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0 Introduction

Algebraic tori is a very special type of algebraic groups. Given a field k, it
is well-known that the isomorphism classes of k-tori are classified by their
character groups viewed as g-modules, where g is the Galois group of the
algebraic separable closure of k over k. In this article, we will study another
birational invariant: the flaseque g-module associated to a k-torus T, or more
precisely, the ”similarity class” of the flasque module associated to T, and
we denote it as ρ(T). This invariant was introduced in Colliot-Thélène and
Sansuc’s paper [5], and also in Voskresenskĭı’s book [15].

Let X be a smooth k-compactification of T. Note that by Brylinski and
Künnemann’s Theorem [4], for every k-torus T, such an X always exists.
We will show that ρ(T) is just the similarity class of PicX. Moreover, ρ(T)
characterizes the stably k-equivalent class of T.

The birational invariant ρ(T) is important on some arithmetical topics.
Although I won’t go into these topics in this article, I still want to mention
a few. First, ρ(T) can be used to compute the R-equivalence classes of
T. One can refer to Colliot-Thélène and Sansuc’s paper [5] for a complete
introduction of this topic. Second, ρ(T) also has its application on weak
approximation problem of k-tori. For this part, one can look up the details
in Voskresenskĭı’s book [15], sec. 11.6.

Fix a profinite group G. In the first section, we introduce the definition
and basic properties of flasque G-modules. At the end of section 1.1, we will
see that actually we can reduce our case to G is finite. Next, we’ll show that
for each G-lattice M, we can associate a similarity class of flasque module
to it. We will discuss some special properties of the semigroup formed by
the similarity classes of flasque modules while We end the first section with
a concrete example of flasque.

In the second section, we first recall Rosenlicht’s Unit Theorem and some
other ingredients, which together play important roles in defining ρ(T). Then
we define ρ(T) precisely. From our definition, it will be easy to see ρ(T) is
a birational invariant. Furthermore, we will show it really characterizes the
stably k-equivalence class of T. After that, we provide two examples to
demonstrate the link between algebraic and geometric point of view. We will
see that those algebraic properties developed in the first section can really
simplify the calculations in the geometric aspect.

In the last section, we write down in detail some interesting techniques
which are used in the previous section.

The main idea and most proofs in this article are adapted from Colliot-
Thélène and Sansuc’s paper [5]. There are lots useful references on this topic.
For algebraic techniques, one can refer to [1], [3], and [14]; for geometric
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background, see [9], [10]. Other references will be mentioned while we need
them.

1 Flasque resolutions of G-modules

1.1 Permutation modules and flasque modules

Let g be a profinite group, and Lg be the category of all free Z-modules
of finite rank equipped with a continuous left g-action. In this section,
all the modules are assumed in Lg. Let M, N be two modules in Lg. De-
fine Hom(M, N) to be the g-module HomZ(M, N) with g-action defined as:
σ ◦ f = σfσ−1, for any σ ∈ g, f ∈ HomZ(M, N). Define M ⊗ N to
be M ⊗Z N with g-action defined as: σ(m ⊗ n) = σ(m) ⊗ σ(n), for any
σ ∈ g, m⊗n ∈ M⊗ZN. Define M◦ to be the dual g-module Hom(M,Z). If h is
an open subgroup of g, then we define the augmentation εg/h : Z[g/h] → Z as
εg/h(

∑
g/h

nσσh) =
∑

nσ, and the norm Nrg/h : Z→ Z[g/h] as Nrg/h(1) =
∑
g/h

σh.

We note the kernel of εg/h as Ig/h and the cokernel of Nrg/h as Jg/h. If g

is finite, then let Ĥi(g, M) denote the i-th Tate cohomology group, for any
i ∈ Z.
A g-module is called a permutation module if it has a Z-base permutated by
g. It is easy to verify that for a permutation g-module P, P ' P◦. Besides, if
g is finite, then a projective permutation g-module is Z[g]-free. A g-module
is said to be invertible if it is a direct summand of a permutation module.

Let g be a profinite group, and take M, N in Lg. Then M, N are said to be
similar if there are permutation modules P1, P2 such that M⊕P1 = N⊕P2,
and we note them as M ∼ N. We then define Sg = Lg/ ∼, and note the
similarity class of M as [M]. A g-module M is said to be a stably permutation
module if [M] = [0].

Remark 1.1. A stably permutation module is not necessarily a permutation
module. We put an example in the end of section 1.

Let G be a finite group. Take i in Z. A G-module M is said to be
Ĥi-trivial if Ĥi(G′, M) = 0 for any arbitrary subgroup G′ ⊆ G, especially
we call an Ĥ−1-trivial module a flasque module and an Ĥ1-trivial module
is called a coflasque. A flasque resolution of a G-module M is an exact
sequence of G-modules: 0 // M // P // F // 0 , where P is a permutation
module and F is a flasque module. A coflasque resolution of M is an exact
sequence: 0 // Q // R // M // 0 , where R is a permutation module and
Q is a coflasque module. Let FG (resp. F◦G) denote the submonoid of SG
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consisting of all the similarity classes of flasque (resp. coflasque) modules,
and UG denote all the similarity classes of invertible modules in SG. Let
F1

G = FG/FG ∩ F◦G.
For a profinite group g, and M ∈ Lg, we can extend the definition of

Ĥ−1(g, M) as Ĥ−1(g, M) = lim
−→
h

Ĥ−1(g/h, Mh), where h ranges over all open

normal subgroups of g. Let h be an open normal subgroup of g acting trivially
on M. Clearly, Ĥ−1(g, M) = Ĥ−1(g/h, M) by the above definition. We also
modify the definitions of coflasque (resp. flasque) modules as Ĥ−1(h, M) = 0,
(resp. Ĥ1(h, M) = 0) for all open subgroups h of g.

Now let G be a profinite group. We will show that to find a coflasque
(resp. flasque) resolution of M ∈ LG can be reduced to the case for G is finite
by the following three lemmas.

Lemma 1.2. Take M ∈ LG. Then the following are equivalent:
(1)M is flasque.
(2)M◦ is coflasque.
(3)Ĥ−1(G′, M) = 0, for all open subgroups G′ ⊆ G.
(4)Ĥ1(G′, M◦) = 0, for all open subgroups G′ ⊆ G.
(5)Ĥ1(G, Hom(M, P)) = 0, for all permutation modules P.
(6)Ĥ1(G, M◦ ⊗ P) = 0, for all permutation modules P.
(7) Ext1

G(M, P) = 0, for all permutation modules P.
(8) Ext1

G(P, M◦) = 0, for all permutation modules P.

Proof. First, let H be an open normal subgroup of G which fixes M. Then
Ĥ−i(G′, M) = Ĥ−i(G′/(G′ ∩ H), M). To see that (1),(2) are equivalent, we
just note Ĥ−i(G′/(G′ ∩ H), M)∗ = Ĥi(G′/(G′ ∩ H), M◦), for all i ∈ Z, where
we denote Hom(A,Q/Z) = A∗ for a G-module A. So (1), (2), (3) and
(4) are equivalent just by definition. To see (4) is equivalent to (5), it is
enough to prove for P = Z[G/H] for some arbitrary open subgroup H ⊆
G. Then Hom(M, P) ' Hom(P, M◦) = Hom(Z[G/H], M◦)) = CoindH

GM◦,
and by Shapiro’s Lemma, Ĥ1(G, Hom(M, P)) = Ĥ1(H, M◦), So (4), (5) are
equivalent. Since Hom(M, P) ' M◦⊗P as G-modules, it is clear that (5), (6)
are equivalent. Since Ĥ1(G, Hom(M, P)) = Ext1

G(Z, Hom(M, P)) = Ext1
G(Z⊗

M, P), (5) and (7) are equivalent. For (5) is equivalent to (8), we just note
Hom(M, P) = Hom(P, M◦), for all permutation modules P.

Remark 1.3. Note that we can replace the permutation modules in Lemma 1.2(5)-
(8) by invertible modules.

Lemma 1.4. Take a normal closed subgroup H of G and M ∈ LG. Then we
have the following statements:
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(1) If M is a permutataion module in LG, then MH is also a permutation
module in LG/H.
(2) If M is G-coflasque, then MH is G/H-coflasque.
(3) If M has a coflasque resolution: 0 // Q // P // M // 0 , then

0 // QH // PH // MH // 0 is a coflasque resolution of MH in LG/H.

Proof. To prove (1), let’s take M = Z[G/H0], where H0 is an open subgroup.
Since H is normal, HH0 is an open subgroup and [HH0 : H0] = [H : H ∩ H0].
Then, G =

⋃
siHH0 =

⋃
si(

⋃
tjH0), and we have {si

∑
tjH0} as a basis of

MH permuted by G/H. We can see (2) by the inflation map. And we easily
get (3) by (1) and (2).

Lemma 1.5. Let H, G as defined above. Take M, N ∈ LG/H. It is equivalent
for M, N to possess properties P in LG and in LG/H for the following prop-
erties P:
(1) M is a permutation module.
(2) M is a stably permutation module.
(3) M is invertible.
(4) M, N are similar.
(5) M is flasque.
(6) M is coflasque.

Proof. From Lemma 1.4, it is clear that to possess properties (1), (2), (3),
(4) in LG is equivalent to posses them in LG/H. For the property (6), since
H1(H, M) = 0, the inflation map is an isomorphism between H1(G/H, M) and
H1(G, M), so it is equivalent to possess property (5) in LG and in LG/H. And
we can get (5) from (6) by duality.

With Lemma 1.5, we can get the following corollary easily.

Corollary 1.6. Take a closed normal subgroup H of G. Then SG/H is a
submonoid of SG and UG/H = UG∩SG/H; FG/H = FG∩SG/H; F◦G/H = FG∩SG/H

Instead to find a coflasque (resp. flasque) resolution of M in LG, Lemma 1.5
allows us just to find a coflasque (resp. flasque) resolution of M in LG/H,
where H is an open normal subgroup of G acting trivially on M. So actually,
we only need to know how to find a coflasque (resp. flasque) resolution in
LG under the assumption that G is finite.

Remark 1.7. Let H be a closed subgroup of G and consider the restriction
map ResH

G: LG → LH. Then a G-module M satisfying the properties in
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Lemma 1.5 or the property I: M is a Ĥi-trivial module in LG also satisfies
those properties in LH. (Here i ∈ Z for G is finite and i ≥ −1 for G is
profinite.) On the other hand, suppose H is of finite index in G. Then we
have the coinduced map CoindH

G: LH → LG. If an H-module N satisfies
properties in Lemma 1.5, then CoindH

GN also satisfies those properties in LG.
Moreover, by Shapiro’s Lemma, if N satisfies property I, then CoindH

G also
satisfies properties I in LG. Since N is a direct summand in ResH

GCoindH
G(N),

if CoindH
G(N) is a flasque (resp. coflasque) G-module, then N is a flasque

(resp. coflasque) H-module.

1.2 Some properties of flasque resolutions

We begin this section by proving the existence of flasque resolutions in LG.

Lemma 1.8. Every G-module admits a flasque resolution and a coflasque
resolution.

Proof. Since we can find a flasque resolution of M by taking a dual sequence
of a coflasque resolution of M◦, it is enough to show that every G-module
admits a coflasque resolution. Moreover, by Lemma 1.5, it is enough to find a
coflasque resolution of M in LG/H, where H is an open normal subgroup acting
trivially on M, so we can assume G is finite. If we can find a permutation
module P with a surjective G-homomorphism j onto M such that PG′ is still
surjective to MG′ for all subgroups G′ ⊆ G, then the kernel of j is coflasque,
and we get a coflasque resolution of M. So we only need to construct such
a P and j. Let’s take P = ⊕G′Z[G/G′] ⊗MG′ , where G′ ranges over all the
subgroups of G and we define the G-action on Z[G/G′]⊗MG′ as σ(gG′⊗m) =
σ(gG′)⊗m, for all g, σ ∈ G, m ∈ MG′ , and we define j as j(gG′⊗m) = gm.
Then it is easy check such a P, j satisfying our requirement.

Lemma 1.9. Take a flasque resolution of a G-module M: 0 // M
i // P // F // 0 ,

and a coflasque resolution of M: 0 // Q // R
j // M // 0 . Let P0 be a per-

mutation G-module. Then every morphism α: M → P0 factorizes through i,
and every morphism β: P0 → M factorizes through j.

Proof. Let’s prove the statement for a coflasque resolution. Let P0 ×M R be
the pullback of P0, R over M, i.e. P0×M R := {(a, b) ∈ P0×R| β(a) = j(b)}.
Then we have the following exact sequence:

0 → Q → P0 ×M R → P0 → 0 .

Since Q is coflasque, by Lemma 1.2(8), P0 ×M R ' Q ⊕ P0. Hence β fac-
torizes through j. For the case for flasque resolutions, we just take the dual
sequences, and then the results follow.
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Lemma 1.10. Take a flasque resolution of a G-module M: 0 // M // P // F // 0 ,

and a coflasque resolution: 0 // Q // R // M // 0 . The similarity classes
of F and Q don’t depend on the resolutions of M, so we denote them as ρ(M),
ς(M) respectively. Moreover, it is well-defined over the similarity class of M.

Proof. It is enough to prove the coflasque case. Let 0 // Q′ // R′ // M // 0
be another coflasque resolution. Take N = R ×M R′. Then since Q, Q′ are
coflasque, we have Q ⊕ R′ ' N ' Q′ ⊕ R. So [Q] is independent of the
coflasque resolution. And clearly, 0 // Q // R⊕ R′ // M⊕ R′ // 0 is a
coflasque resolution of M ⊕ R′, for any permutation module R′, so ς(M) is
invariant over the similarity class of M.

Lemma 1.11. The applications of ρ and ς are additive and dual to each
other in the following sense: ρ(M)◦ = ς(M◦). The application of ρ (resp.
ς) is a surjective map from SG to FG (resp. F◦G). The restriction of ρ on
F◦G induces an isomorphism to FG while ς restricted on FG is its inverse.
Besides, ρ and ς coincide on UG with ρ, ς: M → −M.

Proof. Let F be a flasque module, and 0 → Q → P → F → 0 be its coflasque
resolution. Then ρ(Q) = F, and ςρ(Q) = Q. So ρ is a surjective map onto
FG. By taking flasque resolutions of coflasque modules, we can also show
that ς is surjective onto F◦G, and clearly, ρ restricted to F◦G and ς restricted
to FG are inverse to each other. The rest part of this Lemma is obvious, so
we omit the proof.

Lemma 1.12. (1) Let 0 // M // N // Q // 0 , where Q is an invertible
module. Then ρ(N) = ρ(M) + ρ(Q). In particular, if Q is a permutation
module, then ρ(N) = ρ(M).
(2) Let 0 // M // P // N // 0 be an exact sequence, where P is a permu-
tation module. Then ρ(M) = ρ(ς(N)) and ς(N) = ς(ρ(M)).

Proof. Let the exact sequence of G-modules: 0 → N → P → F → 0
be a flasque resolution of N. Then we have the following sequence: 0 →
N/M → P/M → F → 0. Note that N/M ' Q is an invertible mod-
ule. By Lemma 1.2(7), P/M ' Q ⊕ F and is clearly a flasque module.
So ρ(M) = [P/M] = [Q]⊕ [F] = [Q]⊕ ρ[N]. This establishes (1).

For (2), let 0 → Q → R → N → 0 be a coflasque resolution of N. Then
we have the following two exact sequences:

0 → Q → P×N R → P → 0
0 → M → P×N R → R → 0.

So by (1), we have ρ(M) = ρ(P×N R) = ρ(Q) = ρ(ς(N)). By taking the dual
sequence and Lemma 1.11, we get the other equality.
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Lemma 1.13. Take two G-modules M and N. The following conditions are
equivalent:
(1) ρ(M) = ρ(N);
(2) There are two exact sequences: 0 // M // E // P // 0 and 0 // N // E // R // 0
with permutation modules P, R.

Proof. First, we show (1) implies (2). Since ρ(M) = ρ(N), we find flasque
resolutions: 0 → M → P1 → F → 0, and 0 → N → P2 → F → 0. Let
E = P1×FP2. Then we get (2). Next, if (2) is true, then from Lemma 1.12(1),
we have ρ(M) = ρ(E) = ρ(N).

1.3 Flasque G-modules for G is finite

In this subsection, we will give some good properties of FG for G is finite,
especially while G is metacyclic, i.e. every Sylow p-subgroup of G is cyclic.
These properties will provide a simpler way to calculate the geometric invari-
ants which we will introduce in Section 2. Here we let Cp denote the cyclic
group of order p.

Lemma 1.14. (Lenstra) Take a finite group G, and M ∈ LG. The following
conditions are equivalent:
(1) M is invertible;
(2) M is an invertible Gp-module for all Sylow subgroups Gp;
(3) Ext1

G(M, Q) = 0, for all coflasque G-module Q;
(4) Ext1

G(F, M) = 0, for all flasque G-module F.

Proof. Obviously, (1) implies (2). For (2) implies (3), we just note Ext1
G(M, Q)

is injective into ⊕p Ext1
Gp

(M, Q), where p ranges over distinct primes dividing
|G|. Then by Lemma 1.2(8), we obtain (3). We can also obtain (4) from (2)
by Lemma 1.2(7). If M satisfied (3), then take a coflasque resolution of M,
and we conclude (1). For (4) implies (1), we just take a flasque resolution
instead, and conclude (1).

Proposition 1.15. Let G be a finite group and ε be the augmentation Z[G] →
Z. Then we have the following:

(1) For all exact sequences of G-modules: 0 → Q → L
ω→ Z[G]

ε→ Z→ 0 (∗),
where L is a free G-module, we have ς(IG) = [Q] and ρ(JG) = [Q◦].
(2) In particular, for all subgroups G′ of G: H1(G′, ρ(JG)) = H3(G′,Z).

Proof. First, we note that there is always an exact sequence like (∗). For
example, we can let L = Z[G]× Z[G] and ω(g0, g1) = g0 − g1.

We can split (∗) into two exact sequences: 0 → Q → L → IG → 0, and
0 → IG → Z[G] → Z → 0. Since Ĥi(G, L) = 0, for all free Z[G]-modules L,
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for all i ∈ Z. We have Ĥi+1(G, Q) ' Ĥi(G, IG), and Ĥi(G, IG) ' Ĥi−1(G,Z).
Therefore, Ĥi(G, Q) ' Ĥi−2(G,Z). Since Ĥ−1(G,Z) = 0, Q is coflasque and
ς(IG) = [Q]. Since JG = I◦G, by Lemma 1.11, ρ(JG) = [Q◦].

Note that a free Z[G]-module is also a free Z[G′]-module, for all subgroups
G′ of G. So take the Z-dual sequence of (∗), then we get Ĥi(G′, Q◦) '
Ĥi+2(G′,Z), and (2) follows.

Example 1.16. Let G be a finite group of order n. Consider the exact
sequence: 0 → IG⊗IG → Z[G]⊗IG → Z⊗IG → 0. Since Z[G]⊗IG ' Z[G]n−1

(see [11] p. 59), by Proposition 1.15, ρ(JG) = [(IG ⊗ IG)◦] = [JG ⊗ JG].

Corollary 1.17. Let G be a finite group. The following conditions are equiv-
alent:
(1) All the Sylow subgroups of G are cyclic or generalized quaternion;
(2) All the abelian subgroups of G are cyclic;
(3) H3(G′,Z) = 0, for all subgroups G′ of G;
(4) ρ(JG) is coflasque.

( For the definition of generalized quaternion, see [1] p. 98.)

Proof. The equivalence of (3) and (4) is just Proposition 1.15. For (3) implies
(2), we just note H3(Cp×Cp,Z) = Z/pZ. For (2) ⇒ (1) ⇒ (3), see [3], Chap.
XII.

Corollary 1.18. Let G be a finite group. The following conditions are equiv-
alent:
(1) G is metacyclic;
(2) F1

G = 0, i.e. All the flasque G-modules are coflasque.

Proof. If G is cyclic, then G has periodic cohomology with period 2, so all
flasque G-modules are coflasque. For G is metacyclic, we just note that
Ĥi(G, M) ↪→ ⊕pĤ

i(Gp, M), where p ranges over distinct primes divide |G|,
and then conclude a flasque G-module is also coflasque. If all the flasque
G-modules are coflasque, in particular, ρ(JG) is coflasque, then by corollary
1.15, we know that Gp is cyclic for p 6= 2. Suppose G2 is a generalized
quaternion which is not cyclic. Then G2/ < ±1 > contains V4(' C2×C2) as
a subgroup. By Lemma 1.5 and remark 1.7, F1

V4
↪→ F1

G2/<±1> ↪→ F1
G2

↪→ F1
G.

Again by corollary 1.17, we have F1
V4
6= 0 which contradicts to F1

G = 0. So
G2 is also cyclic.

Proposition 1.19. Take a finite group G. The following conditions are
equivalent:
(1) G is metacyclic;
(2) FG is a group, i.e. all the flasque modules are invertible;
(3) ρ(JG) ∈ UG.
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Proof. We first show (1) implies (2). By Lemma 1.14, it is enough to consider
the case for G is a p-group. Assume G is a p-group with order pk and M is a
flasque G-module. By corollary 1.18, M is also a coflasque module. We want
to prove that M is invertible by induction on k > 0. Assume the Proposition
is true for k < n. Now, for k = n, let f(x) = (xpn − 1)/(xpn−1 − 1) and take

a generator s ∈ G. Consider the map f(s): M
×f(s)−→ M. Let M′ and M′′ be

the kernel and image respectively. Then M′ is a submodule of M annihilated
by f(s). Since f(x) and xpn−1 − 1 are coprime in Q[x], the elements fixed by
spn−1

in M′ are Z-torsion elements, but M′ is a submodule of M and hence
Z-torsion free. So the only element in M′ fixed by spn−1

is 0. So the long
exact sequence derived from: 0 // M′ // M // M′′ // 0 shows M′′ is also a

flasque G-module. Since M′′ is a G/〈spn−1〉-module, by Lemma 1.5(5), (3)
and the induction hypothesis, M′′ is an invertible G-module.

Since M is a coflasque module, to prove M is invertible is equivalent to
prove ρ(M) is invertible. By Lemma 1.12, ρ(M) = ρ(M′)+ρ(M′′), since M′′ is
invertible, it is equivalent to prove ρ(M′) is invertible. If we identify Z[G] with
Z[x]/(xpn−1), then as M′ is annihilated by f(s), M′ can be regarded as a Z[λ]-
module, where λ is a primitive pn-th root. Since M′ is Z-torsion free, it is also
Z[λ]-torsion free. Since Z[λ] is a Dedekind domain, M′ is a projective Z[λ]-
module. So it is enough to prove ρ(Z[λ]) is an invertible G-module. Then

0 // Z[λ] ' Z[x]/f(x)
×xpn−1−1 // Z[x]/(xpn − 1)

×f(x) // Z[x]/(xpn−1 − 1) // 0

is a flasque resolution of Z[λ] and Z[x]/(xpn−1 − 1) is invertible by induction
hypothesis. So ρ(Z[λ]) is invertible and we complete the proof of (1) ⇒ (2).
(2) imply (3) is trivial.

For (3) implied (1), let’s take an exact sequence as in Proposition 1.19(1).
Assume ρ(JG) is invertible and let N ∈ LG such that Q ⊕ N = P for some
permutation module P. As we mentioned in the proof of Proposition 1.19,
Ĥ2(G′, Q) ' Ĥ0(G′,Z) ' Z/|G′|Z, for all subgroups G′ ⊆ G. Let G′ be a
p-Sylow subgroup of G. Since Ĥ2(G′, Q) is a subgroup of Ĥ2(G′, P), there
is an element of order |G′| in Ĥ2(G′, P). Since P is a permutation module,
P ' ⊕Z[G′/Hi] as a G′-module for some subgroups Hi in G′. By Shapiro’s
Lemma Ĥ2(G′,Z[G′/Hi]) = Ĥ2(Hi,Z) which is annilated by |Hi|, so Z must
be a direct summand of P and Ĥ2(G′,Z) has an element of order |G′|. So G′

is a cyclic group and G is metacyclic.

In the following Proposition, we will give an even more concrete descrip-
tion of UG while G is a cyclic group of prime order. From this proposition,
we can find a concrete example of an invertible G-module which is not a
permutation module.
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Proposition 1.20. Let G = Cp, where p is a prime number. Then FG =
UG ' Cl(Z[ζp]), where ζp is a primitive p-th root of unity and Cl(Z[ζp]) is
the ideal class group of Z[ζp].

Proof. First, we note that for a Dedekind domain A, we has an isomorphism
Cl(A) ' K0(A), where K0(A) is the reduced K0 group of A (see [12] p. 20).
Now we want to construct an isomorphism between UG and K0(Z[ζp]). Let
σ be a generator of G and φp be the primitive polynomial. For M ∈ UG, we
define

Mφp = {m ∈ M|φp(σ)m = 0}.
As we mentioned in the proof of Proposition 1.19, Mφp is a projective Z[ζp]-
module. Hence we define Φ : UG → K0(Z[ζp]) as Φ([M]) = [Mφp ]. For
a Z[ζp]-module M, we define a left G-action on it as σ(m) = ζp(m), for all

m ∈ M. We denote by M̃ the corresponding G-module defined by M. Clearly,

under the G-action defined above, Z̃[ζp] is a permutation G-module, and for

any projective Z[ζp]-module M, M̃ is a invertible G-module. Moreover, for
a projective Z[ζp]-module which comes from Mφp , the G-action we define
coincides with the original G-action on Mφp . So we define Ψ : K0(Z[ζp]) → UG

as Ψ([M]) = [M̃]. To check Φ and Ψ are inverse of each other, first, we check
[M] = [Mφp ] in UG. Consider the following exact sequence of G-modules:

0 → Mφp → M → φp(σ)M → 0.

Note that φp(σ)M is a trivial G-module, since (1−σ)φp(σ) = 0. By Lemma 1.12,
we have ρ([M]) = ρ([Mφp ]). Since M, Mφp are invertible, we conclude [M] =
[Mφp ] in UG and hence Ψ ◦Φ is the identity map on UG. Now, take a projec-

tive Z[ζp]-module N. Then under our definition, φp(σ)Ñ = φp(ζp)N = 0. So,
Φ ◦Ψ(N) = N, and we conclude this proposition.

Example 1.21. ( [16] p. 7) Let K = Q[
√−23], L = Q[ζ23], G be defined

as in Corollary 1.20, and p = 23. It is known that K ⊆ L. Let θ = 1+
√−23
2

,
and P = (2, θ) which is a prime ideal in OK lying over (2). Then it is easy to
check that P is not principal, and P3 = (θ− 2), so P is a nontrivial element
in Cl(OK) with order 3. Let P = POL which is still a prime ideal in OL.
Then we claim P is a nontrivial element in Cl(OL). Suppose P = (a), for
some a ∈ OL. Then since [OL/P : OK/P ] = 11, we have P11 = (NrL/K(a))
which contradicts to the order of P . So P is a nontrivial element of Cl(OL),

and by Corollary 1.20, P̃ is invertible but not a permutation G-module.

Next, we will give an example, as we promised in Remark 1.1, to show
there are stably permutation G-modules which are not permutation modules.
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Example 1.22. ( [5] R 1.) Let G be a finite group generated by s, t, where
s, t satisfy the following: s2 = t3 = 1, and sts = t−1. Let’s consider the exact
sequence of G-modules:

(∗) 0 → M → Z[G]
ω→ Z[G/〈s〉] ε→ Z→ 0,

where ω(1) = 1 − t, and {1, t, t2} is a permutation basis of Z[G/〈s〉]. Let I
be the kernel of ε as usual. We will show M is not a permutation module.
Suppose M is a permutation module. Since Ĥ−1(G, I) = Ĥ0(G,Z[G]) = 0,
Ĥ0(G, M) = 0. Hence, to be a permutation module, M must be a free Z[G]-
module. However, Ĥ2(G, M) = Ĥ1(G, I) = Z/3Z, which contradicts to M is
a free Z[G]-module. So M is not a permutation module.

Now let’s show M is a stably permutation module. Consider the exact
sequence of G-modules:

Z[G]⊕ Z ω′→ Z[G/〈s〉] ε→ Z→ 0

where ω′ = ω ⊕ 0. Clearly, M ⊕ Z is the kernel of ω′. Also, we have the
following exact sequence:

0 → Z[G/〈ts〉]⊕ Z[G/〈t〉] ι→ Z[G]⊕ Z ω′→ Z[G/〈s〉],
where ι(1, 0) = (1 + ts, 1), and ι(0, 1) = (1 + t + t2, 1).
So M⊕ Z ' Z[G/〈ts〉]⊕ Z[G/〈t〉], and M is a stably permutation module.

For more examples, one can refer to [7].

2 Flasque resolution of algebraic tori

In this section, all the k-varieties are assumed to be separated, geometri-
cally integral k-schemes of finite type. For a field k, we denote its algebraic
separable closure as ks and Gal(ks/k) = g. For a k-variety X and a field
extension K over k, we define XK = X×k K, and X = X×k ks. Let K[X]
be the regular functions on XK , and K(X) be the function field of XK . Let
DivX be the group generated by Cartier divisors on X; Z1X be the group
generated by Weil divisors on X; and ClX be the Weil divisor class group.

Let X1, X2 be two k-varieties. We say that X1 is stably k-equivalent
to X2 if there exist m, n such that X1 × Am is k-birational isomorphic to
X2×An. For two k-variety X and Y, we say X is a k-compactification of Y
if X is proper and contains Y as an open subvariety.

Let Tk be the category of all algebraic k-tori, and TK/k be the category of

all algebraic k-tori splitting over K. For T ∈ T , let T̂ be the character group
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of T, i.e. T̂ = Homgrp(T,Gm,ks). Note that T̂ is a free Z-module of finite
rank. In this section, we want to associate a flasque g-module ρ(T) to each
T ∈ Tk in a geometrical way, which will be a stably k-equivalent invariant.
Besides, we will show under our definition, ρ(T) is just ρ(T̂) which is defined
in the first section. We start this section with a useful Theorem: Rosenlicht’s
unit Theorem.

2.1 Rosenlicht’s Theorem

Theorem 2.1. (Rosenlicht) Let X be a k-variety and define Uk(X)=k[X]∗/k∗.
Then Uk(X) is a free Z-module of finite rank and the contravariant functor
X → Uk(X) is an additive functor over the category of all k-varieties in the
following sense: Uk(X)⊕ Uk(Y) ' Uk(X×k Y).

Proof. Let Y be an open affine subset of X, and Y′ be the normalization
of Y. Since X is integral, Uk(X) ↪→ Uk(Y

′). So we can reduce our case
to a normal affine k-variety X. Since X is affine and normal, we can find a
normal projective k-compactification X′ of X. Then since X′ is normal, we

have the exact sequence: 1 // Uk(X
′) // Uk(X) // Z1

X′\XX′ . The variety

X′ is geometrically integral and proper, so Uk(X
′) = 1, which implies Uk(X)

injects into Z1
X′\X. Hence the first claim in this theorem follows.

Now the second part of this Theorem is equivalent to prove the exactness
of the sequence:

(1) 0 → k∗
δ−→ k[X]∗ × k[Y]∗ → k[X×k Y]∗ → 0,

where δ is defined as δ(c) = (c, c−1) for all c ∈ k∗.
First, assume there are x0 ∈ X(k) and y0 ∈ Y(k), so we have the map:

k[X] ' k[X×k {y0}] i∗x←− k[X×k Y]
p∗x←− k[X].

Pick u ∈ k[X×kY]∗ and note that the surjectivity of the above exact sequence
is equivalent to the equation: u(x, y) = u(x, y0)u(x0, y)u(x0, y0)

−1, where
u(x, y0) (resp. u(x0, y)) is p∗xi

∗
xu(x, y) (resp. p∗yi

∗
yu(x, y)), and u(x0, y0) is the

valuation of u at (x0, y0). Let’s assume k = ks. Since X, Y are geometrically
reduced, X(k),Y(k) are nonempty. Let v(x, y) denote u(x, y0)u(x0, y)u(x0, y0)

−1.
Since X,Y are geometrically integral, if we pick normal affine open subsets
U,V of X,Y respectively, then k[X×k Y] ↪→ k[U×k V]. Therefore, if u = v
on U×k V, then u = v on X×k Y. Hence we can suppose X, Y are normal
and affine, and there are open immersions X ↪→ X̃, Y ↪→ X̃, where X,Y are
projective and normal.

Let {Xi}i∈I , {Yj}j∈J be those irreducible codimension-1 components

complementary to X,Y in X̃, Ỹ respectively. Since X̃ × Ỹ are projective,
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k[X̃ × Ỹ] = k. So by normality, we have the following exact sequence:

1 → k∗ → k[X ×k Y]∗
ord−→ ZI ⊕ ZJ , where ord(f) is the order of f along

Xi × Ỹ’s and X̃×Yj’s. Then we use the following lemma (see [2]) :

Lemma 2.2. Choose a nonzero f ∈ k[X×kY]. There is a Zariski-dense open
U ⊆ Y such that for all y ∈ U(k) we have f |X×{y} 6= 0 and ordXi×Ỹ(f) =
ordXi

(f |X×{y}), for all i’s.

Now, for u(x, y) ∈ k[X ×k Y]∗ ↪→ k(X̃ × Ỹ)∗, by Lemma 2.2, we can
find U ⊆ X,V ⊆ Y such that ordXi×Ỹ(u) = ordXi

(u|X×{y}), ordX̃×Yi
(u) =

ordYi
(u|{x}×Y), for all x ∈ U(k), y ∈ V(k). Pick x0 ∈ U(k), y0 ∈ V(k).

Then u(x, y0) has the same order with u along Xi × Ỹ and has order zero

along X̃×Yi; while u(x0, y) has the same order with u along X̃×Yj and has

order zero along Xi× Ỹ. So u(x, y)u(x, y0)
−1u(x0, y)−1 is a global section on

X̃ × Ỹ. Hence u(x, y)u(x, y0)
−1u(x0, y)−1 is a constant, and we denote this

constant as c. So u(x, y) = cu(x, y0)u(x0, y). Evaluating u at (x0, y0), we get
c = u(x0, y0)

−1. This proves the surjectivity of (1) for k = ks.
Now let’s consider the injectivity. Still, we assume that k = ks. Let ux, uy

be the units on X, Y respectively. Suppose p∗xux = p∗yuy. Then we want to
show ux=uy ∈ k. Pick y0 ∈ Y(k). Then ux = i∗xp

∗
xux = i∗xp

∗
yuy ∈ ks, so

ux=uy ∈ k. In general case, we have k[X] = k[X] ⊗k ks. So by the exact

sequence: 0 → k∗s
δ−→ ks[X]∗ × ks[Y]∗ → ks[X ×ks Y]∗ → 0, and Hilbert

Theorem 90, we prove (1) is exact for general k.

Remark 2.3. Actually, Rosenlicht’s Theorem can be proved in a more gen-
eral setting. See [2].

Corollary 2.4. Let G be a smooth connected algebraic group scheme over
k. Then Ĝ(k) ' Uk(G).

Proof. Let e be the identity element in the group scheme G, and Gm =
Spec k[t, t−1]. Note e is a k-rational point in G, and G is geometrically
integral. It suffice to prove that given a unit u on G satisfying u(e) = 1,
we can define a group morphism f ∈ Ĝ(k) by sending t to u. Clearly,
f ∈ Gm(G). Let ∆ : G×k G → G be the multiplication map on G. Let u∆

be the unit on G ×G corresponding to the map f ◦∆ ∈ Gm(G ×G). By
Theorem 2.1, u∆ = u1u2 where u1, u2 are units on G. If we extend the scalars
to ks, then for all g1, g2 ∈ G(ks), u∆(g1, g2) = u1(g1)u2(g2). Substitute g1,
g2 by e. Then we get three identities: u(g2) = u∆(e, g2) = u1(e)u2(g2),
u(g1) = u∆(g1, e) = u1(g1)u2(e), and 1 = u(e) = u1(e)u2(e). Combining the
three identities above, we conclude u∆(g1, g2) = u(g1)u(g2). So f is a group
morphism.
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2.2 Definitions and Properties of Flasque resolutions
of algebraic tori

Lemma 2.5. Let X and Y be two smooth k-varieties. If Y is k-rational, then
the canonical morphism PicX⊕ PicY → Pic(X×k Y) is an isomorphism.

Proof. Let pX and pY be the natural projections from X×k Y to X and Y
respectively. First, we show the injectivity. Suppose X and Y have k-rational
points x and y respectively. Then we consider the maps:

Y ' {x}×kY
i→ X×k Y

pY→ Y .

Take L and N in PicX and PicY respectively. If M = p∗XL⊗ p∗YN is trivial
on X×k Y, then N ' i∗M is also trivial on Y. By the same argument, we
also have L is trivial on X. This proves the injectivity when X and Y have
k-rational points. In general case, we consider the following exact sequence
derived from Theorem 2.1:

1 // ks
∗ // ks[X]∗ × ks[Y]∗ // ks[X×k Y]∗ // 1 ,

where we can derive the long exact sequence, and by Theorem 90, we finally

get 0 // H1(g, ks[X]∗ × ks[Y]∗) // H1(g, ks[X×k Y]∗) Next, by Lemma 3.1

in our appendix, we have the following exact sequence:

0 // H1(g, ks[X]∗) // PicX // PicX .

Combining the two exact sequences above, we have the following diagram:

0

²²

0

²²
0 // H1(g, ks[X]∗)⊕ H1(g, ks[Y]∗)

²²

// H1(g, ks[X×k Y]∗)

²²
0 // PicX⊕ PicY

²²

// Pic(X×k Y)

²²

0 // PicX⊕ PicY // Pic(X×ks Y),

since the first row and the third row are exact, we conclude the second row
is also exact, where we conclude the injectivity. To prove surjectivity, we
first note PicX ' ClX for X is a smooth k-variety. Therefore, if we take an
nonempty open subset V of Y, then we have the following diagram:
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DivY\VY

'
²²

// PicX⊕ PicY

φY

²²

// PicX⊕ PicV

φV

²²

// 0

DivX×kY\X×kV(X×k Y) // Pic(X×k Y) // Pic(X×k V) // 0

,

where DivY\VY ' DivX×kY\X×kV(X×k Y) because X is geometrically inte-
gral. Hence, φY is surjective if and only if φV is surjective. Take an affine
open subset U = SpecA of X, and an open subset V of Y which is isomor-
phic to an open subset of An. Since A is regular, PicA ' PicA[t]. By the
above argument, we then have PicU⊕PicV is surjective to PicU×k V, and
with a similar argument, we get φV is surjective and finally we conclude φY

is also surjective.

Proposition 2.6. Let X be a smooth k-variety and let K/k be a Galois ex-
tension with Gal(K/k) = G. Suppose PicXK is of finite type. Then there
is a nonempty open subset V of X such that PicVK = 0. Furthermore,
ρ(UK [VK ]) in FG does not depend on the representative we choose from
the stable k-equivalence class of X. We note it as ρK/k(X). In particular,
ρK/k(X) = [0] for X is stably k-rational.

Proof. First, because X is smooth, we have PicXK ' ClXK . So PicXK is
of finite type implies we can find X1, ...,Xn in XK , which are integral closed
subschemes of codimension one, to generate ClXK . Let X̃i be the projection
of Xi in X. Note that X̃i’s are still closed since the projection from XK to
X is a closed map. Let V = X \ (

⋃
X̃i). Then PicVK = 0. Next, if there

are V1,V2 satisfying PicV1 = PicV2 = 0, then Pic(V1

⋂
V2) = 0. There-

fore, we only need to prove while V ⊇ W and PicVK = 0, ρ(UK(VK)) =
ρ(UK(WK)). In this way, we show ρ(X) is well-defined. Now, let V,W as
mentioned above, and Y = V \ W. Then since PicVK = 0, we have the

exact sequence: 0 // UK(VK) // UK(WK) // DivYK
VK

// 0 . Because X

is smooth, DivYK
VK is a permutation G-module. So by Lemma 1.12(1),

ρ(UK(VK)) = ρ(UK(WK)), which verifies ρ(X) is well-defined. Moreover,
if there are two such k-varieties birational to each other, then the existence
of isomorphic open subsets proves the invariance of ρ(X) . For a k-rational
variety Y, let Z = X ×k Y. Then by Lemma 2.3, we have PicZK is also of
finite type. By Theorem 2.1, we have ρ(Z) = ρ(X)⊕ ρ(Y) = ρ(X) in FG for
ρ(Y) = 0.

The following is the main Theorem in this article. As we have claimed in
the introduction, ρ(T) characterizes stable k-equivalence classes. See also [5]
prop. 6, [15] 4.7.
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Theorem 2.7. Let T be an algebraic k-torus and define ρ(T) = ρks/k(T).
Then ρ(T) is an invariant which characterizes the stable k-equivalence classes
of Tk, and is additive and coincides with ρ(T̂). If T splits over a Galois
extension K/k with Gal(K/k) = G, then ρ(T) is in FG and ρ(T) = ρK/k(T).
Moreover, if X is a smooth k-compactification of T, then ρ(T) coincides with
[PicXK ].

Proof. First, we observe that PicT = 0 and ks[T] ' ks[t1, t
−1
1 , ..., tr, t

−1
r ].

By Corollary 2.4, T̂ = Uks(T) = (ks[t1, t
−1
1 , ..., tr, t

−1
r ])∗/ks

∗. If T splits
over a Galois extension K/k with Gal(K/k) = G, then h = Gal(ks/K)
acts trivially on T̂, so T̂ is a g/h-module and isomorphic to UK(TK) as G-
module. Hence, ρK/k(T) = ρ(T̂) is in FG and ρK/k(T) = ρ(T̂) = ρ(T)
in Fg by Lemma 1.5. From Lemma 2.6, we know ρ(T) is an invariant
of the stable k-equivalence classes. Now, suppose there are two algebraic
k-tori T1,T2 such that ρ(T1) = ρ(T2). Then by dualizing Lemma 1.13,
we have the following two exact sequences: 1 // R // M // T1

// 1 , and

1 // P // M // T2
// 1 , where P,R,M are algebraic tori with P̂ and R̂

are permutation g-modules. Then by Lemma 3.3 in Appendix, the two fi-
brations M → T1 and M → T2 are locally trivial for Zariski topology.
So R × T1 is birational to P × T2. So ρ(T) characterizes the stable k-
equivalence classes. Moreover, we can show ρ(T) = [PicXK ] as what follows.
Suppose we are given K, T as stated above. Then by Brylinski-Künnemann’s
Theorem [4], we can find a smooth k-compactification X of T. Note that
since XK is K-rational, PicXK is a free Z-module of finite rank (see [6]
p. 461). Since X is smooth and PicTK = 0, we have the exact sequence:

0 // T̂(K) = UK(TK) // DivYK
XK

// PicXK
// 0 , where Y = X\T. Be-

cause X is smooth, DivYK
XK is a permutation module, so ρ(T) = [PicXK ]

if PicXK is a flasque G-module. Since T splits over some finite extension
over k, we can assume G is a finite group.

First, suppose T is anisotropic. Then we have the exact sequence:

0 = Ĥ−1(G, DivYK
XK) → Ĥ−1(G, PicXK) → Ĥ0(G, T̂) = 0.

In the general case, there is an exact sequence of k-tori: 0 // Td
// T // Ta

// 0 ,
where Td is a trivial k-torus; while Ta is an anisotropic one (see [17] 7.4).
Then again, by Lemma 3.3, we have the fibration T → Ta is locally trivial.
Let Xd,Xa be the smooth k-compactification of Td,Ta respectively. Then
X is birational to Xd×Xa, so [PicXK ] = [Pic(Xd,K ×Xa,K)] = [PicXa,K ] for
Xd is k-rational. So, H−1(G, PicXK) = 0 in general. For a subgroup H ⊆ G,
we replace k by KH. Then we can apply the above argument again to get
Ĥ−1(H, PicXK) = 0. So [PicXK ] is a flasque G-module and ρ(T) = [PicXK ].
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In the following subsection, we will show how to apply those good prop-
erties in the first section to our geometrical case, and we will see it indeed
simplifies our calculations.

2.3 Some examples

Example 2.8. Let K/k be a finite Galois extension with Gal(K/k) = G,
and T = R1

K/k(Gm). Then by Theorem 2.7, we know that to find ρ(T) is

equivalent to find ρ(T̂). In this special case, we have T̂ = JG. Therefore,
Proposition 1.15(1) provides us a convenient way to find ρ(T), namely, ρ(T)
is just [JG ⊗ JG] by Example 1.16. Moreover, by Proposition 1.15(2), we
can calculate H1(G′, PicTK) just from H3(G′,Z), for any subgroups G′ of
G. In particular, for G ' Cp × Cp, where p is a prime number, we have
H1(G, PicTK) = H1(G, ρ(T)) = H3(G,Z) = Z/pZ.

Example 2.9. Let K and K ′ be two non-cyclic Galois extensions of degree
four over k. Let T1 = R1

K/k(Gm), and T2 = R1
K′/k(Gm). If K 6= K ′, then T1

and T2 are not stably k-equivalent.

Proof. As we know from Theorem 2.7, to show T1 and T2 are not stably
k-equivalent is equivalent to show ρ(T1) 6= ρ(T2). Take L = KK ′, i.e. L is
the composite field of K and K ′. Let G = Gal(L/k), G1 = Gal(L/K) and
G2 = Gal(L/K ′). Then it is enough to show H1(G′, ρ(T1)) 6= H1(G′, ρ(T2)),
for some subgroup G′ ⊆ G. First, we consider the case for K ∩K ′ = k, and
G = G1×G2 in this case. Then clearly, H1(G2, ρ(T1)) = H3(G2,Z) = Z/2Z,
while H1(G2, ρ(T2)) = 0. So T1 and T2 are not stably k-equivalent in this
case. Next, consider K ∩K ′ is a degree two extension over k. Then we have
G ' G1 × G2 × G3, where G3 isomorphic to Gal(K ∩ K ′/k). As above, we
compute H1(G2×G3, ρ(T1)) = H3(G2×G3,Z) = Z/2Z; H1(G2×G3, ρ(T2)) =
H1(G2 ×G3/G2, ρ(T2)) = H3(G3,Z) = 0. So, in either case, we have T1 and
T2 are not stably k-equivalent to each other.

3 Appendix: some useful facts

Lemma 3.1. Let X be a k-variety. Then we have H1(G, L[X]∗) = Ker[Pic(X) →
Pic(XL)], where G = Gal(L/k).

Proof. First note L[X]∗ = AutXL
OXL

. Let M be an invertible sheaf such
that [M] is in Ker[Pic(X) → Pic(XL)]. Then there is a sheaf isomorphism
φ: OXL

= OX ⊗ L → M ⊗ L. Let σ ◦ φ = σφσ−1. Then define ασ =
φ−1(σ ◦ φ) ∈ AutXOXL

, for all σ ∈ G. It is clear α defines a 1-cocycle, and
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if there is another isomorphism ϕ: OXL
→ M⊗ L, we have φ−1(σ ◦ φ) =

f−1ϕ−1(σ ◦ ϕ)(σ ◦ f), where f = ϕ−1φ. So [α] ∈ H1(G, L[X]∗) doesn’t
depend on the isomorphism we choose. Besides, if N is another invertible
sheaf isomorphic to M with isomorphism h, and we extend h to N ⊗ L in
a trivial way, then σ ◦ h = h, for all σ ∈ G. So the cocycle class defined by
N is the same with the cocycle defined by M. In this way, we define a map
Φ: Ker[Pic(X) → Pic(XL)] → H1(G, L[X]∗), which maps an invertible sheaf
to the cocycle it defines. On the other side, for [α] ∈ H1(G, L[X]∗), let α
be a representative cocycle of [α], and define a new G-action on OXL

(UL)
as: σ ∗ a = ασσa, for all open subsets U ⊆ X, σ ∈ G, a ∈ OXL

(UL). Let
M be an OX-module defined by Oα

XL
, i.e. M(U) = OXL

(UL)α be the fixed
elements of OXL

(UL) under the G-action twisted by α. Then by Galois
descent, we have OXL

' M ⊗ L, so from α we define an invertible sheaf
M whose class belongs to Ker[Pic(X) → Pic(XL)]. If β = f−1α(σ ◦ f) ∈
[α], then there is an isomorphism f−1 : Oα

XL
→ Oβ

XL
, so we get a map

Ψ: H1(G, L[X]∗) → Ker[Pic(X) → Pic(XL)]. Then one can directly check
Φ ◦Ψ is the identity map on H1(G, L[X]∗) and Ψ ◦ Φ is the identity map on
Ker[Pic(X) → Pic(XL)] (See also [8] th. 2.3.3).

Remark 3.2. We can also derive this Lemma 3.1 by using Hochschild-Serre’s
spectral sequence. See [13] lemma 6.3.

Lemma 3.3. Let P be a algebraic k-tori whose character is a permutation
g-module. If we have the exact sequence of algebraic tori:

1 → P → T
p→ T′ → 1,

then the fibration T
p→ T′ is locally trivial for Zariski topology.

Proof. First, we let P = Gm. Let T′ = Spec A and all the three tori split
over L/k, where L is a finite Galois extension of k with Gal(L/k) = G. Let
η be the generic point of T′. Then we have the following exact sequence:

1 → Gm(k(η)) → T(k(η)) → T′(k(η)) → H1(G,Gm,L(L(η))) = 1 ,

where H1(G,Gm,L(L(η))) = H1(G, L(η)∗) = 1 by Hilbert Theorem 90. So
there is some s0 ∈ T(k(η)) mapped to the natural morphism:

i : Spec k(η) → T′.

Hence we can find a nonempty affine open subset U in T′ and a section
s ∈ Hom(U,T) which lifts s0. Define a morphism f : T×T′ U → U×k Gm

as f(t, u) = (u, ts(u)−1). Then T×T′ U ' U×k Gm. For k is infinite, T(k)
is dense in T, so T′ =

⋃
x∈T(k) p(x)U. Define a section sx : p(x)U → T as
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sx(p(x)u) = xs(u), and an isomorphism fx : T×T′ p(x)U → p(x)U×k Gm as

fx(t, p(x)u) = (p(x)u, tsx(p(x)u)−1). This shows that the fibration T
p→ T′

is locally trivial for the Zariski topology. For an arbitrary field k, there is a
standard argument to permit this result.

In general, H1(G,PL(L(η))) = ⊕jH
1(G,Z[G/Hj]⊗L(η)∗), where Hj’s are

subgroups of G. By Shapiro’s Lemma and Hilbert Theorem 90,

H1(G,Z[G/Hj]⊗ L(η)∗) = H1(Hj, L(η)∗) = 1,

so the above argument also works for P.
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