
0 ζ−2k

∣∣Pmk+1(ζ)
∣∣1/2

H(Pmk+1+1)1/2

< 6kc2k
0 ζ−2kH(Pmk+1+1)−1 < 6kc2k

0 ζ−2kc
−k/2
3 H(P2)−1 < (1/2)k.

This is a contradiction with transcendence of ζ.

Remark 7.2.5. This technical proof becomes much more complicated for d > 3
because we need to construct not one but d−2 sequences of auxiliary polynomials
Q

(v)
i . See details in [11].

Those results (including last Tishenko works) are best known in Wirsing
problem. Here we stop our investigation in homogeneous problem and start
with integral approximations.

17



8 Integral approximation

Consider now approximations by algebraic integers. The same argumentation
as for algebraic numbers leads to the quotient P (x)

P ′(x) , where P (x) is monic. On
the first sight it seems logical to expect that we may build approximation with
precision H−d – in the numerator we have d parameters (coefficients) which
run from −H to H, so, we expect numerator sometimes be of order H−d+1,
and denominator to be independent of it (in some sense), so denominator is
expected to be or order H and this gives the bound that we need.

But surely our old methods needs to be changed. Even the first idea (Dirich-
let box principle) cannot be used in non-homogeneous problem.

Davenport and Schmidt showed in their article [9], that the following state-
ment holds:

Theorem 8.1. For d = 3 it’s possible to take the exponent equal to ϕ2 = ϕ+1 ≈
2.618 (here ϕ = 1+

√
5

2 – golden ratio) for ζ not algebraic of degree at most 2.

Remark 8.1.1. For general case they proved, also, that it is possible to take
the exponent equal to −[d+1

2 ], which gives 2 for d = 3 and even for d = 4. This
result looks like original Wirsing result – it’s approximately one half of that we
may expect.

Proof. At first we will prove the following ”dual” statement: for every ζ neither
rational nor quadratic irrational there are arbitrary large X such that the system

|x0| < X

|x0ζ − x1| < cX−ϕ+1∣∣x0ζ
2 − x2

∣∣ < cX−ϕ+1

has no non-zero integral solutions. Here c denotes constant, depending only on
ζ.

Suppose, that for every c and every sufficiently large X this system has
solution.

Consider for every real X > 1 the set of integer points (x0, x1, x2) with the
following properties:

1 ≤ x0 ≤ X, |x0ζ − x1| < 1,
∣∣x0ζ

2 − x2

∣∣ < 1.
And choose among such points the unique point, which minimize the value

of
max(|x0ζ − x1| ,

∣∣x0ζ
2 − x2

∣∣).
(Note, that uniqueness holds, because ζ is neither rational or quadratic irra-
tional.) Obviously we may choose a sequence of real numbers Xi, such that
every minimal point is minimal exactly for X in [Xi, Xi+1). We denote this
point as xi = (xi0, xi1, xi2). Plainly

xi0 = Xi and |xi| � Xi.

Denote Li = max(|xi0ζ − xi1| ,
∣∣xi0ζ

2 − xi2

∣∣). We have L1 > L2 > . . ..
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The minimal point for X = Xi+1 − ε is xi, due to our hypothesis it gives
Li ≤ c(Xi+1 − ε)−ϕ+1. Taking the limit for ε → 0 we obtain Li ≤ cX−ϕ+1

i+1 .

Lemma 8.1.1. For sufficiently large i we have xi0xi2 − x2
i1 6= 0.

Proof. xi0, xi1, xi2 have no common factors. If xi0xi2 − x2
i1 = 0 then xi0 =

m2, xi1 = mn, xi2 = n2 for some integers m,n. Suppose, that m ≥ 0 (in other
case change all signs). Then X

1/2
i = m and

x−ϕ+1
i � |xi0ζ − xi1| = |m(mζ − n)| = X

1/2
i |mζ − n| .

So, we have |mζ − n| < X
−1/2
i X−ϕ+1

i+1

Vectors xi and xi−1 are linearly independent, hence, their matrix has rank
2. For sufficiently large i xi1 cannot be zero (in other case Li ≥ |xi0ζ| ≥ |ζ|)
and xi−1,1 too (due to same reasons). Hence, there is a column in the matrix,
which is non-proportional to the middle one. So, at least one of determinants,
involving the middle column, is non-zero.

Let it be for example
(

xi−1,0 xi−1,1

m n

)
(the second case is very similar).

Then we have the following estimate:

−
∣∣∣∣xi−1,0 xi−1,1

m n

∣∣∣∣ =
∣∣∣∣xi−1,0 xi−1ζ − xi−1,1

m mζ − n

∣∣∣∣
� X

−1/2
i X−ϕ+1

i+1 Xi−1 + +X−ϕ+1
i X

1/2
i

� X
−ϕ+3/2
i → 0

which contradicts with integrity of initial determinant. The lemma is proven.

Lemma 8.1.2. For all sufficiently large i we have Xϕ−1
i+1 ≤ 2c(1 + |ζ|)Xi.

Proof. We have the following estimates:
|xi0ζ − xi1| ≤ cX−ϕ+1

i+1 and

|xi1ζ − xi2| =
∣∣xi1ζ − xi0ζ

2 + xi0ζ
2 − xi2

∣∣ ≤ |ζ| |xi1− xi0ζ|+
∣∣xi0ζ

2 − xi2

∣∣
≤ c(1 + |ζ|)X−ϕ+1

i+1

Hence

−
∣∣∣∣xi0 xi1

xi1 xi2

∣∣∣∣ = −
∣∣∣∣xi0 xi1−ζxi0

xi1 xi2 − ζxi1

∣∣∣∣ ≤ cX−ϕ+1
i+1 (|xi0| (1 + |ζ|) + |x1|)

≤ 2c(1 + |ζ|)XiX
−ϕ+1
i+1 .
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Now the lemma follows, because determinant is integer and non-zero (due
to previous lemma).

Lemma 8.1.3. Suppose, that xi−1,xi,xi+1 are linearly independent. Then
6c2X2−ϕ

i+1 ≥ Xϕ−1
i .

Proof. Consider the determinant

∣∣∣∣∣∣
xi−1,0 xi−1,1, xi−1,2

xi0, xi1 xi2

xi+1,0 xi+1,1, xi+1,2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xi−1,0 xi−1,1 − ζxi−1,0, xi−1,2 − ζ2xi−1,0

xi0, xi1 − ζxi0 xi2 − ζ2xi0

xi+1,0 xi+1,1 − ζxi+1,0, xi+1,2 − ζ2xi+1,0

∣∣∣∣∣∣
≤ 6 ·Xi+1 · cX−ϕ+1

i X−ϕ+1
i+1 = 6c2X−ϕ+1

i X−ϕ+2
i+1 .

Initial determinant has absolute value at least 1, hence lemma is proven.

Lemma 8.1.4. For infinitely many i points xi−1,xi,xi+1 are linearly indepen-
dent.

Proof. If the converse is true, then every three consecutive points lie in same
plane, but every two consecutive points define plane (because we know, that
two points cannot be dependent, even if they are non-consecutive). Hence, all
points lie in the same plane. Let it be axi0 + bxi1 + cxi2 = 0. We know, that
xi1 = ζxi0 + O(X−ϕ+1

i+1 ) and xi2 = ζ2xi0 + O(X−ϕ+1
i+1 ). Hence 0 = axi0 +

bxi1 + cxi2 = Xi(aζ2 + bζ + c) + O(X−ϕ+1
i+1 ). Second term tends to zero, first

is a constant multiple of increasing sequence, hence, constant is zero, that is
possible only for a = b = c = 0.

Now we may prove the statement. We know, that suggestions of first lemmas
hold simultaneously for infinitely many i. So, for those i we have

X
(ϕ−1)2

i ≤ (6c2)ϕ−1X
(ϕ−1)(2−ϕ)
i+1 ≤ (6c2)ϕ−1(2c(1 + |ζ|))2−ϕX2−ϕ

i

which is impossible for sufficiently small c because (ϕ− 1)2 = 2− ϕ.

Remark 8.1.2. Note, that this is the first place, where we really need, that ϕ
is a root of x2 − x− 1 = 0.

So, the dual statement is proven and we may now start with main theorem.
Suppose that for some c > 0 there are X arbitrary large such that the system

of inequalities 
|x0| < X

|x0ζ − x1| < cX−λ∣∣x0ζ
2 − x2

∣∣ < cX−λ

has no integer solutions except of zero-solution. We may suppose, that
c < 1 and let Y = X

λ+1
3 . We will prove, that there are infinitely many algebraic

integers α of degree at most 3, satisfying 0 < |ζ − α| � H(α)−1−1/λ. This will
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be enough - our statement is proven for λ = ϕ − 1 and −1 − 1/λ = − ϕ
ϕ−1 =

−(ϕ + 1).
Let K(Y ) be the parallelepiped, defined by

|x0| < Y 2

|x0ζ − x1| < Y −1∣∣x0ζ
2 − x2

∣∣ < Y −1

Then the first minimum of K(Y ) (denoted by τ1(Y )) satisfies τ1(Y ) ≥ cY −δ,
where δ = 3λ

λ+1 − 1.
(Because otherwise we will have non-trivial solution of
|x0| ≤ τ1Y

2 < Y 2−δ = X and∣∣x0ζ
i − xi

∣∣ ≤ τ1(Y )Y −1 < cY −1−δ = cX−λ

which is a contradiction with choice of X).
Mahler theorem for polar reciprocal body K∗(Y ) = {

∣∣x2ζ
2 + x1ζ + x0

∣∣ ≤
Y −2, |xi| ≤ Y } gives us τ∗n(Y ) ≤ c1Y

δ. So, there are 3 linearly independent
points xi = (x(i)

0 , x
(i)
1 , x

(i)
2 ) such that
∣∣∣x(i)

2 ζ2 + x
(i)
1 ζ + x

(i)
0

∣∣∣ ≤ c1Y
−2+δ∣∣∣x(i)

m

∣∣∣ ≤ Y 1+δ

Denote L(i) = x
(i)
2 ζ2 + x

(i)
1 ζ + x

(i)
0 , P (i) = 2x

(i)
2 ζ + x

(i)
1 .

There are real numbers θ1, θ2, θ3 satisfying the following system:


θ1x

(1)
2 + θ2x

(2)
2 + θ3x

(3)
2 = 0

3ζ2 + θ1P
(1) + θ2P

(2) + θ3P
(3) = Y 1+δ +

∣∣∣P (1)
∣∣∣ +

∣∣∣P (2)
∣∣∣ +

∣∣∣P (3)
∣∣∣

ζ3 + θ1L
(1) + θ2L

(2) + θ3L
(3) = 4c1Y

δ−n+1

(Determinant of this system is in fact determinant of (x(3),x(2),x(1)), hence
non-zero, because points were linearly independent).

Let ti = [θi]. They cannot all be zero (due to second equation, all θi cannot
be in [0, 1]), hence x = t1 · x(1) + t2 · x(2) + t3 · x(3) 6= 0.

Lets obtain bound for its coordinates.
Due to first equation |x2| ≤ 3c1Y

1+δ.
Due to second equation

Y 1+δ ≤
∣∣3ζ2 + 2x2ζ + x1

∣∣ ≤ Y 1+δ + 2
∣∣∣P (1)

∣∣∣ + 2
∣∣∣P (2)

∣∣∣ + 2
∣∣∣P (3)

∣∣∣ � Y 1+δ.

Due to last one, finally, 0 <
∣∣ζ3 + x2ζ

2 + x1ζ + x0

∣∣ ≤ 7c1Y
δ−2.

Hence we may see, that polynomial Q(t) = t3 + x2t
2 + x1t + x0 has height

H(Q(t)) � Y 1+δ, value at point ζ at most Y δ−2 and derivative at that point
� Y 1+δ. Last inequality means, that derivative is � Y 1+δ on segment of length
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comparable with 1 (because height of polynomial is small enough). Hence, Q
has a root α, satisfying 0 < |ζ − α| � Y δ−2−(δ+1) = Y −3.

Since H(α) � H(Q) � Y 1+δ, we have 0 < |ζ − α| � H(α)−3/(δ+1) =
H(α)1+1/λ.

We are done.

9 Extremal numbers due to Damien Roy

In 2002 Damien Roy in his articles [7] and [8] proved, that Schmidt estimate is
exact in general case:

Theorem 9.1. (Damien Roy) There exists a real transcendental number ζ and
a constant c1 > 0, such that for any algebraic integer α of degree at most 3 we
have |ζ − α| > c1H(α)−ϕ−1

Here we will give only a sketch of proof, because many statements in proofs
are pure technical.
Proof. At first we will state and prove another theorem. We had seen in
previous section, that due to duality arguments its useful to study solutions of
the system 

|x0| < X

|x0ζ − x1| < cX1−ϕ∣∣x0ζ
2 − x2

∣∣ < cX1−ϕ

Lets call extremal those real numbers, for which this system has non-zero
solutions for some c > 0 and all X. We had seen, that for every real number
there is some c > 0 such that system has no solutions for some arbitrary large X.
Extremal numbers (if they exist) show us, that estimates cannot be improved.
Our first goal will be

Theorem 9.2. Extremal numbers exist. Moreover, they are transcendental and
set of extremal numbers is at most countable.

We will use the following notation: point x = (x0, x1, x2) will be identified

with matrix
(

x0 x1

x1 x2

)
, and we write det(x) = x0x2 − x2

1. Let J =
(

0 1
−1 0

)
.

Define ‖x‖ = max{|x0| , |x1| , |x2|}, L(x) = max{|x0ζ − x1| ,
∣∣x0ζ

2 − x2

∣∣}
and ‖A‖ = |det(A)| for 2× 2-matrix.

Lemma 9.2.1. Let x,y, z be three integer points. Then
1. tr(JxJzJy) = det(x,y, z).
2. xJzJy is symmetric if and only if det(x,y, z) is zero. In this case we

denote point, corresponding to xJzJy as [x,y, z].
3. for x,y, z with det(x,y, z) = 0 and any w we have

3.1. det[x,y, z] = det(x) det(y) det(z)
3.2. det(w,y, [x,y, z]) = det(y) det(w, z,x)
3.3. det(x,y, [x,y, z]) = 0
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3.4. [x,y, [x,y, z]] = det(x) det(y)z
4. for any x,y, z

4.1. for any choice of r, s, t, u ∈ {0, 1, 2}, such that s− r = u− t, we

have ‖xr xs

yt yu
‖ � ‖x‖L(y) + ‖y‖L(x).

4.2. |det(x,y, z)| � ‖x‖L(y)L(z) + ‖y‖L(x)L(z) + ‖z‖L(x)L(y)
4.3 Let w = [x,x,y]. then ‖w‖ � (‖x‖L(y) + ‖y‖L(x))L(x)

First statements are pure computation. Statement 4 uses multilinearity of
determinants.

We may define the sequence of minimal points, as it was done in previous
chapter. Our next goal will be to study some properties of minimal points.

We define height of 2 × 3-matrix A as maximum of absolute values of its
minors 2× 2 and denote it H(A). For any 2-dimensional subspace V of Q3 we
define H(V ) as height of any matrix, whose rows form a basis of V ∩ Z3.

Lemma 9.2.2. Let x be minimal point, y be next minimal point and V = 〈x,y〉.
Then {x,y} form basis for V ∩ Z3 and H(V ) ∼ ‖y‖L(x)

Proof. Let x = (x0, x1, x2),y = (y0, y1, y2). If they are not a basis for lattice,
we may find an integral point of form z = q1x + q2y. Obviously, we may
take |q1| , |q2| ≤ 1/2. Hence z0 ≤ |q1|x0 + |q2| y0 < y0 and L(z) ≤ |q1|L(x) +
|q2|L(y) < L(x). This is a contradiction, because y was the next minimal point
after x.

Due to 9.2.1 part 4.1, we find that H(V ) = H(
(

x0 x1 x2

y0 y1 y2

)
) � ‖x‖L(y)+

‖y‖L(x) � ‖y‖L(x).
To prove lower bound we denote ui = xi − x0ζ

i, vi = yi − yi
0 and choose j

such that |ui| = L(x). Then we obtain

H(V ) ≥ ‖x0 xj

y0 yj
‖ = |x0vj − y0uj | ≥ y0 |uj | − x0 |vj | ≥ (y0 − x0)L(x).

The point z = y−x has first coordinate less, than y0, that means that there
exists index i such that

∣∣zi − z0ζ
i
∣∣ = |vi − ui| > L(x). Hence

H(V ) ≥ |x0vi − y0ui| = |x0(vi − ui)− (y0 − x0)ui| ≥ x0L(x)− (y0 − x0)L(x).

Those inequalities give 3H(V ) ≥ y0L(x) and lower bound is proven.
Lets give now another characterization of extremal numbers.

Lemma 9.2.3. Real number ζ is extremal if and only if there exists an increas-
ing sequence of integers Yk and sequence of points yk, such that:

Yk+1 ∼ Y ϕ
k , ‖yk‖ = Yk, L(Yk) ∼ Y −1

k , 1 ≤ |det(yk)| � 1,
1 ≤ |det(yk,yk+1,yk+2)| � 1.
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Proof. Suppose at first that such sequences exist. Then ζ cannot be ra-
tional or quadratic irrational, because if we have p + qζ + rζ2 = 0, then
|pyk,0 + qyk,1 + ryk,2| =

∣∣q(yk,1 − yk,0ζ
2) + r(yk,2 − yk,0ζ

2)
∣∣ � Y −1

k → 0. But
this is an integer number, so equals 0 for k large enough, and almost all points
lie in plane pyk,0 + qyk,1 + ryk,2 = 0, which is impossible, because every three
consecutive points are linearly independent.

For every X sufficiently large we may find k such that Yk ≤ X ≤ Yk+1.
Hence ‖yk‖ � Yk � X and L(yk) � Y −1

k � Y
−1/ϕ
k+1 � X−1/ϕ. So, ζ is

extremal.
Conversely, let ζ be extremal. Consider the corresponding sequence of min-

imal points, xi, denote Xi to be first coordinate of xi and Li = L(xi). Choose
also corresponding constant c. So, Li ≤ cX

1/ϕ
i+1 .

Due to lemma 8.1.1 det(xi) 6= 0 for i sufficiently large. Due to lemma
8.1.4 there are infinitely many indexes i, such that xi−1,xi,xi+1 are linearly
independent over Q. Lets take all such i and construct sequence yj = xij . We
claim, that yj and Yj = Xij satisfy all properties.

We have Li−1 � X
−1/ϕ
i and Li � X

−1/ϕ
i+1 .

Hence we obtain 1 ≤ |det(xi)| � LiXi � XiX
−1/ϕ
i+1 and Xi+1 � Xϕ

i . But
also we have

1 ≤ |det(xi−1,xi),xi+1| � Xi+1LiLi−1 � X
1/ϕ2

i+1 Li−1 ≤ X
1/ϕ2

i+1 X
1/ϕ
i .

Both estimates together give Xi+1 ∼ Xϕ
i and Li ∼ X−1

i .
In particular, ‖yk‖ ∼ Yk, L(yk) ∼ Y −1

k and 1 ≤ |det(yk)| � 1.
Now, let i = ik, V = 〈xi,xi+1〉Q. Let xi,xi+1, . . . ,xj ∈ V,xj+1 6∈ V . Then

〈xi,xi+1〉Q = 〈xj−1,xj〉Q and hence points xj−1,xj,xj+1 are linearly indepen-
dent. Moreover, j is the smallest index with such property, hence j = ik+1.
Then we obtain due to 9.2.2 two estimates for one subspace:

H(〈xi,xi+1〉Q) ∼ Xi+1Li ∼ X
1/ϕ
i ,

H(〈xj−1,xj〉Q) ∼ XjLj−1 ∼ X
1/ϕ2

j .
This gives Yk+1 ∼ Y ϕ

k .
We know already, that 〈yk,yk+1〉Q contains xi and xj−1, and 〈yk+1,yk+2〉Q

contains xj+1. So, 〈yk,yk+1,yk+2〉Q contains three linearly independent points,
hence yk,yk+1,yk+2 are linearly independent. Now we may prove the last
estimate, that we need:

1 ≤ |det(yk,yk+1),yk+2| � ‖yk+2‖L(yk)L(yk+1) � Yk+2Y
−1
k Y −1

k+1 � 1.
We are done.

Corollary 9.2.1. Let ζ be extremal number and yk, Yk – corresponding se-
quences. Then for sufficiently large k the vector yk+1 is a rational multiple of
[yk,yk,yk−2].

Proof. Let w = [yk,yk,yk+1]. We know that det(w) = det(yk)2 det(yk+1).
So, this determinant is non-zero and
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‖w‖ � Y 2
k Y −1

k+1 ∼ Yk−2, L(w) � Yk+1Y
−2
k ∼ Y −1

k−2.

But then we may see immediately, that
|det(w,yk−3,yk−2)| � Yk−2Y

−1
k−2Y

−1
k−3 ∼ Y −1

k−3 and

|det(w,yk−2,yk−1)| � Yk−1Y
−2
k−2 ∼ Y

−1/ϕ
k−3

Right parts converges to zero, left part are integers. So, they are zero inte-
gers. We know, that yk−3,yk−2,yk−1 are linearly independent, so w is rational
multiple of yk−2. then due to 9.2.1 [yk,yk,w] = det(yk)2yk+1 and hence yk+1

is rational multiple of [yk,yk,yk−2].

Corollary 9.2.2. We have

det(yk−2,yk−1,yk)yk+1 = det(yk−2,yk−1,yk+1)yk+det(yk−1,yk,yk+1)yk−2

.

Proof. due to 9.2.1 we see, that

det(yk−2,yk, [yk,yk,yk−2]) = 0.

Hence points yk−2,yk and yk+1 which is rational multiple of [yk,yk,yk−2]
due to previous corollary, are linearly dependent. No two of them may be
proportional, hence yk+1 = ayk + byk−2. This gives

det(yk−2,yk−1,yk+1) = a · det(yk−2,yk−1,yk) and
det(yk−1,yk,yk+1) = b · det(yk−1,yk,yk−2) due to multilinearity of deter-

minant. This gives the formula that we need.

Corollary 9.2.3. The set of extremal numbers is at most countable.

Proof is very simple - we will construct injective map from this set to (Z3)3.
For each extremal number we take corresponding sequence yk and start it from
such index, that yk+1 is a rational multiple of [yk,yk,yk−2] for all k. So, if
we know first three points, we may determine all other points up to rational
multiples. Now we make correspondence between this sequence and extremal
number lim

k→∞
yk,1
yk,0

.

Now we shall prove

Theorem 9.3. Extremal numbers exist, and set of extremal number is infinite.

To prove the theorem, we need some preparations:

Lemma 9.3.1. Let A and B be non-commuting symmetric matrixes in Gl2(Z).
Consider sequence of points (note, that point in Z3 may be identified with sym-
metric matrix) yk:

y−1 = B−1,y0 = E,y1 = A,yk = [yk−1,yk−1,yk−3].
Then |det(yk)| = 1 and |det(yk,yk+1,yk+2)| = |tr(JAB)| 6= 0.
Moreover, yk = ±yk−1Syk−2, where S = AB for odd k and S = BA for

even k.
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Proof. Simply by induction using recurrence relation. The only interesting
place in proof is that |det(y−1,y0,y1)| = |det(B)tr(JAB)| = |tr(JAB)| 6= 0,
because A and B do not commute.

Lemma 9.3.2. Let A, B and yk be as in previous lemma. Suppose, that A has
non-negative and AB - positive coefficients. Write yk = (yk,0, yk,1, yk,2) and
ζ = lim

k→+∞
yk,1
yk,0

. Then ζ is defined and extremal. Moreover, yk and Yk = ‖yk‖
form sequences with all properties of extremality criterion (norm here is a norm
in 3-dimentional space, not determinant of matrix).

Proof. Due to previous lemma, last two conditions of criterion are satisfied.
The recurrence yk = ±yk−1Syk−2 shows, that all coefficients of yk have the
same sign (it is true for y0 and y1, also for AB and BA = BT AT = (AB)T ,
induction completes the proof). So, Yk > 0 and Yk−2Yk−1 ≤ Yk ≤ c1Yk−2Yk−1

(here c1 may be taken equal to det(AB)). In particular, Yk is monotone and
unbounded. Similar arguments shows the same for yk,0.

Denote by Ik the interval with ends yk,1
yk,0

and yk,2
yk,1

. Due to recurrence equa-

tion, for some rational numbers r, s, t, u we have yk,1
yk,0

= ryk−1,1+tyk−1,2
ryk−1,0+tyk−1,1

∈ Ik−1

and yk,2
yk,1

= syk−1,1+uyk−1,2
syk−1,0+uyk−1,1

∈ Ik−1.
Hence Ik ⊂ Ik−1 and we have a decreasing sequence of segments, whose

lengths are 1
yk,0yk,1

and tend to zero. So, they have exactly one point of inter-

section. It is lim
k→+∞

yk,1
yk,0

= ζ. So, yk,0 ∼ yk,1 ∼ yk,2 ∼ Yk, length of Ik is ∼ Y −2
k

and L(yk) ∼ Yk |Ik| ∼ Y −1
k .

We need now only to check Yk ∼ Y ϕ
k−1. This follows from Yk−2Yk−1 ≤ Yk ≤

c1Yk−2Yk−1. Let qk = YkY −ϕ
k−1. Then q

−1/ϕ
k−1 ≤ qk ≤ c1q

−1/ϕ
k−1 . Hence qk is

bounded and we are done.
Finally, we may give an example of infinite family of extremal numbers.

Define sequence of words in two letters a and b by w0 = b, w1 = a,wk =
wk−1wk−2. Because every next word begins with previous one, we may define
their limit w = abaabab . . ..

Now take ζ = [0, a, b, a, a, b, a, b, . . .] = 1/(a + 1/(b + . . .)). This number is

extremal and may be produced from matrixes A =
(

a 1
1 0

)
and B =

(
b 1
1 0

)
.

Moreover, it is easy to see, that if ζ is extremal, then xζ+y
zζ+t is also extremal if

xt 6= yz, that gives infinitely many examples.
Proof for ζ is straightforward: write(

qi qi−1

pi pi−1

)
=

(
a1 1
1 0

) (
a2 1
1 0

)
. . .

(
ai 1
1 0

)
(standart formula for another representation in continued fractions form). Now
define a map from monoid of words in a, b to Gl2(Z) by f(a) = A, f(b) = B.
Let mk be wk+2 without last two letters. Then m0 = 1,m1 = a and mk =
mk−1smk−2, where s is equal to ab or ba depending on the pairity of k. So, for
sequence of matrixes defined this way we obtain yk = ±xk, and yk,1

yk,0
= xk,1

xk,0
.
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Right part tends to extremal number, left part tends to ζ and that finishes the
proof.

10 Exactness of Schmidt result

In previous section we had shown, that result of ”dual” theorem cannot be
improved. This causes doubts in upgrading of general results, but surely does
not prove, that such upgrading does not hold.

But that is true and we need some more technical work to prove it. Proves
for estimates may be found in [7]

Theorem 10.1. Let ζ be extremal number.
1. There exist c > 0 and t > 0, such that |ζ − α| ≥ cH(α)−2(1 + lnH(α))−t

has no solutions in rational α.
2. There exist c1, c2 > 0, such that |ζ − α| ≤ c1H(α)−2ϕ2

has infinitely
many solutions in quadratic irrationalities, but |ζ − α| ≤ c2H(α)−2ϕ2

has no
solutions in quadratic irrationalities.

3. There exist c > 0 such that for every algebraic integer α, deg(α) ≤ 3 we
have |ζ − α| ≤ c1H(α)−ϕ2−1

Remark 10.1.1. Note, that in the first and second parts we speak about alge-
braic numbers, but in last part - about algebraic integers.

Remark 10.1.2. This result is not strong enough, because ϕ2 +1 ≈ 3.618 > 3.
We will give more precise estimate later.

Proof may be found in [7] (theorems 1.3—1.5).
Denote by {x} the distance from x to nearest integer.

Lemma 10.1.1. Assume, that for real numbers c > 0 and δ ∈ [0, 1) we have{
yk,0ζ

3
}
≥ cY −δ

k . Then |ζ − α| ≥ c1H(α)−θ for some positive constant c1 and

θ = ϕ2+δ/ϕ
1−δ

Proof. Let P (T ) = T 3 + pT 2 + qT + r be minimal polynomial of α, multiplued
by some power of T if needed. Note that H(P ) = H(α). Then

{
yk,0ζ

3
}
≤ |yk,0P (ζ)|+ |p|

{
yk,0ζ

2
}

+ |q| {yk,0ζ} ≤ CYkH(α) |ζ − α|+Y −1
k H(α)

for some C > 0. Choose the smallest k such that H(α) ≤ c(2C)−1Y 1−δ
k . When

we obtain |ζ − α| ≥ c(2C)−1Y −1−δ
k H(α)−1. This is that we need, because

Yk � H(α)
ϕ

1−δ .
Note, that lemma gives θ = ϕ2 for δ = 0.

Lemma 10.1.2. For k large enough we have
{
yk,0ζ

3
}
≥ Y −ϕ3

k .

Proof see in [7].
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Lemma 10.1.3. Let ζ be extremal number and yk – the corresponding sequence
of points. Then there exists k0 ≥ 1 and 2 × 2–matrix M with integer entries,
such that yk+2 is rational multiple of yk+1Myk for odd k ≥ k0 and rational
multiple of yk+1MT yk for even k ≥ k0.

Proof. We know, that for some k0 and all k ≥ k0 point yk+2 is rational multiple
of yk+1yk−1

−1yk+1 If S is 2× 2–matrix such that yk+1 is rational multiple of
ykSyk−1 this implies, that yk+2 is rational multiple of ykSyk+1 and after
taking transpose we obtain that we need. So, we must only construct matrix to
satisfy condition for k = k0 and everything will be satisfied by induction.

Remark 10.1.3. Note, that if det(yk) = 1 for all k, we may choose S (and M)
with integer entries.

Let M be nonsymmetric matrix in GL2(Z). We denote E(M) the set of
extremal numbers, such that M satisfies conditions of the last proposition.

For example, extremal number ζ = ζa,b = [0, a, b, a, a, b, . . .], constructed in

previous section, belongs to E(M) for M =
(

a 1
1 0

) (
b 1
1 0

)
=

(
ab + 1 a

b 1

)

Lemma 10.1.4. Let ζ ∈ E(M),M =
(

a b
c d

)
and yk – corresponding sequence

of points. Then:
1) yk+2 = (ayk,0 + (b + c)yk1 + dyk,2)yk+1 ± yk−1.
2) yk,0yk+1,2 − yk,2yk+1,0 = ±(ayk−1,0 − dyk−1,2)± (b− c)xk−1,1.

Proof. Simple calculations. For some optimization of them see [8].
Now we start to prove the main result of Roy’s paper:

Theorem 10.2. 1) Let a be positive integer. Then every ζ ∈ E(
(

a 1
−1 0

)
)

satisfies |ζ − α| ≤ cH(α)−ϕ2
for some c > 0 and all algebraic integers α of

degree at most 3.
2) For every positive integer m the number η = (m + 1 + ζm,m+2)−1 =

[0,m + 1,m, m + 2,m, m,m + 2, . . .] belongs to E(
(

1 1
−1 0

)
)

Remark 10.2.1. The main idea of second part is not to construct the number
exactly (we don’t need its exact value, in fact), but to show, that set in the first
part is non-empty for some positive a, so, extremal numbers MAY be built that
way.

Proof. We start with second part. It is easy to check, that if ζ ′ ∈ E(M) for
some M , C ∈ GL2(Z) and η is real number with the following property: (η,−1)
is proportional to (ζ ′,−1)C, then η ∈ E(CT MC) with corresponding sequence
xk = C−1yk

T C−1.

Now we simply note, that ζ ∈ E(
(

m(m + 2) + 1 m
m + 2 1

)
), and that
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(
0 −1
−1 m + 1

)T (
m(m + 2) + 1 m

m + 2 1

) (
0 −1
−1 m + 1

)
=

(
1 1
−1 0

)
In fact, the set E(

(
a 1
−1 0

)
) is nonempty for every positive integer a, but

we don’t need it.
Now the first part. So, we fix a, ζ ∈ E(a) and corresponding sequence of

points, xk. Let Xk = ‖xk‖ and δk = {xk,2ζ}.
We have {xk,0ζ} ≤ |xk,0ζ − xk,1| � X−1

k and similarly {xk,1ζ} � X−1
k .

Due to 10.1.4 we obtain
xk+2,2 = axk,0xk+1,2 ± xk−1,2 and
xk,0xk+1,2 = xk,2xk+1,0 ± axk−1,0 ± 2xk−1,1.
Second gives the estimate {xk,0xk+1,2ζ} ≤ Xk {xk+1,0ζ} + a {xk−1,0ζ} +

2 {xk−1,1ζ} � XkX−1
k+1 + X−1

k−1 � X−1
k−1. Combining with the first we obtain

|δk+2 − δk−1| � X−1
k−1.

We see, that sequence δ3i+j has limit (θj), because
∑

X−1
3i+j converges.

Moreover, Xk grows faster, than geometric progression, hence this sum is equiv-
alent to the first term.

Note, that
∣∣{xk,0ζ

3
}
− δk

∣∣ ≤ ∣∣xk,0ζ
3 − xk,2ζ

∣∣ � X−1
k . Hence, the sequence{

x3i+j,0ζ
3
}

has the same limit, θj and
∣∣{x3i+j,0ζ

3
}
− θj

∣∣ � X−1
3i+j .

This gives, that θj 6= 0, because due to 10.1.2
{
x3i+j,0ζ

3
}
� X

−1/ϕ3

3i+j .
So, the sequence

{
xk,0ζ

3
}

(excluding finitely many indexes for which xk,0 =
0) consists of three sequences, convergent to non-zero points. Hence, it is sepa-
rated from zero:

{
xk,0ζ

3
}
≥ c > 0. Now we are in assumptions of 10.1.1. This

completes the proof.
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