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1 Preliminaries

1.1 Understanding Flatness, Regularity and Smoothness

Flatness

Flatness is essentially an algebraic concept. We first encounter it while working with
modules. Applied to morphisms between schemes, flatness allows for geometric inter-
pretation. It ensures the ’continuity’ of fibers in some sense. I state without proof a few
standard definitions and results regarding flat modules, before discussing flat morphisms
of schemes.

1.1.1 Definition. For a ring A, an A-module M is said to be flat if for any short exact
sequence of A-modules:

0 → N → N ′ → N ′′ → 0

the sequence

0 →M ⊗A N →M ⊗A N
′ →M ⊗A N

′′ → 0

is exact.

Since the tensor product is right exact in any case, defining M to be flat over A is
equivalent to saying M ⊗A − is left exact.

1.1.2 Proposition. Let A be a ring. Then:

(a) Every free A-module is flat

(b) The tensor product of two flat A-modules is flat over A

(c) Let B be an A-algebra. If M is flat over A, then M ⊗A B is flat over B

(d) Let B be a flat A-algebra (i.e flat for its A-module structure,with corresponding
homomorphism called a flat homomorphism). Then every B-module that is flat
over B is flat over A.

(e) (Flatness is local) An A-module M is flat over A⇔Mp = M ⊗A Ap is flat over
Ap for all p. On the other hand the ring homomorphism ϕ : A→ B is flat
⇔ ∀q ∈ Spec A, the homomorphism Aϕ−1(q) → Bq is flat

(f) Over a Noetherian local ring, a finitely generated module is flat ⇔ it is free.
(Note that this says something about OX −Modules.

1.1.3 Definition. An A-module M is said to be faithfully flat over A if it is flat, and
what’s more, we have the implication: M ⊗A N = 0 ⇒ N = 0 for every A-module N .
The notion of faithful flatness is useful in that it imposes an if and only if condition on
the preserving of exactness with tensoring. More precisely:

1.1.4 Lemma. Let B be a faithfully flat A-algebra. Then an A-module M is flat over
A ⇔ B ⊗AM is flat over M .

Note: For finitely generated modules over Noetherian rings, flat and locally free are
equivalent. Thus we have the following corollary to the Lemma above:
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1.1.5 Corollary. Let A be a Noetherian ring, B a faithfully flat A-algebra and M a
finitely generated A-module. Then M is locally free ⇔ B ⊗AM is locally free.

1.1.6 Definition. A morphism of schemes f : X → Y is flat at x ∈ X if the induced
homomorphism on stalks OY,y → OX,x where y = f(x) is flat. The morphism f is said
to be flat if it is flat at all x ∈ X. f is said to be faithfully flat if it is flat and surjective.

1.1.7 Proposition. Properties of flat morphisms: (Result directly from the definition
and properties of flat homomorphisms)

(a) Open immersions are flat morphisms.

(b) Flat morphisms are stable under base change.

(c) The composition of two flat morphisms is flat.

(d) The fibered product of two flat morphisms is flat.

(e) Let ϕ : A → B be a ring homomorphism. Then the corresponding morphism of
affine schemes f : SpecB → SpecA is flat ⇔ ϕ : A→ B is flat.

1.1.8 Remark. Given a Noetherian scheme X and a coherent sheaf F over X, F is flat
over X (i.e for any x ∈ XFx is flat over OY,f(x) ) ⇔ it is locally free. (This is simply a
translation of the remark for modules)

1.1.9 Examples. Examples and non Examples:

• Any algebra over a field is flat. Thus the structural morphism of an algebraic
variety over a field k is flat.

• Closed immersions are generally not flat. In fact, given a closed immersion into a
Noetherian scheme, we find that it is flat ⇔ it is also open. Consider the closed
immersion Speck(x)/(x) → Speck(x). Intuitively it is clear that this morphism
isn’t flat since away from the origin all fibers are empty. Algebraically too, this
morphism corresponds to the homomorphism k(x) → k(x)/(x) and since k(x)/(x)
is not torsion free and k(x) is a PID, it follows from Propostion 1.5 (e) that the
given morphism isn’t flat.

• Z/nZ is not flat over Z, since over a PID flat is equivalent to torsion free

• Consider f : X := Speck[t, x, y]/(ty−x2) → Y := Speck[t] This is a flat morphism
since k[t, x, y]/(ty − x2) is torsion free as a k[t]-module.

1.1.10 Remark. Consider the following diagram where X and Y are schemes and
y = f(x):

X × SpecOY,y
g

''PPPPPPPPPPPP
p

yyrrrrrrrrrrr

X

f
&&MMMMMMMMMMMMM SpecOY,y

α

vvnnnnnnnnnnnnnn

Y
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Note that α is the natural map arising from the canonical map OY (U) → OY,y
where U is an open containing y. This map corresponds to the map ϕ : SpecOY,y → U
under the anti-equivalence of categories, and ϕ composed with the open immersion
U ↪→ Y gives us α. Now, since flat morphisms are stable under base change, saying that
f : X → Y is flat at x ∈ X is the same as saying g : X × SpecOY,y → SpecOY,y is flat
at the inverse image of x under the projectionp : X × SpecOY,y → X.
This provides an intuitive glimpse into the geometric implications of flatness with re-
spect to fibers.

1.1.11 Lemma. Let X and Y be schemes with Y irreducible. Let f : X → Y be a flat
morphism. Then every non-empty open subset U of X dominates Y . If X has a finite
number of irreducible components then each of these dominates Y .

Proof : First we ma assume Y = SpecA and U = SpecB to be affine. Then the
map SpecB → SpecA is an open immersion U ↪→ X composed with f . Thus since the
composition of two flat morphisms is flat, we have that U is flat over Y . Let ξ be the
generic point of Y and N the nilradical of A. By the flatness of B we have the following:

B/NB = B ⊗A (A/N) ⊆ B ⊗A Frac(A/N) = B ⊗A k(ξ) = O(Uξ)

If Uξ = ∅, then B = NB is nilpotent, implying U = ∅, contradiction to our choice of
U . Thus ξ ∈ f(U), giving the result. The second statement follows from the fact that
every irreducible component contains a non-empty open set.

1.1.12 Proposition. Let f : X → Y be a flat morphism of schemes with Y having
only a finite number of irreducible components. If Y is reduced (respectively irreducible,
integral), and if the generic fibers of f are also reduced (respectively irreducible, inte-
gral), then X is reduced (respectively irreducible, integral).

1.1.13 Definition. A scheme X is said to be Dedekind if it is a locally Noetherian,
normal scheme of dimension 0 or 1.

1.1.14 Proposition. Let f : X → Y be a morphism with Y a Dedekind scheme and
X reduced. Then f is flat ⇔ every irreducible component of X dominates Y .

Proof : Suppose f is flat, then Y Dedekind ⇒ irreducible and thus the result is a direct
consequence of the Lemma above. Now suppose that every irreducible component of X
dominates Y .For the generic point ξ of Y , OY,ξ = K(Y ) is a field. Thus OX,x is flat over
OY,ξ for ξ = f(x). We now only need to check for points y ∈ Y closed. Choose such a
y ∈ Y . Then OY,y is a DVR. Let its uniformising parameter be π. The image of π in
OX,x, say t, will not be contained in any minimal prime ideal, because if it was, then y
would be the image of the generic point of one of the irreducible components of X, and
hence would be the generic point of Y , contrary to our choice of y. There is a result
which states that in a reduced ring, every zero-divisor is contained in a minimal prime
(It is easy to prove if we look at the localization homomorphism from A to Aa, where a
is some zero-divisor in A. Thus the image of π in OX,x is not a zero divisor. Thus OX,x
is torsion free which is equivalent to saying it is flat over OY,y since the latter is a PID.

1.1.15 Corollary. Let Y be Dedekind and X integral. Then if f : X → Y is non-
constant (f(X) not reduced to a point), then f is flat.
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Proof : Y Dedekind ⇒ it is irreducible and of dimension 1. Therefore we have that
f(X) is dense in Y . Thus by above, f is flat.

Flatness and fibers

One main consequence of flat morphisms is that the dimension of their fibers behave
well in some sense. The following theorem formulates this more precisely.

1.1.16 Theorem. Let f : X → Y be a flat morphism between locally Noetherian
schemes. For x ∈ X and y = f(x), we denote Xy = X ⊗Y Speck(y) to be the fiber of X
at y. Then we have:

dimxXy = dimxX − dimyY

1.1.17 Corollary. Let f : X → Y be a flat, surjective morphisms between schemes
of finite type over a field k. Suppose Y is irreducible, and X pure (i.e all irreducible
components are equidimensional). Then ∀y ∈ Y , the fiber Xy is pure with

dimXy = dimX − dimY

1.1.18 Remark. In particular, what the corollary implies is that for a flat morphism
between irreducible algebraic varieties, the dimension of fibers is constant.

Note that while dimension is one of the properties that is preserved with flatness,
there are others which are not: For example, consider the same morphism we did earlier
f : Speck[t, x, y]/(ty − x2) → Speck[t]. Y = Speck[t] is nothing but A1

k, the affine line
over k. So each element a ∈ k corresponds to a closed point on Y and in turn to a fiber
Xa of f . When a 6= 0, Xa = (ax = y2) ⊆ A2 is a nonsingular curve and hence reduced.
However at a = 0 the fiber X0 = (x2 = 0) is a double line and hence not reduced. Thus
the property reduced is not preserved by flatness.

Regularity

1.1.19 Definitions. Let A be a Noetherian local ring with maximal ideal m, and
residue class field k. Then A is said to be regular if dimk(m/m2) = dimA., where dimA
is the Krull dimension of A. By Nakayama’s lemma, this is equivalent to saying that A
is regular ⇔ m is generated by dimA elements.
Let dimA = d. Then any system of generators for m with d elements is called a system
of parameters. For d = 1, the single generator is called a uniformising parameter.

Note: The localization of a regular ring at a prime ideal is again regular.

1.1.20 Proposition. Let (A,m) be a regular Noetherian local ring. Let f ∈ A\{0}.
Then A/fA is regular if and only if f /∈ m/m2

This follows from the fact that A is infact an integral domain.

1.1.21 Definitions. Let X be a locally Noetherian scheme. Let x ∈ X be a point,
Then X is regular at x if OX,x is regular. We say that the scheme X is regular, if all its
local rings are regular, or equivalently if all the local rings at closed points of the affine
open subschemes in some affine open cover are regular. (by Note above).
A point that is not regular is called a singular point, similarly a scheme that is not
regular is called singular.
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1.1.22 Examples.

• Every DVR is regular.

• Any normal, locally Noetherian scheme of dimension 1 is regular

• An algebraic curve over a field k is regular ⇔ it is normal.

1.1.23 Theorem.(Jacobian criterion for Regularity)
Let k be a field, and X = V (I), a closed subvariety of An

k = Spec k[T1, ...Tn] with f1, ...fr
a system of generators for I. Let x ∈ X(k) be a rational point. Consider the Jacobian
matrix:

Jx = (∂fi(x)/∂Tj)1≤i≤r,1≤j≤n

Then X is regular at x⇔
rankJx = n− dimOX,x

.

Proof : Define a map Dx : k[T1...Tn] → (kn)∨ by sending DxP : (t1, ...tn) 7→∑
1≤i≤n ∂fi(x)ti/∂Tj . Then the restriction onDx to m, the maximal ideal corresponding

to x, gives us an isomorphism m/m2 ' (kn)∨. Let X = V (I) be a closed subvariety of
An
k defined by I. And let x ∈ X(k). We have a canonical map induced by the closed

immersion X ↪→ An
k , which is as follows: (m/m2)∨ → (m’/m’2)∨, where m’ is the

maximal ideal associated to x when seen as a point in An
k . Identifying (m/m2)∨ with

kn, this map gives us an isomorphism from (m/m2)∨ to (DxI)
⊥, allowing us to identify

(m/m2)∨ with the set

{(t1...tn) ∈ kn|
∑

1≤i≤n

∂P (x)ti/∂Tj = 0 ∀P ∈ I}.

Thus dimm/m2 = dim(DxI)
⊥ = n− (DxI). But (DxI) is generated by the line vectors

of our Jacobian. ⇒ rankJx = dim(DxI), giving us the result.
Smoothness

We first encounter smooth morphisms in the context of algebraic varieties over a field
k- An algebraic variety X is said to be smooth over a field k if Xk = X ×k k is regular.
We now extend this concept to define smooth morphisms between general schemes.

1.1.24 Definitions. Let A → B be a morphism of rings. We say that B is finitely
presented as an A-algebra if B is finitely generated as an A-algebra, (i.e if there ex-
ists a surjective homomorphism A[x1, ..., xn] → B) with the property that the kernel of
this homomorphism is a finitely generated A[x1, ..., xn]-ideal. If A is Noetherian, clearly
the conditions finitely presented and finitely generated are equivalent for algebras over A.

A morphism f : X → Y of schemes is called locally of finite presentation at a
point x ∈ X if there exist affine neighbourhoods U = SpecA, V = SpecB of f(x) and x
respectively, such that f(V ) ⊆ U and B is a finitely presented A-algebra. The morphism
f is called locally of finite presentation if it is locally of finite presentation at every point
of X. That finitely presented ⇒ finite type is clear. On X Noetherian, the conditions
are equivalent.

1.1.25 Definitions. Let f : X → Y be a morphism of schemes. Then f is called
smooth at a point x ∈ X if the following conditions hold:
(a) f is flat at x
(b) f is locally of finite presentation at x
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(c) the fiber Xf(x) is geometrically regular at x, i.e. all the localizations of the semi-local

ring OX,x⊗OY,f(x)
k(f(x)) are regular, where k(f(x)) denotes the residue field of OY,f(x)

and k(f(x)) its algebraic closure.
We say that f is smooth if it is smooth at every point of X.This amounts to saying that
(a) f is flat
(b) f is locally of finite presentation
(c) the fibers of f are geometrically regular.

Note: Smooth morphisms are stable under base change. It is important to note
that geometric regularity is a property of schemes over a field , whereas regularity is a
property of schemes in general. Thus smoothness is a relative notion, while regularity
is absolute.

1.1.26 Examples.

• Define f : X → SpecZ with X = SpecZ[t]/(t2 − 2). f is induced by the injection
Z ↪→ Z[t]/(t2 − 2). Thus f is finite and flat since Z is regular of dimension 1,
and f is dominant. But f is not smooth since the fiber of a closed point in Z
corresponding to the prime ideal 2Z is Spec(Z/2t)/t2 which is not regular.

• Let X and Y be Noetherian, regular schemes. For example, let X = Y = Speck[x],
where k is algebraically closed. Define f : X → Y by sending x 7→ x2. Then f
is clearly surjective (Indeed f(X) contains all k points of X and also the generic
point). However, f is not smooth since the fiber Xy=0 = Speck[x] ×k Speck(y) =
Spec(k(x)/x2) which is not regular.

• For schemes of finite type over a perfect field, the notions of smooth and regular
are equivalent. However this is not true for schemes of finite type over non-perfect
fields - Let k0 be a field of characteristic p ≥ 2. Set k = k0(t). Let X ⊆ A2

k defined
by y2 = xp − t. It is easy to see with the Jacobian criterion that X is regular
everywhere, but not smooth.

• Take the affine scheme X over a DVR R defined by the equation x2 = t, where t
is a uniformising parameter.

X = Spec(R[x]/(x2 − t))

It is integral and dominates R, hence it is flat. It is regular (normal and of dimen-
sion 1) but not smooth over R because the special fiber, namely, the fiber over the
closed point of R is given by x2 = 0 is not regular. A similar example with similar
argument is that of X = R[x, y]/(xy − t).
Both these examples serve to demonstrate our assertion about regularity being
absolute while smoothness is relative.

1.2 Divisors, Invertible sheaves and Maps to Projective Space

Divisors

In order to study the intrinsic geometry of a variety or scheme, it is sometimes useful to
look at it’s closed subschemes of dimension strictly smaller than the scheme itself. We
thus introduce the notion of Divisors, which are in some sense a generalization of closed
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subschemes of codimension 1. There are several ways to define Divisors, but the two
most useful for our purpose are Weil and Cartier divisors, the notions of which, as we
will show, co-incide in certain situations.

Weil Divisors

Weil Divisors, although geometrically more intuitive than Cartier Divisors, are restricted
to Noetherian, integral schemes and therefore do not suffice to study curves which are,
say, not reduced.

1.2.1 Definitions. Let X be a Noetherian, integral, separated scheme, regular in co-
dimension 1 (i.e For every point x of codimension 1, the local ring OX,x is regular.)
A prime divisor on X is defined to be a closed integral subscheme of codimension 1.
A Weil Divsor is an element of DivX, the free abelian group generated by the prime
divisors. It is thus a formal sum

∑
niYi where the Yi’s are prime divisors and the ni’s

∈ Z, with only finitely many ni’s different from 0. If all the ni’s are ≥ 0, the divisor is
called effective.

Note that a prime divisor Y , being irreducible and of codimension 1, has a unique
generic point η and the the ring OX,η is a discrete valuation ring, with field of fractions,
say K. The corresponding discrete valuation v is called the valuation of Y . For any
non-zero rational function f ∈ K∗, vY (f) ∈ Z and vY (f) = 0 for all but finitely many
Y . If vY (f) is positive f is said to have a zero along Y , and a pole if negative. The
valuations allows to define divisors of rational functions in a natural way:

The divisor of f, denoted (f) :=
∑
vY (f)Y , sum taken over all prime divisors.

A divisor of this form, is called a principal divisor.

By the properties of valuations, we have a a homomorphism from the multiplicative
group K∗ to the additive group DivX,

ϕ : K∗ → DivX

sending a function f to its divisor (f), where f.g 7→ (f.g) = (f) + (g). Imϕ is the thus
the subgroup of principal divisors in DivX.

We can now define an invariant of of such a scheme X,namely its Divisor class
group, denoted Cl(X) := DivX/Imϕ, We say that two divisors D and D′ are linearly
equivalent if D −D′ is a principal divisor.

1.2.2 Example. For a number field K and its ring of integers OK , consider the affine
scheme SpecOK . (More generally for any X = SpecA with A Dedekind.), Cl(X) is
nothing but the Ideal Class group as defined in algebraic number theory. Indeed, since
each point of codimension 1 in a dimension 1 scheme is closed, we have an isomorphism
given by associating to each Weil Divisor D =

∑
nixi, the fractional ideal

∏
℘ni

i , where
℘i is the maximal ideal associated to xi.

1.2.3 Proposition. A Noetherian ring A is a UFD ⇔ X = SpecA is normal and
Cl(X) = 0.

(Indeed, A UFD is integrally closed, so X is normal. And A is a UFD ⇔ every prime
ideal of height 1 is principal. So the statement above translates into proving that if A is
an integral domain, then every prime ideal of height 1 is principal ⇔ Cl(X) = 0, which
follows from standard commutative algebra results.

Note that this generalizes the result from Algebraic number theory that A is a UFD
⇔ its ideal class group is 0.

Since the divisor class group is not always easy to compute, lets look at at the
particular example of projective n-space, where we can say something explicit about
Cl(X) Note that divisors are particularly important in studying embeddings of curves
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in projective space-A point P on a curve C in P2
k can be recovered completely as a point

of P2
k itself, by a family of divisors parametrized by the set of lines passing through P.

1.2.4 Proposition. Let X be projective space Pnk over a field k and for n ≥ 1. For a
divisor D =

∑
niYi, we define the degree of D to be

∑
nidegYi where degYi is the degree

of the hypersurface (since by definition Yi is of codimension 1). Let H be the hyperplane
x0 = 0. Then:
(a) For any divisor of deg d, D ∼ dH
(b) For any f ∈ K∗, deg f = 0
(c) Cl(X) ∼= Z

Proof : Any divisor D of deg d can be expressed as the difference of two effective
divisors D1 −D2, of deg d1 and d2 respectively, where d1 − d2 = d. Now, any effective
divisor is principal, since it can be written as (g) for a homogeneous polynomial g.
Because every hypersurface corresponds to a prime ideal of height 1,and since the co-
ordinate ring k[x0...xn] is a UFD, by the above proposition, the prime ideal is principal.
Thus, D = (g1) − (g2) = (g1/g2) Thus D − dH = (g1/x

d
0g2), which is the divisor of a

rational function and hence principal. Thus D ∼ dH. Any homogeneous polynomial g
of deg d can be factored into irreducible polynomials gni

1 ...g
nr
r , so each of the gi’s defines

a hypersurface Yi of deg di and so we can define the divisor of g to be
∑
niYi. Since

a rational function f can be written as the quotient of two homogeneous polynomials
(g/h), and (g/h) = (g) − (h), we have that degf = 0. Let δ be the map from Cl(X)
to Z sending D =

∑
niYi to degD =

∑
nidegYi. Now since degH = 1, δ([H]) = 1 and

since ∀D,D ∼ dH, δ is surjective. Injectivity follows from (b). Thus the isomorphism.

1.2.5 Proposition. Let X be a Noetherian, integral scheme, regular in codimension 1,
and let Z be a proper closed subset of X. Set U = X − Z. Then:
(a) There is a surjective homomorphism ϕ : Cl(X) → Cl(U)

∑
niYi 7→

∑
ni(Yi ∩ U)

wherever (Yi ∩ U) 6= ∅
(b) If codim(Z,X) ≥ 2, then ϕ is an isomorphism
(c) If Z is an irreducible subset of codimension 1, there exists an exact sequence:

Z → Cl(X) → Cl(U) → 0

where the first map sends 1 to 1.Z.

Proof : (a) That such a homomorphism exists is easy to see since if Y is a prime
divisor on X, then Y ∩ U is either empty or a prime divisor on U . For any f ∈ K∗

and (f) =
∑
niYi, considering f as a rational function on U will give you (f)|U =∑

ni(Yi ∩ U), making valid our homomorphism. Since every prime divisor on U is a
restriction of it’s closure on X, the homomorphism is indeed surjective. (b) Divisors
are only defined on elements of codimension 1, so DivX and Cl(X) only depend on
subsets of codimesion 1. Thus, removing a subset of codimension ≥ 2, means that U
has the same divisors as X,giving us the isomorphism. (c) After (a), we already have
the surjectivity of ϕ. Thus, in order to prove exactness, we only need to show that
kerϕ = Imi, where i is the first arrow of the sequence. Kerϕ just contains those
divisors for which the nis (which are 6= 0) associated to the Yis are all contained in Z.
So for Z irreducible, this is the subgroup generated by 1.Z, which is nothing by Imi by
definition.

11



Cartier Divisors

We now want a description of Divisors for arbitrary schemes, so we define something
that locally looks like the divisor of a rational function. We begin by defining the sheaf of
meromorphic functions, which generalizes the definition of rational functions to schemes
that are not necessarily reduced. We do this by replacing the field of fractions of an
integral domain by the total ring of fractions for any ring.

1.2.6 Definitions. Let A be a ring, and let Frac(A) denote its complete ring of
fractions. It is a ring, containing A as a subring. Any element f ∈ A, which is not
a zero divisor, is called a regular element. Let R(A) denote the multiplicative set of
regular elements of A. Then Frac(A) is nothing but the localization R(A)−1A

The Sheaf of Stalks of Meromorphic functions: Let X be a scheme. ∀U ∈ X open,
define the sheaf RX(U) := { a ∈ OX(U)|ax ∈ R(OX,x)∀x ∈ X} , the set of elements
with regular stalks.

1.2.7 Proposition. Keeping the notation of above, we have the following:
(a) RX(U) = R(OX(U)) if U is affine.
(b) ∃ a unique presheaf of algebras K′

X on X, containing OX and verifying:
(i) ∀U ∈ X open, K′

X(U) = <X(U)−1OX(U). In particular, K′
X(U) = Frac(OX(U))

if U is affine.
(ii) ∀U ∈ X open, the canonical homomorphism K′

X(U) →
∏

K′
X,x is injective.

(iii) If X is locally Noetherian, K′
X,x ' Frac(OX,x)

1.2.8 Definition. Denote the sheaf associated to the presheaf K′
X by KX . This is

called the sheaf of stalks of meromorphic functions on X. It contains OX as a subsheaf.
If X is locally Noetherian, then K′

X,x = KX,x = Frac(OX,x). An element of KX(X) is
called a meromorphic function. Note that this sheaf is analogous to the constant sheaf
defined by the function field of an integral scheme, and in the case where X is integral,
it is nothing but the constant sheaf defined by K(X).
We denote the set of invertible elements of KX by K∗

X .

1.2.9 Definitions. A Cartier Divisor is a global section of the quotient sheaf K∗
X/O

∗
X .

It is an element of the group H0(X,K∗
X/O

∗
X ). A principal Cartier divisor, denoted

div(f), is an element ofH0(X,K∗
X/O

∗
X), which is an image of an element f ∈ H0(X,K∗

X).
Two Cartier divisors, D1 and D2 are linearly equivalent if D1 −D2 is principal. An ef-
fective Cartier divisor is one which lies in the image of the canonical map H0(X,K∗

X ∪
OX) → H0(X,K∗

X/O
∗
X). Since Cartier divisors are defined as sections of a sheaf, we

have an obvious notion of restriction of a divisor to an open subset. By definition of
quotient sheaves, we can describe a Cartier divisor D by giving an open cover {Ui}
of X and an fi∀i which is the quotient of two regular elements of OX(Ui)

∗, where
fi|Ui∪Uj

∈ fj|Ui∪Uj
OX(Ui ∪Uj)

∗∀i, j. Two such systems {(Ui, fi)i} and {(Vj , gj)j} repre-
sent the same Cartier divisor if fi and gj differ by a multiplicative factor in OX(Ui∪Vj)

∗

The group of these isomorphism classes of Cartier divisors is denoted by CaCl(X).

Recall that an invertible sheaf L on a scheme X is defined to be a locally free OX -
module of rank 1. Isomorphism classes of Cartier divisors can be related to invertible
sheaves in the following manner.
To every Cartier Divisor D, represented by the system {Ui, fi}, we associate a subsheaf
OX(D) ⊂ KX , defined by

OX(D)|Ui
= f−1

i OX(Ui)

12



It is infact an invertible sheaf and enables us to define a homomorphism from CaCl(X)
to PicX, the group of equivalence classes of invertible sheaves of KX .

1.2.10 Proposition. Let ρ : CaCl(X) → PicX be the additive map defined by sending

D 7→ OX(D).

(ρ(D1 +D2) = OX(D1)OX(D2) ' OX(D1) ⊗OX
OX(D2).)

(a) ρ is an injective homomorphism
(b) The image of ρ corresponds to the invertible sheaves of KX .

Proof : (a) ρ sends a principal Cartier divisor to a free sheaf of rank 1, which
is indeed an element of PicX. Thus ρ is infact a homomorphism from CaCl(X) to
PicX. A divisor D ∈ kerρ,⇒ ∃f ∈ H0(X,OX (D)) 3 OX(D) = fOX By definition of
OX(D),⇒ D = div(f) ⇒ D is a principal divisor, thus in the equivalence class of 0,
proving injectivity of ρ.
(b) For an invertible sheaf L ∈ KX , we can choose an open covering Uii of X such that
L|Ui

is free and generated by some fi ∈ K′
X(Ui)∀i. Thus the system Ui, fii is the desired

representative for the Cartier divisor mapping to L.

1.2.11 Corollary. In the case where X is integral, ρ is an isomorphism.

(Indeed,because here every invertible sheaf will be isomorphic to a subsheaf of KX .)

Note If D is an effective Cartier divisor, then OX(−D) is a sheaf of ideals of OX .
Consequently, D is naturally endowed with the closed subscheme structure V (OX(−D))
of X.

For reasons that will become apparent later, it is important for us to be able to
determine criteria for when the sheaf associated to a Cartier divisor is infact ample. We
state without proof one very useful criterion.

1.2.12 Proposition. Let X be a projective curve over a field k. Let D ∈ CaCl(X)
be a Cartier divisor. Then OX(D) is ample if and only if degOX (D)|Xi

> 0 for every
irreducible component Xi of X.

Relating Weil and Cartier Divisors

In a particular setting, namely we can talk about both Cartier and Weil divisors on a
scheme, and find a meaningful way to relate the two. More precisely, we have:

1.2.13 Proposition. Let X be a Noetherian, integral, separated scheme for which all
local rings are UFDs. Then, the group Div(X) of Weil divisors and the group K∗/O∗

X

of Cartier divisors are isomorphic, the principal divisors in each corresponding under
this isomorphism.

Since a UFD is integrally closed, X satisfies the property of being regular in co-
dimension 1, ensuring that we can talk about Weil divisors in this setting. As we
already know, for X integral, the sheaf K is nothing but the constant sheaf given by
the function field K of X. Suppose Ui, fi is a representative system for a Cartier divi-
sor ∈ K∗/O∗

X such that the Ui form an open cover of X and each fi ∈ K∗(Ui) = K∗.
We associate a Weil divisor D to this Cartier divisor by taking for each prime divisor
Y, vY (fi) to be its coefficient, i being an index for which Y ∩Ui 6=, i.e D =

∑
vY (fi)Yi.

D is well defined, since if j were any other such index, then fifj is invertible on
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Ui ∩ Uj ⇒ vY (fifj) = 0 ⇒ vY (fi) = vY (fj).
Conversely we find a way to associate a Cartier divisor to each Weil divisor. Let D be
a Weil divisor on X, and x ∈ X any point. For each D, we then have a Dx, which is
a Weil divisor on the local scheme SpecOX,x, which is principal since OX,x is a UFD
by assumption. Let Dx = (fx), fx ∈ K. Since D|x = Dx = (fx), we can find an open
neighbourhood Ux 3 x, such that D|Ux

= (fx)|Ux
. Covering X with such Ux, the Ux, fxx

form a representative system for the Cartier divisor on X that we will associate to D.
This is infact well-defined, since by proposition 0.1.4.3, we have that X is normal. Thus
if f, f ′ give the same Weil divisor on some open U ⊆ X, then f/f ′ ∈ O∗(U), thereby
giving the same Cartier divisor.

Thus we have constructions which are inverse to one another, making the two groups
isomorphic.

Morphisms to Projective Space

The importance of relating invertible sheaves to the isomorphism classes of Cartier
divisors becomes apparent once we exploit the relationship between invertible sheaves
and maps to projective space. Indeed, a morphism from a scheme X to some projective
space can be determined entirely by giving an invertible sheaf L on X and a set of it’s
global sections. We show this formally, and outline a more explicit relationship between
the two. Why this proves to be extremely useful to us will become clear once we study
blow-ups and contractions, which are central to the problem of resolution of singularities.

1.2.14 Theorem. Let A be a ring, and let X be a scheme over A.
If ϕ : X → PnA is an A-morphism then the sheaf ϕ∗(O(1)) is an invertible sheaf on X
generated by the global sections si = ϕ∗(xi), i = 0, 1, ...n.
Conversely, if L is an invertible sheaf on X generated by s0, ..., sn ∈ L(X), then there
exists a unique A-morphism ϕ : X → PnA such that L ∼= ϕ∗(xi) with si = ϕ∗(xi).

On PnA = Proj A[x0, ...xn] we naturally have the invertible sheaf O(1) generated by
the global sections given by the homogeneous coordinates (x0, ..., xn). So for any scheme
X and a morphism ϕ : X → PnA we then have a sheaf on X given by L = ϕ∗(O(1)) which
is indeed invertible and which is generated by the global sections si = ϕ∗(xi) ∈ L(X).
Thus, given a morphism from X to projective space, we have found a corresponding
invertible sheaf on X determined entirely by this morphism.
Now, suppose we are given an invertible sheaf L on X, generated by some global sections
s0, ...sn. Define, for each i, the open subsets Xi = {P ∈ X|(si)P /∈ mPLP } of X. Note
that since the si generate L, these Xi cover X. Now define morphisms from each Xi

to the standard affine opens Ui = D+(xi) of PnA. (Note Ui = SpecA[y0, ...yn] with
yj = xj/xi and yi = 1 omitted.) By the antiequivalence of categories we have the
corresponding ring homomorphism from A[y0, ...yn] → OXi

(Xi) sending yj 7→ sj/si
which is a well defined element of OXi

(Xi) since (si)P /∈ mPLP for every P ∈ Xi. So
infact we have a morphism of schemes from Xi → Ui which glue together to give us our
(unique) map to projective space ϕ : X → PnA with L ∼= ϕ∗(O(1)). Thus we have our
1-1 correspondence between maps to projective space {X → PnA} and invertible sheaves
L on X generated by some global sections s0, ...sn determined by the given map.

1.3 Models of Schemes over Discrete Valuation Rings

1.3.1 Definition. Let S be an arbitrary scheme, T a scheme over S and X a scheme
over T . In full generality, we define a model of X to be an S-scheme, X, such that
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So X/T has a model over S if X can be defined over S. Our concern then becomes to
find ’good’ models of some kind- models that make ’geometric sense’, perhaps preserve
certain properties. For instance, if X/T is regular, flat, or smooth over S, then it seems
sensible to ask for it’s model X also to be regular,flat or smooth etc.

Our interest actually lies i‘n defining models for schemes over DVRs. So what hap-
pens if we took S to be SpecR, where R is a DVR? We naturally have a scheme SpecK
over S where K is the field of fractions of R. And for a scheme E over SpecK a model
X would be an R-scheme with generic fiber XK isomorphic to E.
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Note that the nature and existence of such models will become clearer once we
introduce the language and ideas of fibered surfaces and models of curves. We do not
delve further into the subject of general models just yet. We only introduce an example,
taken from [Liu] 8.3.54, which will recur through the course of this document, serving
to illustrate the different ideas elaborated in each section. It is this example which
motivates the title of the mémoire.

1.3.2 Example. Let K be the fraction field of a complete DVR R with uniformising
parameter for the valuation π and algebraically closed residue field k. Consider the
elliptic curve E → SpecK given by:

y2 = π(x3 + π3)

Then homogenizing co-ordinates by setting x = a/c, , y = b/c, we get a projective model
X over R defined by the homogeneous equation

b2c = π(a3 + c3π3)

Indeed E is nothing but the curve defined by the equations of X in the affine open
D+(c) which is exactly the generic fiber XK . Thus X is indeed a (projective) model of
E.

1.4 Weierstrass Equations and Elliptic Curves

In this section,we take a slight detour and briefly look at Weierstrass equations, define
elliptic curves and see how there exists a group law on elliptic curves giving them the
structure of an abelian group. This will help us to define Weierstrass models in the next
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section, and much later to look at Neron models of Elliptic curves, which is the essential
topic of this thesis.

Weierstrass Equations

An equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X2Z + a4XZ

2 + a6Z
3.

is called a Weierstrass equation. Note that we can view it as the locus of a cubic
equation in P2, with a fixed base point O = [0, 1, 0] being the only point on the line
passing through ∞. We can re-write our equation in non-homogeneous co-ordinates by
looking at the open affine where Z lives and setting x = X/Z, y = Y/Z. We thus get an
equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

By changing variables, y 7→ 2y + a1x + a3, assuming the field characteristic 6= 2, the
equation becomes:

y2 = 4x3 + b2x
2 + 2b4x+ b6

where
b2 = a2

1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6.

Set b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,
Then the discriminant is given by

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Singular Weierstrass Equations

Here we give a result that helps us classify the nature of a singularity (if it exists)
on curves given by Weierstrass equations.

Consider a curve f(x, y) given by the Weierstrass equation

f(x, y) = y2 + a1xy + a3yx−3 −a2x
2 − a4x− a6 = 0

with a singular point P = (x0, y0).
By the Jacobian Criterion, it follows that

∂f/∂x = ∂f/∂y = 0

Using the Taylor series expansion for f(x, y) at P , we get that ∃ α, β ∈ k 3

f(x, y) − f(x0, y0) = (y − y0) − α(x− x0)(y − y0) − β(x− x0) − (x− x0)
3.

16



1.4.1 Definitions. With notation as above, the singular point P is called a node or
double point if α 6= β. In this case, the lines

y − y0 = α(x− x0) and y − y0 = β(x− x0)

are the tangent lines at P . If α = β, P is called a cusp, and the tangent line at P
is given by

y − y0 = α(x− x0).

1.4.2 Proposition. The curve given by Weierstrass equation

f(x, y) = y2 + a1xy + a3yx−3 −a2x
2 − a4x− a6 = 0

satisfies the following:

(i) It is nonsingular ⇔ ∆ 6= 0.

(ii) It has a node ⇔ ∆ = 0 and b22−24b4 6= 0, where b2, b4 are as defined in the section
above

(iii) It has a cusp ⇔ ∆ = (b22 − 24b4) = 0. In the latter two cases, there is only that
one singularity.

Proof : Let us first note that the point at ∞ is never singular. Indeed, consider the
curve in P2 given by the homogeneous equation

F (X,Y,Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ

2 − a6Z
3 = 0

and we see that the point O = [0, 1, 0] is nonsingular since ∂F/∂Z(O) = 1 6= 0.

(i) Now suppose we have a singularity at P = (x0, y0), the substitution (x, y) 7→
(x + x0, y + y0), translates our given singularity to the origin. Note that since this
substitution leaves both ∆ and (b22 − 24b4) unchanged, we can assume, without loss of
generality, that our singularity is at (0, 0). Thus,

a6 = f(0, 0) = 0, a4 = ∂f/∂x(0, 0) = 0, a3 = ∂f/∂y(0, 0) = 0.

So our equation becomes:

f(x, y) = y2 + a1xy − a2x2 − x3 = 0.

Then b2 = a2
1, b4 = 0, b6 = 0, b8 = 0 and thus we have that ∆ = 0.

Conversely, suppose nonsingular, and assume char(k) 6= 2. We can now use the Weier-
strass form

y2 = 4x3 + b2x
2 + 2b4x+ b6

The curve defined by this equation is singular ⇔ ∃P = (x0, y0) 3 2y0 = 12x2 + 2b2x0 +
2b4 = 0.
Hence all singular points will be of the form (x0, 0) where x0 is a double root of 4x3 +
b2x

2 + 2b4x+ b6. This polynomial has a double root ⇔ its discriminant is zero. But its
discriminant equals 16∆. Thus if the curve is nonsingular, ∆ 6= 0.
So for both the following parts, that the curve has a node or a cusp ⇔ ∆ = 0 is clear.
We only need to prove the respective second assertions.
(ii) By definition, the curve has a node at the origin if y2 + a1xy − a2x

2 has distinct
factors. This occurs ⇔ a2

1 + 4a2 6= 0. This is nothing but b2, so this proves (ii).
(iii) By definition, the curve has a cusp at the origin if y2+a1xy−a2x

2 has equal factors,
which occurs ⇔ a2

1 + 4a2 = 0
⇔ (b22 − 24b4) = 0 (Since we already have that a3 = a4 = 0 and thus b4 = 0).
Finally, since a cubic equation can have atmost one double root, we have the curve has
only one singularity.
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1.4.3 Example. Given S = Spec Z, consider the S-scheme X = Proj Z[x, y, z]/(y2z+
yz2 − x3 + xz2), which is a curve sitting in P2. We want to locate its singular locus and
examine the nature of the singularities if they exist.

We look at X more closely, by examining the fibers of the strutural morphism. Using
the Jacobian Criterion, we find that X is smooth everywhere except at the fiber p = 37.
Indeed, by Euler’s formula for homogeneous polynomials

∑
xi∂f/∂xi = d.f , where

d = degf , we see that we can use the Jacobian Criterion directly for the homogeneous
polynomial

y2z + yz2 − x3 + xz2

.
The curve is singular ⇔ ∃P = (x, y, z) satisfying F (x, y, z) 3 it satisfies the following

three equations:
−3x2 + z2 = 0

2yz + z2 = 0

y2 + 2yz + 2xz = 0

Since we can’t have (x, y, z) = (0, 0, 0), we have that char(K) 6= 2,3. This also allows
us to equation (2) by z, giving us the following:

3x2 = z2

−2y = z ⇒ 4y2 = 3x2

−3y2 − 4xy = 0 ⇒ −3y = 4x

Using (b) and (c), we have that 3x2 = 4(16/9)x2, which is possible we have p = 37.
Thus X is smooth everywhere except at the fiber p = 37.

In order to assess the nature of the singularity which in fact something local, we look
at the the open affines D+(x),D+(y), and D+(z) which cover X and apply the J.C to
each of these.
The following table runs through the process in each of the three affines:

D+(x) D+(y) D+(z)

We set We set We set
u = y/x, v = z/x to get a = x/y, b = z/y to get s = x/z, t = y/z to get
1.F (u, v) = u2v + uv2 − 1 + v2 F (a, b) = b+ b2 − a3 + ab2 F (s, t) = t2 + t− s3 + s
2.∂F/∂u = 2uv + v2 ∂F/∂a = −3a2 + b2 ∂F/∂s = −3s2 + 1
3.∂F/∂v = u2 + +2uv + 2v ∂F/∂b = 1 + 2b+ 2ab ∂F/∂t = 2t+ 1
There exists a singularityP = (u, v) Following similar procedure So clearly char(k) 6= 2,3
⇔ all the above are satisfied. as for D+(x) and we get
(1) ensures that v 6= 0 we get 16p2/9 = 3p2/4 8s2/3 = 3s2

and so from (2) we have that which is possible which holds ⇔
2u = −v and −3u2 − 4u = 0 ⇔ we’re working mod 37. we’re working mod 37.
so char(k) 6= 2,3 and Our singularity is thus at
from F (u, v) we get (3/8,−1/2)
2u3 + 4u2 − 1 = 0
⇔ u 6= 0
and 3u+ 4 = 0 ⇔ u = −4/3
which plugged in F holds
⇔ we’re working mod 37.
Our singularity is thus (−4/3, 8/3)
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Notice that our original homogeneous equation is a Weierstrass equation with a base
point [0, 1, 0], the only one at ∞.
So we use our results on singular Weierstrass equations to assess the nature of the
singularity on the curve.
We dehomogenize the equation to get something of the form:

y2 + y = x3 − x.

Comparing co-efficients with the general dehomogenized Weierstrass equation, and main-
taining al notation from that section, we have the following associated quantities:

a1 = 0, a3 = 1, a2 = 0, a4 = −1, a6 = 0

and b2 = 0, b4 = −2, b6 = 1 and b8 = 1 Thus ∆ = b22b8−8b34−27b26+9b2b4b6 = 37 = 0(37)
and (b22 − 24b4) 6= 0(37). Thus proposition 1.4.2 tells us that the only singularity on the
fibre X37 is a node or double point.
We found, while looking at D+(z) that our singular point was P = (3/8,−1/2). We
translate co-ordinates

(x, y) 7→ (x− 3/8, y + 1/2)

in order to obtain our singularity at (0, 0). Our equation under this translation and mod
37 becomes:

17y2 = x3 + 9x2

which would look something like this:

Using quadratic reciprocity we see that

(
17

37
) = (

37

17
) = (

3

17
) = (

17

3
) = (

2

3
) = −1

and thus 17 is not a square mod 37, implying that the tangents to the singularilty are
not rational.

Elliptic Curves and the Group Law

Broadly speaking, elliptic curves are curves of genus 1 having a specified base point.
More precisely, they are defined as follows:

1.4.4 Definition. An elliptic curve is a pair (E,O), where E is a nonsingular curve of
genus one and the base point O ∈ E. The elliptic curve E is said to be defined over K,
written E/K, if E is defined over K as a curve and O ∈ E(K).
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It can be shown (by using the Riemann Roch Theorem) that every such curve can
be written as the locus in P2 of a cubic equation with only one point, the base point,
on the line at ∞. After appropriate scaling, the curve can be written as a Weierstrass
equation.

More precisely, we have:

1.4.5 Proposition. Let E be an elliptic curve defined over K. There exist functions
x, y ∈ K(E) such that the map

ϕ : E− → P2, ϕ = [x, y, 1],

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coefficients a1, ..., a6 ∈ K and satisfying ϕ(O) = [0, 1, 0]. Conversely, every smooth
cubic curve C given by a Weierstrass equation as above is an elliptic curve defined over
K with base point O = [0, 1, 0].

(ref [Si01], III.2.2)
The Group Law

Let E be an elliptic curve given, like above, by a Weierstrass equation. Then E ⊂ P2

consists of the points P = (x, y) satisfying the Weierstrass equation, together with the
point O = [0, 1, 0] at infinity. Let L ⊂ P2 be a line. Then, since the equation has degree
three, the line L intersects E at exactly three points, say P,Q,R (Counting multiplicites
and applying Bezout’s theorem). (ref Hartshorne)

We define a composition law ⊕ on E as follows:
Let P,Q ∈ E, let L be the line through P and Q (if P = Q, let L be the tangent line

to E at P ), and let R be the third point of L∩E Let L′ be the line through R and O.
Then L′ intersects E at R, O and a third point. We denote that third point by P ⊕Q.

The composition law has the following properties:

1.4.6 Proposition. (a) If a line L intersects E at the (not necessarily distinct) points
P, Q, R, then

(P ⊕Q) ⊕R = O.

(b) P ⊕O = P for all P ∈ E
(c) P ⊕Q = Q⊕ P for all P, Q ∈ E
(d) Let P ∈ E. There is a point of E, denoted by 	P , satisfying

P ⊕ (	P ) = O.

(e) Let P, Q, R ∈ E. Then

(P ⊕Q) ⊕R = P ⊕ (Q⊕R).

In other words, the composition law makes E into an abelian group with identity
element O.

1.5 Weierstrass Models

In this section,we define very particular models,given by explicit (Weierstrass) equations
that help us in certain cases, to see what Neron models are like.
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1.5.1 Definition. Let R be a discrete valuation ring with uniformizer π, field of frac-
tions K and residue field k. Let E be an elliptic curve over given by the Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

with ai ∈ R.(such a Weierstrass equation is called integral)

Given an integral Weierstrass equation as above, we define a Weierstrass model for
E over K to be the surface W → S = Spec R, given by the closed subscheme of P2

R

defined by the equation,i.e W is the S-scheme

Proj R[x, y, z]/(y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6).

Note that a Weierstrass model is indeed a model of a scheme over a DVR as described
in section 1.3. What’s more, the generic fiber of a Weierstrass model W is isomorphic
to E, since it is precisely the curve over K given by the Weierstrass equation of E. Now
the closed fibre Wk (unique, since we’re working over a DVR) is a plane projective curve
over k, given by a Weierstrass equation with coefficients ai(mod πR). Using results from
the section on Weierstrass equations, we know exactly what this curve looks like: it can
be an elliptic curve, or a cubic curve with one singularity. More precisely by means of
proposition 1.4.2, we can distinguish the possibilities simply by calculating the discrim-
inant. In particular, the special fiber of a Weierstrass model is smooth if and only if the
discriminant ∆ is in R∗ .
The integral Weierstrass equation of an elliptic curve E over K, such that the valuation
(associated to the DVR R) of the discriminant is minimal is called a minimal Weier-
strass equation. Its discriminant modulo R∗ is called the minimal discriminant and the
resulting Weierstrass model is called minimal Weierstrass model.

1.5.2 Lemma.: A Weierstrass model is integral and flat over R.

Indeed, the dehomogenized polynomial in each affine open is irreducible, hence the
model W is an integral scheme. By corollary 1.1.15 every non-constant morphism from
an integral scheme to a Dedekind scheme is flat, thus our result.

2 Blowing-Up, Desingularization and Regular Models

Blow-ups are defined as specific morphisms associated to graded algebras. They are
central to the study of desingularization. By ’blowing-up’ singular schemes at certain
points, it is possible to get rid of the singularities, or atleast make them ’nicer’, there by
making blowing-up an extremely useful tool in algebraic geometry. This section aims to
develop the theory of blow-ups and show that the process of blowing-up is necessary in
obtaining what we call regular models. There are also some notes on desigularization in
general. The resolution of singularities, however, is a vast(and difficult!), widely studied
area of algebraic geometry, but it is not our concern to delve into this here. Thus most
results concerning desingularization will be stated without proof.

2.0.3 Definition. Let X be a reduced Noetherian scheme. Let ξ1, ξ2, ...ξn be the its
generic points. A morphism of finite tpe f : Z → X is called a birational morphism if
Z admits exactly n generic points ξ′1, ξ

′
2, ...ξ

′
n, if f−1(ξi) = ξ′i,and if OX,ξi → OZ,ξ′i is an

isomorphism ∀i.
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2.0.4 Definition. Now let X be a scheme having only a finite number of irreducible
components X1,X2, ...Xn (endowed with the reduced closed sub-scheme structure.) The
disjoint union X ′ = q1≤i≤nX

′
i where each X ′

i is the normalization of the integral scheme
Xi as defined usually, is called the Normalization ofX, and the canonical morphism
π : X ′ → X, the Normalization morphism. This forms an example of a birational mor-
phism.

It will become clear once we define blow-ups, that what we call the blowing-up
morphism is also a birational morphism.

2.1 Blowing-Up

Local Description:

Let A be a ring and I an ideal of A. Consider the graded A-algebra dependant on I:

Ã =
⊕

d≥0

Id, whereI0 = A

We can see this as sitting in A ⊕ A ⊕ A⊕ A... and choose elements 1, t, t2, t3... in each
A of the direct sum so as to explicitly define a map

Ã =
⊕

d≥0

Id → A[t]

sending an element i1i2...id 7→ i1i2...idt
d. In defining this explicitly, we are able to

distinguish between elements of A = Ã0 of degree 0 and the same element seen as an
element of I = Ã1 of degree 1. Now, let (f1, f2, ...fn) be a system of generators for I.
Let ti denote the element fi seen as an element of I = Ã1 of degree 1. We can now
define a surjective map:

ϕ : A[T1, T2, ...Tn] → Ã

Ti 7→ ti

The surjectivity of this map implies that Ã is a homogeneous A-algebra. If P (T ) is a
homogeneous polynomial with co-efficients in A, then P (t1, t2, ...tn) = 0 ⇔ P (f1, f2, ...fn) =
0.

2.1.1 Definition. Keeping the notation from above, let X̃ = ProjÃ where X = SpecA
is an affine Noetherian scheme. The canonical morphism π : X̃ → X is called the
Blowing-up of X with centre (or along) V(I) (or I)

Note: If I was generated by a regular element, Ã ' A[T ], the isomorphism being
given by ϕ as defined above. This amounts to saying that ProjÃ → SpecA is an
isomorphism.

2.1.2 Lemma. Let A be a Noetherian ring, and I an ideal of A generated by (f1...fn).
Let ϕ be defined as above. Then we have the following two properties which help us
characterise Kerϕ and thus sometimes, to compute the blow up of X = SpecA. (a) Let
Si = Ti/T1 ∈ O(D+(T1)). Then (Kerϕ)(T1) is given by:

J ′ = { P (S) ∈ A[S2...Sn]|∃d ≥ 0, fd1P ∈ (f1S2 − f2, ..., f1Sn − fn)}

(b) J = (fiTj − fjTi)1≤i,j≤n is always contained in Kerϕ.If the {fi} form a minimal
set of generators for I, and Z := V+(J) ∈ Pn−1

A is integral, then the closed immersion
ProjÃ → Z is an isomorphism. Thus the blow-up X̃ is a union of affine schemes
SpecAi where Ai is the sub Afi

-algebra generated by the fjf
−1
i ∈ Afi

, 1 ≤ j ≤ n.

22



Proof : (a) By choosing a suitable d ≥ 0, we can always write fd1P (S) as
∑
Qi(S)(f1Si−

fi) + a, a ∈ A. For P (S) ∈ (Kerϕ)(T1), the image os a in Ã(t1) is zero. ⇒ ∃r ≥ 0 3
atr1 = 0
⇒ af ri = 0
⇒ by replacing d by d+ r we can assume a = 0 and
⇒ P (S) ∈ J ′

Conversely, suppose that P (S) ∈ J ′

⇒ ∃d ≥ 0 3 fdi P (S) ∈ (f1Si − fi)1≤i,j≤n
⇒ if P (S) = Q(T )/T r1 with Q(T ) homogeneous of degree r, ∃e ≥ 0 3 fd1T

e
1Q(T ) ∈

(fiTj − fjTi)
⇒ fd1 t

e
1Q(T ) = 0

⇒ td+e1 Q(T ) = 0
⇒ P (S) ∈ (Kerϕ)(T1)

Note that Ker Ψ where Ψ : A[S2...Sn] → Af1 automatically equals J1 by the above.
So we can identify Ã(t1) with its image in Af1 .

(b) That J ⊆ Kerϕ is clear since P (S) ∈ Kerϕ⇔ P (f1...fn) = 0
For the remaining, it suffices to show that the given map is an isomorphism on every
non-empty principal open Ui = D+(Ti) ∩ Z. Consider the ideal generated by {fj}j 6=i.
Since the set of generators was chosen to be minimal ⇒ fi is not in this ideal. So it is
a non zero element of OZ(Ui) and thus not a zero divisor (Z integral ⇒ OZ(Ui) is an
integral domain.)

2.1.3 Examples.

• Let’s blow-up affine n-space An
k := Spec k[x1....xn] over a field k, at the origin

= (x1 = 0.....xn = 0). Here we are automatically in the “good” case, since our
map ϕ behaves well and Kerϕ = J = (fiT − j − fjTi)(0≤i,j≤n).

⇒ our blow-up X̃ = ProjA[T1...Tn]/J ' V+(J), which is the subscheme of Pn−1
A =

An−1
k ×k Pn−1

k given by J , where A = k[x1....xn]. For the subscheme of X̃ where

xi lives (xi 6= 0), we have that Tj = xjTix
−1
i . Thus X̃(xi) ' X(xi). Thus the fibre

of the origin, which is given by nothing more than the relation xi = 0, is just
projective n− 1 space. So the blowing up of affine n-space at the origin, keeps the
scheme intact everywhere except the point we blow-up, which is replaced by Pn−1

k .

• Consider now, a scheme with a singularity-SpecA,A := k[X,Y ]/(X2 −Y 3), which
has a cusp at the origin. In order to ’resolve’ this singularity we blow up the curve
at the origin. Let x, y be such that k[X,Y ]/X2 − Y 3 = k[x, y], so we blow-up
along the ideal I = xA+ yA. By the lemma above, we can cover X̃ with SpecAi
for i = 1, 2 and A1 = k[x/y, y], A2 = k[y/x, x] In A1, (x/y)

3y = 1 ⇒ (x/y) 6= 0, so
we can infact write A1 as k[v, 1/v] where v = x/y. Thus X̃ is just A2 = k[y, x, x]
where (y/x)2 = x. Setting u = y/x we have that A2 is nothing but k[u], u = y/x
which is just the affine line over k, which is infact the normalization of X.

We now want a more general definition and procedure of blowing-up, for schemes
that are only locally Noetherian.

2.1.4 Definition. Given a scheme X, a graded OX -algebra is a quasi-coherent sheaf of
OX-algebras, together with a grading B = ⊕n≥0Bn where each Bn is a quasi-coherent
sub-OX-module. B is a homogeneous OX-algebra, if B1 is finitely generated and (B1)

n =
Bn,∀n ≥ 1.
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An immediate example of a homogeneous OX -algebra is B := ⊕n≥0I
n where I is a

finitely generated quasi-coherent sheaf of ideals over X.

2.1.5 Lemma. For every scheme X and a graded OX -algebra B, ∃ a unique X-scheme
ProjB → X, such that ∀ affine open sub-scheme U ⊆ X, we have an isomorphism
of U -schemes hU : f−1(U) ' ProjB compatible with restrictions to every open affine
V ⊂ U .

Proof : Let us first assume X to be affine. The proof in the general case can be
obtained by glueing. Set ProjB as ProjB(X). Then ∀V ⊆ X open,

ProjB(V ) = ProjB(X) ⊗OX(X) OX)(V ) ' ProjB(X) ×X V ' f−1(V ).

Note that if ProjB exits, then ProjB|W = ProjB ×X W for every open subscheme
W of X. Covering X by open affine subschemes Xi, we can glue together the ProjXis
under the uniqueness of ProjB|Xi∩Xj

, and obtain ProjB

2.1.6 Definition. Let I be a coherent sheaf of ideals on a locally Noetherian scheme
X. Then the X-scheme

X̃ := Proj(⊕n≥0I
n) → X

is called the blowing-up of X with centre (or along) V (I)(orI). X̃ depends not only on
V (I) as a subset, but on the subscheme structure of V (I). Note that the Zariski topology
on schemes allows us to change I to In without changing the blow-up X̃ . For X affine,
the definition co-incides with that of the blowing-up of a Noetherian scheme.

2.1.7 Proposition. Let X be a locally Noetherian scheme, I a quasi-coherent sheaf of
ideals on X and π : X̃ → X, the blowing-up of X with centre V (I). Then the following
hold:
(i) π is an isomorphism ⇔ I is an invertible sheaf on X.
(ii) π is proper
(iii) π−1(X V (I)) → X V (I) is an isomorphism and for I 6= 0 and X integral, X̃ is
integral and π is birational.
(iv) IOX̃ = OX̃(1)

Proof : Most of these results follow from the proposition proved in the case of blowing
up a Noetherian scheme. The few things to note are that properness is a local property,
that an invertible sheaf is locally free of rank 1, and that for U := X V (I), Ũ = X̃×X U ,
since U → X is an open immersion and thus flat. The only one that requires a proof
perhaps is (iv):
It suffices to show the result for X = SpecA affine. In this case, let I = (f1, ...fn) be
the ideal associated to I. Let ti denote fi as seen as a homogeneous element of degree
1. Then IOX̃ |D+(ti)

is generated by the fi, ∀i = 1, ...n, since fj = fi(tj/ti). Thus

IOD+(ti) = OD+(ti)(1) ⇒ IOX̃ = OX̃(1)

Universal Property of Blowing-Up

For π : Y → X, a morphism of locally Noetherian schemes, and for I, a quasi-
coherent sheaf of ideals on X, the canonical homomorphism π∗I → π∗OX = OY , gives
us a quasi-coherent sheaf, the image of π∗I in OY , called the inverse image sheaf and
denoted IOY .
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2.1.8 Proposition. Let f : W → X be a morphism of locally Noetherian schemes,
and I, a quasi-coherent sheaf of ideals on X. Let J be the inverse image sheaf IOY . Let
π : X̃ → X and ρ : W̃ →W be the respective blow-ups along I and J respectively. Then
∃ a unique morphism f̃ : W̃ → X̃ such that the follwing diagram commutes.

W̃
f̃ //

ρ

��

X̃

π

��
W

f // X

Proof : We begin by showing the existence of f̃ in the case that X is affine, and
then glue to get our result for the general case. Suppose X = SpecA and W = SpecB.
We have a homomorphism of graded algebras:

⊕n≥0I
n → ⊕n≥0(IB)n, I = I(X).

But IB = J(W ), so we have an induced morphism W̃ → X̃. For the general case where
W is not affine, cover it with open affine subschemes Wi, and note that for any open
affine subscheme U in Wi ∩Wj , we have that the induced morphisms constructed as
above-W̃i → X̃ and W̃j → X̃, co-incide on U . So we glue together these fis to get a
morphism f : W̃ → X̃ . We follow a similar procedure for X not affine. This proves the
existence of f̃
Now for the uniqueness, in view of the assertion of uniquness itself, we may assume X
is affine, say X = SpecA. Also we can simply show the existence and uniqueness of
g : W̃ → X̃ such that the follwing diagram commutes:

W̃
g //

f.ρ

  A
A

A
A

A
A

A X̃

π

��
X

Then taking W = W̃ we would have J is an invertible sheaf.
Before we begin, we admit the following result about invertible sheaves:
For a scheme X and any invertible sheaf L on X generated by n elements s1, ...sn, ∃ a
morphism f : X → Pn − 1 = ProjA[T1, ...Tn] such that L ' f∗OY (1) and f∗Ti = si
under this isomorphism.
Now, let I := I(X) be generated by f1, ...fn. Let s1, ...sn be the respective canonical
images of the fi in J(W ). Then J is an invertible sheaf generated by s1...sn. Let
g : W → X̃,3 π ◦ g = f . Then:

J = g−1(IOX̃ )OW = g−1(OX̃(1))

⇔ g∗OX̃(1) → J is an isomorphism. Let i : X̃ → Pn−1 be the canonical closed immersion
associated to our original homomorphism ϕ. And let h := i ◦ g. Then h∗O

P
n−1
X

(1) ' J

and such an h is unique by the admitted result. Thus since i is a closed immersion, h
completely determines g, and thus we have our result regarding uniqueness.

2.1.9 Corollary. As an obvious corollary to the above, we have the actual statement
for the Universal Property of Blowing-Up: Let π : X̃ → X be the blowing up of a locally
Noetherian scheme X with centre I. Then π has the following Universal property: For
any morphism f : W → X such that (f−1I)OW is an invertible sheaf of ideals on W , ∃
a unique morphism g : W → X̃ making the following diagram commute.

W
g //

f

  A
AA

AA
AA

A X̃

π

��
X
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2.1.10 Example. Let’s go back to example 1.3.2, locate the singularities on the model
X, if any, and blow them up. We had an elliptic curve E → SpecK given by:

π−1y2 = (x3 + π3)

It can be seen as the smooth plane projective curve over K with homogeneous equation
π−1b2c = a3 + π3c3. We found a model of E given by

X = ProjR[a, b, c]/(b2c− π(a3 + π3c3))

Let’s look at X more closely. The generic fibre XK is nothing but E as we saw and is
thus smooth, with its points regular in X. So we don’t have to worry about XK ' E.
The special fibre Xk (unique since R is a DVR), occurs at π = 0 and is thus given by
b2c = 0, which is the union of the projective (reduced) line c = 0, and the non-reduced
projective line given by b2 = 0. We define the multiplicity of an irreducible component
to be d := length OX,η where η is the generic point. Under this, the line b2 = 0 has
multiplicity 2. The two components meet at a single point where b = c = 0. And so we
have something that looks like this:

XK

Xk
c = 0

b2 = 0

Now, we cover X with the standard open affines, and just as we did in example
1.4.3, we use the Jacobian criterion to check for singularities. It turns out that the
only singularity that exists is in the open D+(c), and it lies on the special fibre Xk.
Indeed D+(c) = Spec R[x, y]/(y2 − π(x3 + π3)) where x = a/c, y = b/c. Taking partial
derivatives and applying the J.C, we find a singularity at the point p = (0 : 0 : 1) ∈ X
which corresponds to the maximal ideal m = (x, y, π). To check, we look at the local
ring OX,p which is the quotiented regular local ring R[x, y]m/(y

2 − π(x3 + π3)). Now
y2 − π(x3 + π3) /∈ m2, and so by proposition 1.1.20, OX,p is not regular.

So we now have our singular locus. It is simply the point p corresponding to m =
(x, y, π).

Let’s blow-up X with centre p. By the definition of blowing-up we know that X\{p}
remains unchanged. So we can work locally on U = D+(c). Applying all that we learnt
in the section on Blowing ups, this is what we have:
Let φ : A := Spec R[x, y]/(y2 − π(x3 + π3)). Then we have the maps:

A[u, v,w] → ⊕mn

u 7→ x

v 7→ y

w 7→ π
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The kernel of φ is rather easy to calculate: It consists of the three obvious (proposi-
tion 2.1.2) candidates:

yu− xv, πu− xw, πv − yw

together with the candidate coming from the relation that determines D+(c), namely

v2 − π(xu2 + πw2)

So

⊕mn ' A[u, v,w]/(yu − xv, πu− xw, πv − yw, v2 − π(xu2 + πw2))

Thus our blow-up U ′ of U with centre p is given by

U ′ = Proj A[u, v,w]/(yu − xv, πu− xw, πv − yw, v2 − π(xu2 + πw2))

2.2 Desingularization

Fibred surfaces

2.2.1 Definition. Let S be a Dedekind scheme. We define a Fibered Surface X to be
an integral, projective, flat S-scheme of dimension 2, with structural morphism

π : X → S

Let η be the generic point of S. Then Xη = X ×S k(η) is called the generic fibre of X,
and for a closed point s ∈ S, Xs = X ×S k(s) is called a closed fibre.

Note: The flatness of π is equivalent to it’s surjectivity: That surjective ⇒ flat
is clear to see from Proposition 0.1.1.14 and the Corollary that follows . The converse
arises from the fact that dimension of fibres is preserved by flatness and thatXs ' π−1(s)

A morphism of fibered surfaces is a morphism of schemes that is complatible with
the S-scheme structure.
Fibered surfaces can be broadly classified into two kinds-One where dim S = 0, which
is the “Geometric case”. Here X is an integral, projective, algebraic surface over a field.
And the other where dim S = 1, the “Arithmetic case”. This is where we call X a
Relative curve over S.

Note: From now on, we assume all fibred surfaces to be over a Dedekind scheme of
dimension 1 unless specified otherwise. Although most results would also hold for the
dim S = 0 case, for our purposes (which is eventually to work over DVRs) we choose to
stick to the case of dim S = 1.

2.2.2 Remark. For a fibred (respectively normal fibred) surfaceX (i.e-over a Dedekind
scheme S of dimension 1), in general, the generic fibre Xη is an integral (respectively
normal integral) curve over K(S), and ∀s ∈ S, the fibres Xs are projecive curves over
k(s).

2.2.3 Example. Let’s go back to example 1.4.3.

X = ProjZ[x, y, z]/(y2z + yz2 − x3 + xz2)

It turns out that it is indeed an example of a normal fibered surface. That it is a
projective, integral (the dehomogenized polynomials in each of the standard affines is
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irreducible) surface is clear, and the structural morphism is flat since flat is equivalent
to torsion free over a PID. The only thing to verify then, is that X is normal. Since
we saw that X is smooth everywhere except for X37, we have that its generic fibre is
normal. Further, since X37 is reduced, we have a lemma ([Liu] 4.1.18) that says such a
scheme is indeed normal, thereby making it a normal fibred surface as we wanted.

As something of an application of the valuative criterion of properness to fibered
surfaces, we have the following proposition, which proves to be insightful and raises
some questions that concern regular models of curves, and even more specifically reveals
how the properties of regularity and properness are used in constructing the Neron
model.

2.2.4 Proposition. Although this could be proved for a more arbitrarily chosen fibered
surface, it suits our purposes to choose the following setting, as will become clear later
on. Let R be a complete DVR with algebraically closed residue field k. Let X be a normal
fibered suface over R, and XK be its generic fibre.
(a) If X is proper over R. Then

XK(K) = X(R)

(b) If X is regular, and if X0 ∈ X is that largest subscheme of X such that X0 → SpecR
is smooth, i.e, X0 is the smooth part of X, then

X(R) = X0(R)

(c) In particular, if X is both regular and proper over R, then

XK(K) = X(R) = X0(R)

Proof : (a) This is infact just a special case of the valuative criterion of properness.
We have a canonical map X(R) → XK(K). That it is injective follows from the fact
that SpecK is dense in SpecR and the fact that if two morphisms SpecR → X agree
on a dense open set, then they are the same. (Ref Liu3.3.25,3.3.11) Surjectivity follows
from the valuative criterion of properness which says that since X is proper over R, for
every point P ∈ XK(K), there is a morphism ρP : SpecR → X making the following
diagram commute:

XK
// X

SpecK

P

OO

// SpecR

ρP

OO

Thus every point in XK(K) comes from a point in X(R), implying X(R) = XK(K).
(b) It can be proved that for a fibred surface as above, if it is regular, then every
R-valued point, i.e a point belonging to X(R), intersects each fibre at a non-singular
point. In other words, if x ∈ Xk, the special fibre, lies in the image of an R-valued point
P ∈ X(R), then Xk is non-singular at x. Since X0 is precisely the complement of the
singular points of X, this amounts to saying that the natural inclusion X0(R) ↪→ X(R)
is infact a bijection.
(c) It follows directly from the above two that

XK(K) = X(R) = X0(R)

What this proposition actually tells us is that the smooth part of a regular, proper
fibred surface over a DVR as above, is large enough to contain all the rational points on
the generic fibre. So every K-valued point on the generic fibre extends to an R-valued
point on the smooth part of the fibred surface X. It compels us to ask some questions
about (and also gives insight into the use of) models of curves:
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• Given a DVR R with field of fractions K, a curve E over K, can we find a proper,
regular fibred surface X over R such that its generic fibre XK is isomorphic to E?

• If so, is there a minimum such model?

These questions lie at the heart of this memoire, and form the base for finding and
studying Neron models.

Before we formally define models of curves, we explore the question of regularity,
i.e the existence of such a regular fibred surface X as above. This forces us to turn
to the theory of the resolution of singularities, which helps us obtain regular fibred
surfaces from those with singularities in an explicit way. The theory of the resolution
of singularities, or disingularization as it is sometimes called, is vast and complex, and
has not been treated here in great detail. Oscar Zariski and his students S.Abhayankar,
J.Lipman and H.Hironaka have contributed greatly to this field in the years 1939-1965.

2.2.5 Definition. Let X be a reduced, locally Noetherian scheme. A proper birational
morphism π : Z → X with Z regular is called a desingularization of X (or a resolution
of singularities of X. If π is an isomorphism above all regular points of X, it is called
a desingularization in the strong sense.

2.2.6 Example. For a reduced curve X over a field k, the normalization morphism
X ′ → X is a desingularization of X.

For any (non-reduced) curve this may not be the case. But since the notions of
normal and regular co-incide on curves over fields, the problem of disingularization is
rather easy in this case. Thus, our problem essentially becomes one of higher dimen-
sions. However, to get an intuitive understanding of desingularization, we first take
the example of a (singular) curve over a field and show how we can obtain an explicit
desingularization: Construct a sequence of blow-ups of an integral projective curve X
over k as follows: Let us suppose X is singular. Let X1 → X0 = X be the blowing
up of X0 along it’s singular locus endowed with it’s closed subscheme structure. i.e
along S0 = X0\Reg(X0), where Reg(X0) is the set of regular points of X0. If X1 is still
singular, define another blowing-up morphism X2 → X1 in the same manner, and for
X2 singular, X3 → X2 and so on, blowing up the Xis along Si = Xi\Reg(Xi).

2.2.7 Proposition. With the notation above, the sequence

...→ Xn → Xn−1 → ...→ X0 = X

is finite. This is equivalent to saying that given an integral projecive curve X that is
singular, we can desingularize X in a finite number of steps with regular centres.

Proof : Notice first the claim that the singular locus of X is closed. Indeed we saw
earlier that the generic fibre Xη s an integral curve over the field K(S) (Remark 2.2.2).
Thus Reg(Xη) is a non-empty open set, since for a curve the set of regular points is
equal to the set of normal points, and the latter is open for an integral curve over a field.
Since Xη is open in X, we have that Reg(X) contains a non-empty open subset of X.
Let Y be a proper closed subscheme of X. Then dim Y ≤ 1. If Y → S is dominant,
Reg(Y ) contains the open subset Yη. If Y ∈ Xs, then Y is an integral curve over a field
and thus Reg(Y ) is open just as we saw in the case of Xη. Thus for any integral closed
subscheme Y of X, Reg(Y ) contains a non-empty open subset. If this is the case, it can
be shown that this implies Reg(X) is open.
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Now, lets go back to the sequence. Let πn : Xn → Xn−1 be the blowing-up morphism
along Sn−1. We know that πn is a proper birational morphism of integral curves, and
therefore finite. We thus have the following exact sequence:

0 → OXn−1 → πn∗OXn → Fn → 0

where Fn is a skyscraper sheaf with support in the singular locus of Xn−1. This sequence
allows us to obtain a relation between an invariant (namely the arithmetic genus) of the
schemes in the sequence, which is infact strictly decreasing and bounded from below,
and thus stationary. What this means is that since Fn is a skyscraper sheaf, Fn = 0.
Thus the second arrow of the exact sequence is an isomorphism which in tuen implies
that πn is an isomorphism since it is finite. Thus the singular locus is defined by an
invertible ideal by proposition 2.1.7, which is not possible and thus the singular locus
is empty, implying that Xn−1 is regular. Thus in a finite number of blow-ups we have
desingularized X.

The following is the main theorem of Disingularization (rephrased to suit our pur-
poses):

2.2.8 Theorem. Let S be a Dedekind scheme of dimension 1. Let π : X → S be
a fibred surface with smooth generic fibre. Then X admits a desingularization in the
strong sense.

The key ingredient of the theorem is a result by Lipman and it’s corollary which we
admit:

2.2.9 Theorem. Let X be an excellent, reduced, Noetherian scheme of dimension 2.
Consider the sequence:

...→ Xn+1 → Xn → ...→ X1 → X

such that X1 → X is the normalization morphism and ∀i ≥ 1, the maps Xi+1 →
Xi are the composition of the blowing up morphism X ′

i → X along the singular locus
Si = Xi\Reg(Xi) (which is closed because X is excellent-see definition below.) and the
normalization morphism Xi+1 → X ′

i. Then the sequence is finite and stops at n when
Xn is regular. In other words, such an X admits a desingularization in the strong sense.

2.2.10 Corollary. Let S be an excellent Dedekind scheme. Let X → S be a fibred
surface. Then X admits a desingularization in the strong sense.

We must first define an excellent scheme:

2.2.11 Definition. A ring A is said to be excellent if it satifies the following prop-
erties: (i) SpecA is universally catenary, i.e every finitely generated A-algebra satifies
the following-for any triplet of prime ideals q ⊆ ℘ ⊆ m we have the equality of heights
ht(m/q) = ht(m/℘) + ht(℘/q)
(ii) ∀℘ ∈ SpecA, the formal fibres of A℘ are geometrically regular
(iii) ∀ finitely generated A-algebra B, the set of regular points in SpecB is open in SpecB

A locally Noetherian scheme X is said to be excellent if ∃ a covering {Ui} of X, such
that OX(Ui) is excellent ∀i.

For the purpose of this memoire, it suffices to consider fibred surface X over a scheme
S = SpecR where R is a complete DVR, with an algebraically closed residue field k.
Thus from this point on, a fibred (respectively normal,regular etc) surface is an integral
projective, flat, (with respective additional conditions of normal, regular etc) R-scheme
of dimension 2. Note that such an S is always excellent.

Thus we rephrase theorem 2.2.6 as:
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2.2.12 Theorem. Let S = SpecR with R a complete DVR with algebraically closed
residue field k. Let π : X → S be a fibred surface. Then X admits a desingularization
in the strong sense.

Proof : The proof then directly follows from the corollary to Lipmans result since
our S is an excellent Dedekind scheme.

2.3 Models of Curves and The Regular Model

Having inroduced the language of fibred surfaces and raised the relavent questions (see
remarks following proposition 2.2.3), we now formally introduce models of curves. They
are models in the sense of section 1.3, but have a rather strict definition. We will notice
later, when we introduce the concept of Weierstrass and Neron models of curves, that
the latter need not necessarily be models of curves as we define them below.

We continue to work over S = SpecR, with R a complete DVR with algebraically
closed residue field k and field of fractions K.

2.3.1 Definitions. Let E be a normal, projective connected curve over K. A normal
fibred surface X → S is called a model of E over S or over R if the generic fibre XK of
X is isomorphic to E. We say that it is a regular model if X is regular.
If X , X ′ are two models of E over R, the identification of the generic fibres gives us a
birational map between X and X ′.

2.3.2 Proposition. Weierstrass models of elliptic curves are models of curves.

That a Weierstrass model for an elliptic curve is projective, integral and flat of
dimension 2 is clear. The only thing to verify then is normality. And this follows
directly from the argument used in showing that example 1.4.3 was indeed an example
of a normal fibered surface, since the generic fibre, which is isomorphic to the elliptic
curve, is regular (and thus normal) and the (unique, as it was defined over a DVR)
special fibre is reduced.

2.3.3 Example. We return to our main example 1.3.2. We first note that the model X
we found for the elliptic curve E is indeed a model of a curve in the sense of definition
2.3.1. First note that E satisfies the conditions for us to be able to define a model in the
sense of definition 2.3.1. Indeed it is a regular connected projective curve over K and
since normal is equivalent to regular, we can define a model of the curve E. Now, we
already have that the generic fibreXK ofX is isomorphic to E. Thus, we must show only
that X is a normal fibered surface. That it is projective and of dimension 2 is obvious.
Since the polynomial that defines it, when dehomogenized, is irreducible in all three
standard affine opens, we have that it is integral. That it is flat follows from the fact
that every non-constant morphism from an integral scheme to a Dedekind scheme is flat.
The only thing that remains to be verified is that it is normal. This requires admitting a
criterion for normality due to Serre that says for a scheme such as X, (which happens to
be one that we call Cohen-McCaulay; In particular it verifies the property that for any
point x ∈ X, we have depth OX,x ≥ inf{2, dim OX,x}. As a counter example consider
the scheme X = SpecR[x, y]/(x2 − π, xy) over our DVR R. This scheme contains an
embedded point x (an associated point that is not generic) corresponding to the ideal
(x − π, y), which will not verify property above (indeed, depth OX,x = 0) and is thus
not Cohen-McCaulay.) we have the following criterion for normality: X is normal if
and only if it is normal at the points of codimension 1. (see [Liu] 8.2.23 for details).
Admitting this, we must only check that X is normal at its points of codimension 1.
These points are either closed points of the generic fibre XK ' E or the generic points
of the special fibre Xk. Since we already know that E is regular and thus normal, we
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needn’t worry about its closed points. We turn our attention to Xk. A generic point η of
Xk corresponds to the prime ideal generated by π together with a polynomial in R[x, y]
who’s image in k[x, y] is irreducible. We look at this locally, in each of the stadard open
affines covering X. We have the equations:

y2 − π(x3 + π3); x = a/c, y = b/c

u2v − π(1 + π3v3); u = b/a, v = c/a

t− π(s3 + π3t3); s = a/b, t = c/b

In each, we look at what a generic point of Xk would look like: and see that it
corresponds to (π, y2), (π, u2v), and (π, t) respectively. Now, by proposition 1.1.20,
X would be normal at each of these points respectively if and only if (x3 + π3), (1 +
π3v3), (s3 + π3t3) did not belong to (π, y2)2, (π, u2v)2, and (π, t)2 respectively. And
since this holds true, X is indeed normal.

Thus we have that X is a normal fibered surface over R with generic fiber isomorphic
to E,which makes X a model of E in the sense of definition 2.3.1.

The Regular Model

We return to the question posed after proposition 2.2.3 which asked if given a curve
E over K, is it possible to find a regular model X over R for this curve? The disin-
gularization theorem helps us to answer this. What the following proposition says, is
that, for a curve E over K as above, given any model X over R for E, it is possible to
obtain the regular model. What’s more, by applying the Lipman procedure of repeated
normalizations and blow-ups, the Xn obtained in theorem 2.2.8 is precisely the regular
model.

2.3.4 Proposition. If X is a model of a regular connected projective curve E, then
Xn as in proposition 2.2.8 is a regular model of E.

Proof : Since we have maintained our particular setting of R a complete DVR with
algebraically closed residue field k, we know from theorem 2.2.11 that X does infact
admit a desingularization in the strong sense. What this means by definition is that we
have a proper birational morphism π : Xn → X such that π is an isomorphism above
all regular points of X. Now by the definition of a model, we have that the generic fibre
XK of X is isomorphic to E, which is given to be regular. Thus we have that π is an
isomorphism above E(∼= XK). This gives us an isomorphism between the generic fibre
of Xn and E. Now Xn is regular and projective. (Projectivity follows from the fact
that the composition of two projective maps is projective-Thus since Xn is projective
over X and X is projective over R we have that Xn is projective over R.) By 2.1.7(iii),
Xn is also integral, and thus flat. (non-constant morphism from an inegral scheme to a
Dedekind scheme). It is normal since it is regular and irreducible (regular implies any
connected component is normal). Since proper birational morphisms preserve dimension,
(see Liu 8.2.7), we have that dimXn = 2. Thus Xn is a regular, normal fibred surface of
dimension 2 over R whose generic fibre is isomophic to E. In other words, Xn is indeed
a regular model of E.

2.3.5 Example. By the above proposition, we have that for our E given by π−1y2 =
(x3 + π3), and its model X = ProjR[x, y]/(b2c − π(a3 + π3c3)) there exists a regular
model X ′′ which can be arrived at by following Lipman’s procedure of repeated blow-
ups and normalizations. So we proceed now to do this in order to find a regular model
X ′′ of E. We have already blown-up the singular locus of X to get a regular scheme.
If this is normal, then we have found a regular model for E. But by looking at the
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relations defining the affine open D+(w) of U ′, we see that the scheme contains the
open Spec R[x1, y1]/(y

2
1 − π2(x3

1 + 1)) which is indeed not normal by proposition 1.1.20
and the argument used to show X was normal. Thus we must now normalize. If the
resulting scheme is regular, we will have our regular model. Consider the affine opens
covering X ′

D+(u) = Spec A[v1, w1]/(y−xv1, π−xw1, πv1−xw1, v
2
1−π(x+πw2

1)); v1 = v/u, w1 = w/u

D+(v) = Spec A[u2, w2]/(yu2−x, πu2−xw2, π−yw2, 1−π(u2
2+πw

2
2)); u2 = u/v, w2 = w/v

D+(w) = Spec A[u3, v3]/(yu3−xv3, πu3−x, πv3−y, v
2
3−π(xu2

3+π)); u3 = u/w, v3 = v/w

Begin with D+(u): π = xw1. Substituting in the last relation we have:

v2
1 = x2w1 + x2w4

1 = x2w1(1 + w3
1)

⇒ (v1/x)
2 = w1(1 + w3

1)

So we found an element v2 := (v1/x) that is integral over function ring of D+(u). If
the overring it generates is normal, then it is clearly the normalization of D+(u). Let
us look at the overring: A[v2, w1]/(y − v2x

2, π − xw, πv2x − yw1, v
2
2 − w1(1 + w3

1)) '
R[v2, w1, x]/(π − xw1, v

2
2 − w1(1 + w3

1)) Since it is integral and thus irreducible, if it
is regular it is normal. Thus we check for normality by checking for regularity. Once
again we use the Jacobian criterion to eliminate the possibilities and we see that the
only point that causes any suspicion at all is the one corresponding to the maximal ideal
m′ = (v2, w1, x, π). But by proposition 1.1.20,we only need to look at the local ring at
this point, and this is simply the regular local ring R[x,w1]/(π − xw1) quotiented by
v2 − w1(1 + w3

1) which does not belong to m′2, and is thus regular. Thus the overring
described above is indeed the normalization D+(u)′′.

Now consider D+(v). The relation 1 = π(u2
2 + πw2

2) implies the π is invertible in
D+(v) which in turn implies that D+(v) is contained in XK ' E which is in any case
regular in X, so we needn’t worry about D+(v) any further.

Lastly we have D+(w) which we already know is not normal. We follow what we did
for D+(u) and find an integral element not in D+(w) and find its overring. We have x =
πu3. Substitute this in the last relation to get v2

3 = π(πu3+π) ⇒ (v3/π)2 = u2
3+1. So we

have an element v4 := (v3/π) integral over the function ring of D+(w). The overring it
generates is quite obviously regular and thus we have our desired normalization D+(w)′′:
Indeed the overring is A[u3, v4]/(yu3 − xv4, π

2v4 − y, v2
4 − (u3

3 + 1)) ' R[u3, v4]/(v
2
4 −

(1 + u3
3)), so applying the Jacobian criterion it is instantly seen to be regular since

char k 6= 2, 3.
Thus we have now obtained U ′′, the normalization of our blow-up U ′, which is regular

and defines our regular model. Since we knew the precise location and nature of our
singularity, we were able to work locally on U = D+(c). By this we now have a regular
normal fibered surface X ′′ over R with generic fiber isomorphic to E. Thus X ′′ is a
regular model of E. In order to see what X ′′ looks like, lets look at its fibers. We
already know exactly what its generic fiber looks like. Its special fiber X ′′

k is made up of
the reduced projective line we saw earlier that remains unchanged (c = 0) and what we
made by resolving the singularity, leaves us with a projective double line and an elliptic
curve. Indeed, in D+(u)′′, the special fibre is given by the equations

xw1 = 0, v2
2 = w1(1 + w3

1).....(1)

and also by v2
1 = 0, which gives us the double projective line mentioned above. In

D+(w)′′, the special fiber is given by the equation

v2
4 = 1 + u3

3....(2)
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Now, the relation u3 = 1/w1 when substituted in (2) gives us v4 = v2u
2
3, which en-

ables us to glue the equations to get a single elliptic curve, which is the third component
of the special fiber of U ′′. Ou figure will now look something like this:

v2
4l = l3 + u3

3

XK

Xk
c = 0

b2 = 0

3 Contraction and The Existence of a Minimum Regular

Model

3.1 Contraction: Definition and Existence

3.1.1 Definitions. Let π : X → S be a fibred surface over a Dedekind scheme S.
Then an irreducible Weil divisor D on X is called horizontal if π|D : D → S is surjective
and thus finite. If π(D) is reduced to a point, we call D vertical. An arbitrary Weil
divisor is called horizontal (respectively vertical), if each of its irreducible components
are horizontal (respectively vertical).

As a complement to the process of blowing-up, one would imagine it natural to define
something that reverses the process, something that perhaps blows down. This would
somewhat amount to characterising ’exceptional’ divisors on the blow-up of a regular
scheme. More precisely we define the following:

3.1.2 Definition. Let X → S be a regular fibred surface over a Dedekind scheme of
dimension 1. A prime divisor E on X is called an exceptional divisor or (-1)-curve if
there exist a regular fibered surface Y → S and a morphism f : X → Y of S-schemes
such that f(E) is reduced to a point, and that

f : X\E → Y \f(E)

is an isomorphism.

We now define a contraction which is essentially the morphism f above, defined for
the exceptional locus.

3.1.3 Definition. Let X be a normal fibred surface. Let ε be a strict subset of the
irreducible components of the special fibre Xk. Let f : X → Y be a morphism from X
to another normal fibred surface Y , such that f(E) is reduced to a point ∀E ∈ ε and f
induces an isomorphism

f : X\∪E → Y \∪f(E)

Such an f is called a contraction morphism.
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Note that the contraction morphism is also a blow-up of Y along the closed point
f(E). This seems intuitively clear, however we will be able to give an easy neat proof
once we have the result of the factorization theorem, which we will see soon. One of the
main objects of this section is to prove the existence of the contraction morphism.

However,keeping notation from above, if such a contraction f exists, then it is unique
upto unique isomorphism. Indeed if g : X → Y ′ was another contraction, we have by
by Stein factorization that g factors as follows:

X
g //

f   A
AA

AA
AA

A Y ′

Y

π

OO

with g = π ◦ f such that f is unique with geometrically connected fibres.

In order to understand what the morphism f actually looks like, and why it exists,
we must now admit results from the section on divisors and invertible sheaves. We first
show that the existence of the contraction morphism is equivalent to the existence of an
effective Cartier divisor that meets the closed fibres in a certain way. Then we show that
in our setting of a complete DVR with algebraically closed residue field (infact the result
is for Henselian rings) such a divisor exists, and thus so does the contraction morphism.

3.1.4 Proposition. Let X → S be a normal fibered surface with dim S = 1. Let ε be
a strict subset of integral projective vertical curves on X. Then the following conditions
are equivalent:
(a) A contraction f : X → Y of the E ∈ ε exists.
(b) There exists a Cartier divisor D on X such that deg(D|XK

) > 0, OX(D) is generated
by its global sections and for any vertical curve E, OX(D)|E ∼= OE if and only if E ∈ ε.

Proof : Suppose the contraction morphism f as above exists. Then f(E) is a point
fo every E ∈ ε and f induces an isomorphism outside ∪E∈εE. Note that ε and thus
f(ε) are finite as sets. We look at Y as sitting in projective N-space over S, i.e embed
Y ↪→ PNS . Now we know from properties of projective morpshisms that there exists
a hypersurface V+(F ) of PNS such that it doesn’t meet the image of f(∪E) in PNS or
the generic point of Y . Consider this F that defines the hypersurface and let D0 be
the Cartier divisor associated to it, let it have degree d. Then O

P
N
S

(D0) ' O
P

N
S

(d) and

Supp D0 = V+(F ). Thus, by definition of V+(F ), SuppD0 ∩ (∪E∈εf(E)) = ∅ and so
Y * Supp D0. Let D1 := D0|Y , the restriction of D0 to Y , which is also a Cartier
divisor, such that Supp D1 ∩ (∪E∈εf(E)) = ∅ Since we have the closed immersion
Y ↪→ PNS , OY (D1) is very ample, and what’s more, we can suppose it to be generated
by its global sections, since we can replace D1 by a multiple if necessary. Now consider
D := f∗(D1). It turns out that this is the divisor we are looking for. We have that D
is effective, OX(D) ' f∗(OX(D1)) and is generated by its global sections (pullback of
a very ample sheaf generated by its global sections). Further, Supp D ∩ E = ∅ ∀E ∈ ε
and thus OX(D)|E ' OE . If E /∈ ε, then f(E) is a vertical curve on Y and we have
a finite birational morphism g : E → f(E) and OX(D)|E = g∗(OY (D1))|f (E). Since
the pullback of an ample sheaf under a finite morphism is itself ample, we have that
OX(D)|E is ample, and thus OX(D)|E � OE , proving the if and only if condition of (b).
We thus have our divisor D as desired, constructed such that the associated sheaf is the
pullback of an ample sheaf on Y .

Now suppose we have a Cartier divisor D on X as defined in part (b). We want to
show that the contraction f exists. We first construct f for the affine case S = SpecA
and then the general case follows from uniqueness of f . Now for such a D, we have the
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associated sheaf OX(D). We know from the assumptions of our setting and remark 2.2.2
that the generic fibre XK is an integral projecive curve over K. Thus by proposition
1.2.12, the restriction OX(D)|XK

is an ample sheaf on XK . Further, it can be assumed
to be very ample (substituting D by a multiple if necessary). Thus, if s0, ..., sn are
the sections which generate OX(D)|XK

, then we can construct a morphism g : X →
PnS associated to these sections. Now g(X) can be endowed with its closed integral
subscheme structure to make g : X → g(X) a dominant morphism which identifies
the respective generic fibres and is thus birational and projective. Under a projective
morphism, we have that g∗OX will be a coherent sheaf on g(X). Since X is normal,
the canonical morphism Y := Spec g∗OX → g(X) is the same as the normalization
morphism X → g(X). So X → g(X) factors as follows:

X

g ""D
DD

DD
DD

D f
// Y

��
g(X)

where f : X → Y is the contraction morphism we desire. In order to check this we
admit the following lemma:

3.1.5 Lemma. Let X be a scheme that is locally of finite type over a Noetherian ring
A. Let L be an invertible sheaf on X generated by global sections s0, ...sn. Associate the
morphism f : X → PnS to these sections. Then for s ∈ Spec A such that Xs is projective
over k(s), and Z a connected closed subscheme of Xs, we have that f(Z) is reduced to
a point if and only if L|Z ' OZ .

It follows directly from the lemma above that in proposition 3.1.4, second part of
the proof, that for any integral vertical curve E on X, g(E) is reduced to a point if and
only if OX(D)|E ' OE and since Y → g(X) is finite, f(E) is reduced to a point if and
only if g(E) is reduced to a point. Thus the result.

Before we proceed to show that the above equivalent conditions are satisfied in our
case of a normal fibred surface X over a complete DVR R with algebraically closed
residue field k, we need the following lemma, which, given an effective Cartier divisor D
and the associated sheaf OX(D), assures us of being able to find an n large enough for
the sheaf OX(nD) to be generated by its global sections.

3.1.6 Lemma. Let X be a fibred surface over S = SpecA Dedekind. Let D be an
effective Cartier divisor on X and OX(D) the associated sheaf. Then there exists n0

such that OX(nD) is generated by its global sections for all n ≥ n0.

Proof : By proposition 1.2.12, we have that OX(D)|XK
is an ample sheaf. Since

K is flat over A, it follows from the commutativity of cohomology and flatness that
H1(X,OX (nD)) ⊗A K = H1(XK , OX(nD)|XK

) for every n ≥ 0. But for a fixed
n0 ≥ 0, the right hand side of the equality will vanish for all n ≥ n0, implying that
H1(X,OX (nD)) is torsion and thus of finite length (as it is finitely generated). Now,
based on the remark following 1.2.12, we endow D with the closed subscheme structure
V (OX(−D)) and consider the exact sequence

0 → OX(−D) → OX → OD → 0

Tensor with OX((n+ 1)D) and take the cohomology to get the sequence:

H0(X,OX ((n+ 1)D)) → H0(D,OX((n + 1)D|D) → H1(X,OX (nD))

→ H1(X,OX((n + 1)D)) → H1(D,OX((n + 1)D|D) = 0
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The sequence tells us that the length of the cohomology groups H1(X,OX (nD) de-
creases as n ≥ n0 increases, and thus becomes stationary at some rank m0. Then
H1(X,OX ((m)D)) ' H1(X,OX (m+1)D) and H0(X,OX (mD)) → H0(D,OX(mD|D))
is surjective for every m > m0. Now OX(mD)|D is generated by its global sections. But
by Nakayama’s lemma, the homomorphism H0(X,OX (mD))⊗OX(X)OX,x → OX(mD)x
is surjective for every x ∈ Supp D but also for all other x, since if x /∈ Supp D then
OX(mD)x = OX,x by definition. So the above homomorphism remains surjective. Thus
we have that OX(mD) is generated by its global sections as claimed.

Note that this lemma together with proposition 3.1.4 says that, in order for a con-
traction morphism to exist, we must be able to find a Cartier divisor that meets the
fibres in a desired way. It turns out that in our setting, of a normal fibered surface over
S = Spec R, where R is a complete DVR with algebraically closed residue field k, we are
able to find such a divisor. The result holds true for all fibred surfaces over the spectrum
of a Henselian ring, but since our chosen DVR is indeed Henselian, this is something we
do not worry about. We simply present the result in the particular chosen setting.

3.1.7 Proposition. Let R be a complete DVR with algebraically closed residue field.
Let X → S = Spec R be a normal fibered surface. Then for any proper subset ε of the
irreducible components of the closed fibre Xk, the contraction morphism exists for each
of the E ∈ ε.

Proof :

The key to be able to choose the desired Cartier divisor that ensures the existence
of the contraction morphism lies in the fact that for a scheme S = SpecR such as ours,
any scheme that is finite over such an S is a disjoint union of local schemes. So for an
x ∈ Xk, there exists an effective horizontal Cartier divisor D such that Supp D∩Xk = x.
Indeed we can choose a regular element f such that V (f) doesn’t contain any irreducible
component of Spec OXk ,x. Then there exists an open neighbourhood U 3 x and an
element g ∈ OX(U) such that gx = f and V (g) ∩ Ux = x. Now consider V (g) as,
we can regard it as an effective divisor on U . Consider V (g) with its endowed closed
subscheme structure. Then V (g) → S is both quasi-finite and quasi projective. As a
consequence of Zariskis main theorem (see [Liu] Cor.4.4.6) we know there exists an affine
open neighbourhood V of x such that V (g)∩V is an open subscheme of a scheme Z that
is finite over S. Let D be a connected component of Z, then it is closed in Z and thus in
X,making it the Cartier divisor we desire as it satisfies the condition claimed above. Now
that we know we can choose such a divisor given a fibered surface such as ours, let ε be a
subset of the irreducible components of Xk. Let Z1, ..., Zn be the irreducible components
of Xk not in ε. Let Di be a Cartier divisor such that Supp Di ∩ Zi is a single point
in Zi obviously not lying in any component belonging to ε. Let D =

∑
0≤i≤nDi. By

Lemma 3.1.6 we have that (replacing D by a multiple if necessay), OX(D) is generated
by its global sections. Furthur, for E ∈ ε, E ∩Supp D = ∅. Thus OX(D)|E ' OE . And
if E /∈ ε, E = Zi for some i, and deg OX(D)|E > deg OX(Di)|Zi

, so OX(D)|E � OE .
Thus by proposition 3.1.4 the contraction morphism exists for all E ∈ ε.

3.1.8 Remark. To see more clearly what the morphsim itself looks like, consider this.
What we have shown above is that in our setting, the contraction morphism exists for
any proper subset ε of irreducible components of Xk. And its existence is is equivalent to
be able to choose an effective relative Cartier divisor that meets exactly the components
of Xk not in ε. Since we are able to do this in our setting, we can explicitly state that
the following morphism is a contraction morphism:

X → Y := Proj (⊕n≥0(H
0(X,OX (nD)))
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3.1.9 Example. Before we go on to looking at intersection theory, let’s return to
our example, in order to apply the results of this section- i.e in order to contract an
irreducible component of the special fiber Xk. Let’s say we want to contract E1, the
reduced projective line given by c = 0. By proposition 3.1.4, we see that we want to
find an effective horizontal divisor D that meets only the components of Xk other than
E1. One such divisor is the closed subscheme given by D := V+(b2, a+ πc), which is of
degree 2 and clearly disjoint from E1. Also by proposition 3.1.4 we know that we want
to look at OX(D), the associated invertible (locally free) sheaf and its global sections.
We can do so by covering X by open affines on which OX(D) is trivial. By the definition
of global sections we should look for a set of sections on the open sets of the cover such
that they coincide on intersections. But since X is integral we have the advantage of
being able to determine any section of an invertible sheaf by its restriction to any open
set. So we can instead compute a global section by taking any section on one of the
opens and making sure it extends to the whole scheme.

Keeping the above comment in mind, we choose the following opens to cover X:

U1 = D+(c), U2 = D+(a(a+ πc)), U3 = D+(b)

Then we have

OX(U1) = R[u, v]/(v2 − π(u3 + π3); u = a/c, v = b/c.

OX(U2) = R[p, q, 1/(1 + πq)]/(p2s− π(1 + π3s3)); p = b/a, q = c/a.

OX(U3) = R[s, t]/(t− π(s3 + π3u3)); s = a/b, t = c/b.

Note that we have the relations:

q = 1/u, t = 1/v = q/p, s = 1/p = u/v,

Following proposition 3.1.4 and remark 3.1.8, we know we want to look atH0(X,OX (nD))
for some n ≥ 0 in order to be able to define the contraction morphism for E1. We already
know by proposition 1.1.12 and the proof of proposition 3.1.4 that for a suitable n ≥ 0,
OX(nD)|XK

= OXK
(nDK) is very ample and is generated by its global sections, which

define a closed immersion into projective space (under the morphism we called g in the
proof of proposition 3.1.4). Moreover, we have the following result which tells us explic-
itly what our n needs to be in order for OXK

(nDK) to be very ample: For a smooth,
geometrically connected projective curve over a field, with genus g, an invertible sheaf
on the curve is very ample as soon as it’s degree is ≥ 2g+1. (see [Liu] prop.7.4.4) Since
we know XK to satisfy the above conditions with genus 1, we have that deg OXK

(nDK)
should be atleast 3. Given that deg DK = 2, n = 2 will give us what we want. We also
have that dim H0(XK , OXK

(nDK) = (deg DK)n = 2n, by the Riemann Roch Theorem,
an important result in algebraic geometry, which is neither stated or treated here, but
can be referred to in [Liu] prop. 7.3.33 and [Ha] chapter IV. Thus what we want is
to find a basis H0(XKOXK

(2DK) which defines the closed immersion XK → P3
K (see

theorem 1.2.14). Moreover, we want this basis to generate OX(D).
What we do now is to choose a global section, see what it looks like on U1, make sure it

extends to all of X, i.e to U1 and U2 as well, and obtain a description of H0(X,OX (2D)).
Let f ∈ H0(X,OX (2D)) be a global section of OX(2D). In U1, every element can

be written as an expression of the form P (u) + vQ(u) (given the relation that defines
it) which is easy to work with so we look at the restriction of f to U1.

f |U1 = F [u, v] = 1/(u+ π)2(P (u) + wQ(u))

Using the relations q = 1/u, p = 1/s = u/v we have:

F (1/q, p/q) = (q/(1+πq))2(P (1/q)+(p/q)Q(1/q)) = 1/(1+πq)2(q2P (1/q)+pqQ(1/q))
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If this were to be defined on all of U2, this means that F (1/q, p/q) should have no pole
at q = 0, which in turn means that deg P (u) ≤ 2 and degQ(u) ≤ 1. Now using relations
s = u/v, t = 1/v we have:

F (s/t, 1/t) = (t/(s + πt))2(P (s/t) + (1/t)Q(s/t)) = 1(s + πt)2(t2P (s/t) + tQ(s/t))

If this were to be defined on all of U3, this means that F (s/t, 1/t) must have no pole at
s+πt = 0. In U3 we have t = π(s3 +π3t3) = π(s+πt)(s2 − stπ+π2t2) = 0 mod(s+πt)
This implies s = (s+πt)−πt = 0mod(s+πt), t = 0mod(s+πt)2, and s 6= 0mod(s+πt)2.

Given these relations, we must see what it means for F (s/t, 1/t) to have no pole at
s + πt = 0. t2P (s/t) is an expression with terms of the form tis2−i each of which, by
above, is 0 mod(s+ πt)2. tQ(s/t) is an expression with terms of the form sit1−i; i ≥ 1,
each of which by above are 0 mod(s + πt)2, together with the term a1t which will be
0 mod(s + πt)2 if and only if a1 = 0. Thus what the condition becomes for F (s/t, 1/t)
to have no pole at s+ πt = 0 is that deg Q(s/t) = 0.

So given the conditions, we have that H0(X,OX (D)) is the set of {F (u,w) = 1/(u+
π)2(P (u) + wC); deg P (u) ≤ 2}. with basis:

s0 = 1/(u + π)2, s1 = u/(u + π)2, s2 = u2/(u+ π)2, s3 = v/(u+ π)2

. This defines the morphism:
φ : X → P3

R

(u : v : 1) 7→ (1 : u : u2 : v)

which in homogeneous coordinates is:

(a : b : c) 7→ (c2 : ac : a2 : bc)

The equation defining X tells us b2c = π(a3 +π3c3). So we have πa3 = c(b2 −π3a3),
and can thus cover X by D+(a),D+(c) and D+(b2 − π3a3).

Since we have the relation c = πa3/(b2 − π3a3) in the last open, our map sends

(a : b : c) 7→ ((πa3/(b2 − π3a3))2a4 : (πa3/(b2 − π3a3))a2 : 1 : (πa3/(b2 − π3a3))ab)

So any point on the component E1 (which by virtue of being on E1 ⊂ Xk satisfies
c = π = 0)

x = (a : b : c) 7→ (0 : 0 : 1 : 0)

Our map φ is thus indeed a contraction.

What we want now is to define the contracted scheme Y := φ(X) ⊂ P3
R.

If we set the homogeneous coordinates of Y to be (l : m : n : o); l = c2, m =
ac, n = a2, o = bc, we have the relations ln = m2 and also from the equation of X,
b2c = π(a3 + π3c3) we have o2/c = π(an+ π3lc) ⇒ o2 = π(mn+ π3l2).

So Z ⊂ D+(l) ∪D+(n) ⊂ P3
R is given by the equations ln = m2 and o2 = π(mn +

π3l2). On D+(l) and D+(n) we dehomogenize the equations of Z to see that following
the argument in example 2.3.3 to show that X was normal (Serre’s criterion together
with proposition 1.1.20), we find that Z is indeed normal, but not regular.
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Now that we have overcome the problem of existence of contraction, our major
concern is what becomes of the irreducible components that you contract. As we saw
in the example above, we obtained an arithmetic surface on contraction that wasn’t
regular. Being in a natural way the inverse of the process of blowing up, we want to
be able to regulate the singularities that result. We have aleady raised the question
of a minimal regular model in the note following proposition 2.2.3. In order to obtain
such a minimal model from a regular model and ensure that it continues to be regular,
we will have to choose the components we contract wisely. In order to recognise these
exceptional divisors in some way, we have to be able to define an intersection theory for
divisors on regular fibred surfaces, which we develop below.

3.2 Intersection Theory on a Regular fibred Surface

General intersection theory is defined between arbitrary divisors. However, since a
regular fibred surface is not complete, we cannot do the same here. It turns out however,
for X → S, a regular fibred surface, over a complete DVR with algebraically closed
residue field, we can define an intersection between a vertical divisor and an effective
divisor. Thus we have a mapping

DivkX ×DivX → Z

where DivkX is the subgroup of DivX generated by the vertical divisors, i.e the sub-
group generated by the irreducible components of the special fibre Xk. More precisely,
for a prime vertical divsor E on X equipped with the closed immersion i : E ↪→ X and
an arbitrary effective divisor F on X, equipped with the closed immersion j : F ↪→ X,we
can define an intersection number E.F as follows: Since X is given to be regular, we
have an equality of Weil and Cartier divisors on X, and thus, the ideal sheaf I associated
to F is invertible and i−1(I) is the induced invertible sheaf on E. Since E is a curve
over k, we can define the intersection number E.F := deg (i−1(I)) If E 6= F then E.F is
atleast the number of points in Supp E ∩F and thus it is positive. If E and F intersect
each other transversally at all points, then E.F equals exactly the number of points in
Supp E ∩ F . So under the mapping defined above:

DivkX ×DivX → Z

we send
(E,F ) 7→ E.F

.
We state, wihout proof, some properties of this map.

3.2.1 Proposition. Let X be a regular fibred surface over a complete DVR R with
algebraically closed residue field k. Let E,F be divisors on X with E vertical. Then:

• If F is vertical, then E.F = F.E, i.e to say that the restriction of the bilinear form
to DivkX ×DivkX → Z is symmetric.

• If F is principal, then E.F = 0.

• If E is prime, then E.F = degE(O(F ) ⊗OE)

3.2.2 Theorem. Let X be a regular fibered surface as above and let E1, ..., Er be the
irreducible components of Xk. Then:

• (i) For all vertical divisors F , Xk.F = 0
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• (ii) Ei.Ej ≥ 0 for i 6= j and E2
i ≤ 0

Proof : (i) This is easy to see since Xk is nothing but the pullback of the closed point
in SpecR which is a principal Cartier divisor and therefore Xk is a principal Cartier
divisor in X. Thus by part two of above proposition, the result follows. (ii) For i 6= j,
Ei.Ej ≥ ](Ei ∩ Ej) ≥ 0). And by (i), E2

i = (Ei\Xk).Ei = −
∑

j 6=iEj .Ei ≤ 0 by above.

Thus E2
i is minus the intersection number of Ei with the special fibre Xk

Note that for E, F ∈ DivkX ×DivkX, if E and F intersect at finitely many points
P1, ..., Pn, then

E.F =
∑

1≤i≤n

dimk (Oi/(ei, fi))

where Oi is the local ring at Pi and ei and fi are the local equations for E and F at
Pi respectively. The proof of this equality requires some very standard commutative
algebra and can be found in [Lic] (prop.1.6).

3.3 Castelnuovo’s Criterion and The Minimal Regular Model

In this section, equipped with our knowledge of contraction and the arithmetic infor-
mation from intersection theory for fibered surfaces, we finally address the question of
the existence of a minimal regular model. We first state the Factorization theorem,
which describes projective birational morphisms between regular fibered surfaces as a
sequence of blow-ups of closed points. We do not give a proof, only an outline. We
then state Castelnuovo’s criterion for recognising exceptional divsors and finally, after
having formally defined what a minimal regular model is, we prove the minimal models
theorem.

Factorization Theorem

3.3.1 Theorem. Keeping to our notation in the previous sections, let f : X → Y be a
birational morphism of regular fibered surfaces over S = Spec R. Then f is made up of
a finite sequence of blow-ups along closed points.

We admit the following lemma:

3.3.2 Lemma. Let f : X → Y be a birational morphism of regular fibered surfaces
over S = Spec R. Let y ∈ Y be a closed point such that dim Xy ≥ 1. Then f factors as
follows:

X
g // Ỹ

π // Y

where π is the blowing-up morphism of Y with centre y.

Given this, let ε be the exceptional locus of f , i.e ε = X\f−1(W ) where W is the
union of open subsets U such that f−1(U) → U is an isomorphism. Suppose it is non
empty, and let y ∈ f(ε). Then dim Xy ≥ 1. Let π : Ỹ → Y be the blowing up of Y

with centre y. Then by the lemma above, f factors into X
g // Ỹ

π // Y . Consider

ε′, the exceptional locus of g. Then we know that we have a strict containment ε′ ⊂ ε.
Indeed, the irreducible component of ε whose image in Ỹ is π−1(y) will obviously not
be contained in ε′. Performing an induction on the number of irreducible components
of ε will give us the result.

As a direct corollary to the factorisation theorem, we have the following, which we
claimed to be true while defining the contraction morphism.
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3.3.3 Corollary. Let f : X → Y be a birational morphism of regular fibered surfaces
over S = SpecR. Suppose the exceptional locus of f is irreducible. Then f is the
blowing-up of Y along a closed point y. In particular if f : X → Y is the contraction
morphism of an exceptional divisor E, then it is also the blow-up of Y along the closed
point f(E).

Intersection properties of exceptional divisors

Exceptional divisors are central to understanding contractions. In fact it is precisely
these divisors that enable us to use contractions in ways that are useful to us-namely in
regulating the singularities that result once we contract, and in turn in finding minimal
regular models. By applying the results of intersection theory to exceptional divisors,
we attempt to get a more intuitive understanding of these divisors and their properties.
One of the main results of this subsection is Castelnuovo’s criterion, which gives us
an explicit way to recognise an exceptional divisor. Although much of the following is
necessary to prove Castelnuovo’s criterion, I do not give a proof of the criterion itself.
However the brief treatment below will perhaps serve to intuitively see why the criterion
should hold true.

3.3.4 Definitions. Let f : X → Y be a proper birational morphism between regular
fibered surfaces. Let D be a prime divisor on Y , and L the associated invertible sheaf
of ideals. We define the total transform of D to be f−1(D), the divisor associated to
the sheaf f∗(L). Let y be the generic point of D. We define the proper transform of D
to be f−1[D] := f−1(y), the Zariski closure of f−1(y). Note that f−1[D] is a divisor on
X.

We state, without proof the following properties of divisors and proper transforms.

3.3.5 Proposition. Let f : X → Y be as above. Then the total transform from divisors
on Y to divisors on X preserves linear equivalence. If C, D are two prime divisors on Y
such that for a field k, the intersection number C.D is well defined, then f−1(C).f−1(D)
is well defined and equal to C.D.

We fix an exceptional divisor E on X (Definition 3.1.2), so we have that f(E) is
reduced to a point on Y and f is an isomorphism off E.

3.3.6 Lemma. Let D be a divisor on Y . Then over k = k(f(E)), we have E.f−1(D) =
0.

Indeed we can find a divisor D′ that is linearly equivalent to D such that it does
not contain f(E). Then f−1(D′) and E are disjoint,so E.f−1(D′) = 0, but by the
proposition above E.f−1(D′) = E.f−1(D), hence the result.

3.3.7 Lemma. Let D be a prime divisor of Y passing through f(E). Then D has a
regular point at f(E) if and only if f−1(D) = f−1[D] + E and E.f−1[D] = 1. If D is
regualar at f(E) then f induces an isomorphism between f−1[D] and D.

From the above two lemmas we have:

3.3.8 Proposition. E as above is isomorphic to the projective line over H0(E,OE) =
k, H1(E,OE) = 0 and the self intersection number E(2) := E.E = −1

Proof :

By the factorization theorem we saw that f is also the blow-up of Y with centre
f(E). Now, by the construction of blowing-up, E = f−1(f(E)) is a complete curve
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over H0(E,OE) = k covered by two affine lines over H0(E,OE) = k, and thus E ' P1
k.

Choose a divisor D having a regular point at f(E). By the two lemmas above, we have

0 = E.f−1(D) = E.(f−1[D] + E) = 1 + E.E

Thus, E(2) = −1.

3.3.9 Proposition. Let C be a complete integral curve on X over k′ = H0(C,OC ).
Suppose C 6= E. Then let D := f(C) be the prime divisor on Y and let k = H0(D,OD).
Then
(a) If D does not contain f(E) then C and D are isomorphic and C(2) = D(2)

(b) If it does, then
D(2) ≥ [k : k′](C(2) + 1)

with equality if and only if C is isomorphic to D via f and D has a regular point at
f(E).

Proof : (a) Since f is proper and an isomorphism off E, we have by the integrality
of C that D is an irreducible curve in Y overcome k. Now since f is of finite type, [k : k′]
is finite. By definition of f and E, it is clear that if D does not contain f(E), then C
and D are isomorphic. Thus be proposition 3.3.5, C(2) = D(2).

(b) Now, if D does contain f(E), then f−1(D) = C + nE for some integer n ≥ 1.
Thus

D(2) = D.D = f−1(D).f−1(D) = (C + nE).(C + nE) = (C + nE).C

, the fourth equality coming from lemma 3.3.6. Now (C + nE).C = C.C + nE.C = [k :
k′](C.kC)+n(E.C) (intersection number computed over k). Now since C is a curve over
k′ E.C = C.E and since C and E intersect properly non trivially,E.C ≥ 1. Thus,

D(2) ≥ [k : k′](C(2) + 1).

Equality holds if and only if n = 1 and E.C = 1 which by lemma 3.3.7 is true if and
only if D has a regular point at f(E).

Before we state Castelnuovo’s Criterion, we state the following result:

3.3.10 Proposition. Let X be a regular fibered surface and E a prime divisor on X
which is proper over H0(E,OE). If H1(E,OE) = 0 and E(2) = −1, then E ' P1

H0(E,OE)

(see [Chin] prop.5.3)

Castelnuovo’s Criterion

3.3.11 Theorem. Let X be a regular fibered surface over S = SpecR, where R is a
complete DVR with algebraically closed residue field k. Let E be prime divisor on X.
Then E is an exceptional divisor (Definition 3.1.2) if and only if all the following hold:
E ⊂ Xk, H

1(OE , E) = 0 and E(2) = −1. In this case E ' P1
H0(E,OE).

What we are saying in other words is that for a vertical prime divisor E on an X such
as above, there exists a contraction of E if and only if E ' P1

H0(E,OE) and E(2) = −1
Minimal Models

3.3.12 Definition. A minimal (regular) model of a normal, projective, connected curve
C over K is a (regular) model X of C over S = Spec R, in the sense of Definition 2.3.1,
(and in keeping with the setting from Section 2.3) such that, for every (regular) model
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Y over S , the natural birational map f : Y 99K X is a morphism. A relative (regular)
minimal model of C is a (regular) model of C such that it contains no exceptional
divisors. Clearly a minimal regular model is relatively minimal. (Indeed, if it did
contain exceptional divisors, by Castelnuovo’s criterion, these can be blown down. Since
the blow-down map is not an isomorphism, we have a contradiction to minimality)

The aim of this section is to prove that given a curve C over K as above, a minimal
regular model X over S for C exists.

3.3.13 Theorem. Let X be a regular fibered surface over S = Spec R. Consider the
following sequence of contractions of exceptional divisors:

X = X0 → X1 → ...→ Xi → ...

Then the sequence is necessarily finite and ends at some Y := Xn for some n with a
birational morphism X → Y . If X is a regular model for some C over K as above, then
the last term in the sequence Y = Xn is a relatively minimal regular model of X. Thus,
given a regular model for a curve C over K, we can obtain a relatively minimal regular
model for the same.

Proof : If Bi is the set of exceptional divisors on Xi, then certainly Bi+1 ⊂ Bi,
(since even if you only contract some of the exceptional divisors on Xi, the ones you
do not contract are sent to isomorphic exceptional divisors on Xi+1 by the definition of
contraction.) Thus as i increases |Bi| is strictly decreasing, implying that the sequence
is finite. By the definition of contraction, X → Y is birational.

Now if X over S is a regular model for some C over K, then by the birational
morphism X → Y we can identify generic fibres, making Y over S a regular model for
C. Since Y contains no exceptional divisors by above, it is indeed a relatively minimal
model for C.

3.3.14 Theorem. Suppose that C is a smooth, geometrically connected curve over K
of genus g ≥ 1, then C has a minimal regular model, unique upto unique isomorphism.

By theorem 2.3.3,we know that C has a regular model X ′ over S. By the theorem
above, we can construct a sequence of contractions to obtain a relatively minimal regular
model X over S of C. To show that there exists a minimal regular model. we only have
to show that any two relatively minimal regular models are isomorphic. Let us suppose
X ′ is another such model. Then by [Lic] prop 4.2 or [Chin] prop 2.2, we have a regular
model Y with birational morphisms Y → X and Y → X ′ which by the Factorization
theorem, factor into a finite sequence of blow-ups as follows:

Y = Xn → Xn−1 → ...→ X0 = X

Y = X ′
m → X ′

m−1 → ...→ X ′
0 = X ′

We may choose Y such that m + n is minimal. If m > 0, then Y → Xm−1 has
an exceptional divisor E. Since X ′ has no exceptional divisors, the image of E in X ′

is not an exceptional divisor. Thus there is a t for the image of E in X ′
t would be

an exceptional divisor for X ′
t → X ′

t−1. (E is either blown down to a point or sent to
an isomorphic exceptional curve. (Note: More precisely we have that for a birational
morphism f : X → Y which is a contraction of an exceptional divisor E on X, If XK

has genus > 0 and if C is another exceptional curve on X, then either C = E or f(C) is
an exceptional curve on Y not containing the point f(E). It is here that we use the fact
of positive genus. The proof of this statement is by contradiction, where one supposes
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f(C) contains the point f(E) and then concludes that genus of XK < 0, a contradiction
to our assumption.) For this same reason, for all i = t, ...,m − 1, the image of E in X ′

i

does not contain the centre of the blow-up X ′
i+1 → X ′

i. This allows us then to rearrange
the sequence of blow-ups in such a way so as to assume that E is the exceptional divisor
of Y → X ′

m−1. But then X ′
m−1 ' Xn−1, contradicting the minimality of m+ n. Thus

m = 0. This implies X ' X ′ by the definition of relatively minimal. Thus we have that
a unique minimal regular model exists.

3.3.15 Example. We are now in a position to judge whether our regular model X ′′ of
X, which looks something like this:

v2
4l = l3 + u3

3

XK

Xk
c = 0

b2 = 0

is infact a minimal regular model, and if not, we should be able to find one. Thus
we first find the possible exceptional divisors, which will occur, if at all, as irreducible
components of the special fiber. The three components of the special fiber are the
reduced projective line E1 given by c = 0, the projective double line E2 given by v2

1 = 0
and the elliptic curve E3 described in example 2.3.5. As the figure shows E1 meets E2 in
a single point and E2 meets E3 in a single point. We know from Castelnuovo’s criterion
that the only component that might infact be an exceptional divisor is E1. So we check
by computing it’s self intersection. Let us first calculate E1.E2. By the note following
theorem 3.2.2 we have that E1.E2 = dimkk[b, c]/(b

2, c]. But the later equals 2, and so
we have E1.E2 = 2. Now, also by theorem 3.2.2 we have E1.Xk = 0. This implies

E1(E1 + E2) = 0 ⇒ E2
1 + 2 = 0 ⇒ E2

1 = −2

Thus E is not an exceptional divisor, implying that X ′′ contains no exceptional divisors.
Implying that it is indeed a minimal surface. Since our original elliptic curve E is smooth
and geometrically connected, by theorem 3.3.14, it is infact the minimal regular model
of E.

4 Neron Models

Neron models were invented by French mathematician André Néron in the early 1960s,
with the intention of being able to study abelian varieties over number fields. The
novelty of Neron models lies in the fact that Neron are not always projective. However,
despite relaxing the condition of properness, Neron found that one could preserve the
point extension property by emphasising smoothness and group-scheme structure. As
the authors of [BLR] would have us believe, “it came as a surprise for arithmeticians
and algebraic geometers” that such models exist in a canonical way. Soon after the
discovery, the work of Néron was put in appropriate context using the recently developed
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“revolutionary” language of schemes devised by A. Grothendieck. Here, we define Neron
models and give a brief exposeé of group schemes, before moving on to focus our attention
o nnerNeron models of elliptic curves.

4.0.16 Definition. Let R be a Dedekind scheme of dimension 1 with field of fractions
K. And S = Spec R. Let X → K be a smooth and separated K-scheme of finite type.
Then N, a smooth and separated S-scheme of finite type is called a Neron Model of X if
X is isomorphic to the generic fibre NK of N and which satisfies the following universal
property, called the Neron mapping property:

For every smooth S-scheme Y with generic fibre YK , the K-morphism ϕK : YK →
NK = X extends uniquely to an S-morphism ϕ : Y → N. In other words, the map
N(Y ) → X(YK) is a bijection.

Note that Neron Models do not always exist. Note also that if X were taken to be
a smooth and separated curve over K, its Neron model, if it exists may not be a model
of a curve in the sense of Definition 2.3.1.

4.1 Group Schemes

4.1.1 Definition. Let S be a scheme. A group scheme over S is an S-scheme G that
is endowed with the following morphisms:

m : G×S G→ G

u : S → G

inv : G→ G

such that the following diagrams commute:

G×S G×S G
m×IdG //

IdG×m
��

G×S G

m

��
G×S G

m // G

G = G×S S

IdG
''OOOOOOOOOOOOO

IdG×u // G×S G

m

��
G

G

��

// G×S G
IdG×inv// G×S G

m

��
S

u // G

where the diagrams establish associativity, right identity and right inverse respec-
tively.

For an arbitrary S-scheme T , the morphismsm and inv induce mapsm(T ) : G(T )×S

G(T ) → G(T ) and inv(T ) : G(T ) → G(T ). The group scheme axioms above then make
G(T ) into a group. Indeed for any two element ψ and φ ∈ G(T ), we define a new element
ψ ∗ φ by the commutativity of the following diagram

T ×S T
ψ×φ // G×S G

m

��
T

h

OO

ψ∗φ // G
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where we have ψ ∗ φ = m ◦ (ψ × φ) ◦ h ∈ G(T ) gives G(T ) the structure of a group. If
πT : T → S is the canonical structural morphism, then G(T ) is a group with identity
element uT := u ◦ πT .

We say that the group scheme G is a commutative group scheme if G(T ) is commu-
tative for every S-scheme T . A subgroup scheme of G is a closed subscheme H of G such
that H(T ) is a subgroup of G(T ) for every S-scheme T . A group scheme G is called a
group variety or algebraic group if G is an algebraic variety over a field k.

Note that, since G is not a group but a family of groups parametrized by points of S,
we cannot define maps given by translations of points. Instead, we define the following:

4.1.2 Definition. Let G→ S be a group scheme. Let σ ∈ G(S) be an S-valued point.
Then a translation by σ map is the S-morphism τσ : G→ G defined as follows:

G = G×S S
Id×σ // G×S G

m // G

Now an S-valued point σ is a map S → G,and so for every point s ∈ S, we get a
point σ(s) ∈ Gs, where Gs, the fibre of G at s is a group variety over the resifue field
k(s). A group variety is indeed a group and so τσ restricted to the fibre Gs is nothing
but the translation by σ(s). Thus τσ can be viewed as a family of translations of the
fibres of G.

4.2 Neron Models of Elliptic Curves

We focus our attention on Neron models of Elliptic curves. We once again fix a complete
DVR R with algebraically closed residue field k and fraction field K. And we fix an
elliptic curve E over K. An important property of Ellipic curves is that they have a
group law given by a morphism E×E → E. If E is given by a Weierstrass equation, and
we use this to define it’s Weierstrass model W as in section 1.5.1, then this morphism
extends in a natural way to a map W ×R W → W , which may not be a morphism. It
turns out however, that if we took the smooth part of the model W , i.e discarded all
singular points, then W 0 ×R W

0 → W 0 is a morphism. However, we would have lost
the point extension property guaranteed to us by properness, namely that every point
in E(K) extends to a given point in W (R). (see Proposition 2.2.3). A Neron model of
E is one that preserves both these properties. The aim of this section is to prove that
such a model exists. In the particular case of Elliptic curves, if C is its unique minimal
regular model (It exists by theorem 3.3.14), then it turns out that the Neron model for
E can be seen as sitting inside C i.e, the open set of smooth points of C is precisely
the Neron model of E. For abelian varieties of higher dimension, Neron models are not
naturally embedded into a known scheme attached to the variety. Here one has to use
a group law defined birationally (called the normal law) but this is not of our concern.
The main results in this section are due to Weil.

4.2.1 Proposition. The group law on E makes it a commutative group variety (abelian
variety)

Indeed you can define morphisms

φ : E × E → E, ψ : E → E,

and

(P1, P2) 7→ P1 + P2, P 7→ −P.

Now the algebraic group law on E would be as follows:

m : E ×K E → E
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such that m(x, y) + o ∼ x + y, where o is the fixed base point of E, acting as the unit
element of E(K) which is a commutative group under the map m.

4.2.2 Theorem. Let E over K be an elliptic curve as above. Let C be its minimal
regular model. Let N be the largest subscheme of C that is smooth over R. Then the
group law extends to N and defines a smooth group scheme structure on it.

Proof : First let us note that N(R) = C(R) = E(K). Since N is the largest smooth
subscheme of X, this follows directly from Proposition 2.2.3. (Note the minimal regular
model C is projective and thus proper over R.) As for the first equality, since C is
regular, the sections of C(R) have their image in the smooth locus of C, namely N. Thus
N(R) → C(R) is surjective and thus an equality as it is naturally an injection too. Thus
N(R) = C(R).

Now let m : E ×K E → E be the algebraic group law as defined above. Let (m, q) :
E×KE → E×KE be the automorphism such that q is the second projection E×KE →
E. We claim that it extends to an automorphism t : C ×S N → C ×S N.

Consider the special fibre Nk. Let η be a generic point. And let T := Spec ON,η. T
is regular and of codimension 1 and C × T is smooth over C and thus regular. (smooth
morphism to a regular scheme). It can be shown then that C × T is a minimal surface.
(We admit this point here, see Liu 9.3.30 for more details). Thus (m, q) extends to an
automorphism of C×T → C×T . Indeed, since (m, q) : E×KE → E is an automorphism,
by definition of minimality there exists a birational morphism from C × T → C × T .
Applying the same logic to (m, q)−1, we see that we get an automorphism. So what
we now have is that t is defined everywhere on C × U → C × U for some open set U
of η containing E. What we do now is show that t is indeed defined everywhere, by
performing translations on U . Choose an arbitrary section σ ∈ N(S). And let tσ be the
associated translation by σ map. Then consider t′ = (tσ × tσ) ◦ t ◦ (IdC × t−1

σ ). It is an
automorphism on C× tσ(U) which coincides with t on Spec K since E is commutative.
Thus they coincide on all of C × U ∩ tσ(U) implying that t is defined on C × tσ(U) but
since σ was chosen arbitrarily, we have that t is defined on C × ∪σtσ(U) where σ runs
through the sections of N(S). What we want to show is that ∪σtσ(U) = N Let ys ∈ Us
and zs ∈ Ns be closed points. They lift to sections y, z ∈ N(S). If σ = t−1

y (z), then
tσ(y) = z. Thus zs = tσ(ys) ∈ tσ(U). Thus N = ∪σtσ(U) as desired. We now have
that t is defined everywhere. To see that it is infact an automorphism, note that by the
uniquness of the minimal regular model, the automorphism on inv : E → E extends to
an automorphism invN : N → N. (By same argument used earlier in the proof.) One
can then verify that (IdC × invN) ◦ t ◦ (IdC × invN) is the inverse of t, ensuring that it
is indeed an automorphism.

Now when we restrict t to N×SN, its image lies in the smooth locus of C×SN. which
is nothing but N×SN itself. So we have an automorphism τ : N×SN → N×SN induced
by t. Let p : N ×S N → N be the first projection. Then the algebraic group law on the
generic fibre, namely E, is induced precisely by the composition p◦ τ : N×S N → N and
invN. What this means is that the commutative diagrams satisfied by a group scheme
are verified by E, the generic fibre of N. Since they are commutative on the generic
fibre, they are indeed commutative over S, thereby making N → S a group scheme.
(defined by p ◦ τ). (Indeed two S-morphisms agreeing on a dense open subset are infact
everywhere equal).

Thus we have that the group law on E extends to make N → S a group scheme.

4.2.3 Theorem. N as above is the Neron model of E.

By the theorem above, we have that N is a smooth group scheme, separated and of
finite type over S with generic fibre isomorphic to E. Thus the only thing that we need
to verify is the Neron mapping property.
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In order to do this, we need the following result by Weil, which we admit:

4.2.4 Theorem. Let G → S be a smooth and separated group scheme with S normal
and Noetherian. Let X be an arbitrary smooth S-scheme, and let f : X → S be an
S-rational map. If f is defined in codimension ≤ 1, f is defined everywhere.

Proof : (Theorem 4.2.3) Let X be a smooth S-scheme with generic point η, and let
f : Xη → E be a morphism considered as a rational map X → N. After the result of
Weil, it suffices to prove that f is defined at every point of codimension 1 in X. So let
x ∈ X be a point of codimension 1. Let T := Spec OX,x. By the same argument as in
the proof of theorem 4.2.3, we have that C×S T is a minimal regular surface with smooth
locus N ×S T . So we have that NT (T ) → EK(T )K(T ) is bijective. But N(T ) = NT (T )
and EK(T )K(T ) = E(K(X)). So f is defined at x. Since x was an arbitrarily chosen
point of codimension 1, it holds for all x ∈ X of codimension 1, and we are done.

4.2.5 Example. We are now in a position to describe the Neron model for our original
elliptic curve E → K, given by y2 = π(x3 + π3). Indeed we have its minimal regular
model that looks like this:

v2
4l = l3 + u3

3

XK

Xk
c = 0

b2 = 0

So by theorem 4.2.2 and 4.2.3, the Neron model N of E is nothing but the smooth
part of the minimal regular model X ′′.

Thus N = X ′′\{E2} where E2 is the irreducible component which is the (non-
reduced) double projective line given by b2 = 0.

The Neron model would thus look something like this:

v2
4l = l3 + u3

3

XK

Xk
c = 0

An interesting and important invariant of the Neron model of an elliptic curve is the
order of the group of components of the elliptic curve. The elliptic curve, being a group
variety, has an associated quotient group E/E0, where E is the curve with its group
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structure and E0 is the connected component containing the identity element (base
point) of E. It can be shown that it is equal to the determinant of the incidence matrix
obtained from the intersetion numbers of the irreducible components of the special fibre
or equivalently, it is equal to the number of multiplicity 1 components of the special
fibre.

Here in our example, Z/2Z is the group of components of E. And the number 2, an
interesting invariant of our Neron model.
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