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Introduction

The purpose of this work is to understand how to use ¥ functions to build
modular polynomials.

Both of these topics have been intensively studied; in particular, we date
back to Gauss the first studies about ¢ functions, and to the 19th century
the first studies about modularity.

Modular polynomials, in particular, have been studied from last century on
with an eye on their possible exploitation in the cryptographic field. As we
will see, these are polynomials in two variables which have important ap-
plications when studying elliptic curves: if we evaluate one variable in an
invariant which characterises a given elliptic curve, the zeros in the other
variable are invariants of curves linked to our original one by means of iso-
genies. We will prove this theorem over C, but it remains true also when
considering the reduction of curves and polynomials over a finite field.
There is a whole family of cryptographic systems based on elliptic curves
defined over finite fields; their strength relies on the difficulties of solving
the discrete logarithm problem. If we know isogenies linking a given curve
to others, we can make our problem shift from one curve to another, and
this may possibly reduce difficulties, as S. Galbraith explains in [Gal99]. So,
computing isogenous curves is a nowadays well-studied topic.

Our interest, however, will not be in computing isogenies. Classical modular
polynomials, that are modular polynomials built by means of the classical
J invariant defined over elliptic curves, are easy to define but not always
comfortable to use. As a matter of fact, they turn out to have coefficients
that dramatically increase even when considering relatively low isogeny levels;
we suggest the reader to have a look at pages 32-33 to have an idea about
that. So our aim here is to define and compute modular polynomials by
means of the so-called ¢ functions, which could be in some sense considered
as a particular kind of invariants over elliptic curves, and whose values allow
in any case to retrieve the value of the classical j invariant.

We have done this by performing all the computations with PARI/GP ver-
sion 2.5.1; we display all the codes we wrote and the results we finally ob-
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tained.

The main advantage of ¥ functions is that they could be defined without
any regard to the dimension of the space we are working in; so, this point of
view could be generalised to look for modular polynomials linking invariants
for higher genus objects. We will try to explain how to develop this kind of
considerations with respect to genus 2 objects.

This is the detailed plan of the work.

Chapter 1. To justify the computations and the considerations of the following
chapters, we will give basic definitions about elliptic curves and we will
prove the isomorphism between an elliptic curve and a quotient of the
form ZJF%, with 7 € C; we will give an operative definition of isogeny,
so to have all the tools for doing computations in the following chapters.

Chapter 2. We will introduce classical modular polynomials, and prove some prop-
erties about them; we will see their shape for low levels, and we will
try to understand how to build modular polynomials different from the
classical ones.

Chapter 3. We will study 9 functions in dimension 1; we will introduce the defini-
tions and various properties connected to ¥ constants, and we will see
how to build a modular polynomial by means of them.

Chapter 4. Here we explain how we performed the computations: we analyse our
way of proceeding and we display all the codes we used and the results
we got for low degrees.

Chapter 5. Once we set up the situation for elliptic curves, we ask ourselves if
it would be possible to extend this analysis to higher genus objects.
We try to give a sketch about the situation in genus 2, giving basic
definitions in order to try to adapt our code to this environment.

All along this work, we choose to adopt an explicit computational point
of view. We started by performing computations, and as we proceeded with
them we developed and study the theory we needed to fully understand what
was going on.

This reflects immediately in the structure of this work; the aim of the first
three chapters is to explain and understand the results we display at Chap-
ter 4. The contents of Chapter 5 are meant to be a sort of introduction to
what can be done by adapting to genus 2 what we did in genus 1.

The results we display at Chapter 4 are original; we explain in that chapter
how we obtained them and we present as well all the preliminary work we did
before computing them. Their interest lies, as we said, in the possibility to



adapt the same kind of computations to higher genus; we tried in Chapter 5 to
proceed in this direction, but due to a lack of time and of powerful computer
we got no significant results.

However, the nice shape of the polynomials we computed for genus 1 is an
encouragement to proceed in this direction.
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Chapter 1

Basic facts about elliptic curves

We start our work by recalling the notions we will need about elliptic curves;
mainly, we will sketch how to prove the isomorphism between an elliptic curve
and a torus and give some basic notions about isogenies. The purpose of this
chapter is utilitarian: we simply want to define tools and correspondences we
will massively use in the rest of the work, without any pretence about doing
a complete discussion on the topic, which is in fact an immense and really
intriguing one.

1.1 From tori to elliptic curves

Definition 1.1.1. An elliptic curve over a field k can be defined as a
nonsingular projective plane curve of the form

Y2Z 4+ a XY Z +asYZ* = X3 + ayX*Z + ay X Z* + ag Z°

From now on, we will set £k = C. This assumption allows us to write elliptic
curves in a simpler form, as a simple change of variables gives us an equation
which is the more familiar one:

Definition 1.1.2. If char(k) is different from 2 or 3 an elliptic curve is
1somorphic to a curve of equation

Y?Z = X3+ aXZ?+ 0273,
This equation is commonly known as short Weierstrass equation.

These kind of curves have a lot of very interesting properties; the most impor-
tant of them is perhaps the possibility to define a group law over it. For more
informations about this construction, we address the reader to [Sil09, Chap-
ter 3.2].



10 Basic facts about elliptic curves

As we are going to consider only curves over the complex numbers, the thing
which is more interesting for us is to see the curve as a torus, so that to have
a uniquely defined elliptic curve it would be enough to specify the generators
of the lattice defining the torus. In our computations, we will denote a curve
simply by a complex quantity which will allow us to retrieve the lattice.

We are going now to justify briefly why we can proceed this way; we recall
some very basic definitions, just to fix notations:

Definition 1.1.3. Let wy,ws € C be complex numbers which are linearly
independent over R. They define the lattice

L= w12 +WQZ = {n1w1 + Nowy : ny,Ng € Z} .

The set
F ={a1w; + asws : 0 < ag,as < 1}

is called a fundamental parallelogram for L.

We can define the torus %, and we would like to define functions on it; a
function on % can be seen as a function f on C such that f(z+w) = f(z) for
all z € C and all w € L. We are only interested in meromorphic functions,
so we define a doubly periodic function to be a meromorphic function
f:C— CUoo such that f(z +w) = f(z) for all z € C and all w € L, that
means f(w; + z) = f(z) for i = 1,2. The values w; are the periods for the
function f.

Actually, we have a well known characterisation for those functions:
Theorem 1.1.4. Given a lattice L, we define the Weierstrass p-function

" 1 1 1
=5+ ¥ (o)

weL,w#0
Then:

1. The sum defining p(z) converges absolutely and uniformly on compact
sets not containing elements of L;

© 1is meromorphic in C and has a double pole at each w € L;
p(z) = p(—2) for all z € C;

p(z+w) = p(z) for allw € L;

The set of doubly periodic functions for L is C(p,¢’). This means
that every doubly periodic function is a rational function of @ and its
derivative ¢'.
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Proof. See for example [Was08, Theorem 9.3]. O
We introduce now the so-called Eisenstein series:
Definition 1.1.5. For any integer k > 3, the corresponding Eisenstein
series is
Gy = Gk(L) = Z wF
w€EL,w#0

A straightforward calculation (done explicitly for example in [Was08, page
262]) shows that the series converges. When k is odd, the terms for w and
—w cancel, so Gy = 0.

Lemma 1.1.6. For 0 < |z| < minger wz0(|w]),

1« .
p(z) = 2 + Z(Qj + 1)Gaj227.
j=1
Proof. When |z| < |w|,
IR S S S AR i
o= (aemr 1) =+ (Q”“%n)'

Therefore

o) = 5+ LY+ )

w#0 n=1

Thanks to absolute and locally uniform convergence, we can exchange the
summations, as [Was08, page 268] says; this yields the desired result. ]

Theorem 1.1.7. Let p(z) be the Weierstrass p-function for a lattice L.
Then
©'(2)? = 4p(2)* — 60G4p(z) — 140Gs.

Proof. From Lemma 1.1.6,
0(2) = 272+ 3G422 +5Ge2* + ...

O (2) = =223 + 6G42 + 20Ge2" + . ..

Cubing and squaring these relations we get
0(2)? = 2704+ 9G4272 + 15Gs + . ..

O (2)? =427% - 24G27? — 80Gs + . ..
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Therefore,
f(2) = ¢'(2)* — 4p(2)® + 60G4p(2) + 140G

is a power series with no constant term and without negative powers of z.
The only possible poles of f(z) are at the poles of p(z) and g'(z), so at
the elements of L. Since f(z) is doubly periodic and, having no negative
powers of z in its expansion, has no pole at 0, f(z) has no poles. We know
that doubly periodic functions without poles should be constant; and from
the fact we have no constant term, we have f(0) = 0. Therefore, f(z) is
identically 0. [

To simplify the above expression, it is customary to set
go = 60G4, gs = 140G6

The theorem then says that ¢/(2)? = 4p(2)® — gap(2) — g3. If we consider
the affine space [z : y : 1], we see that this in an equation on the same shape
as those of Definition 1.1.1. We can say that the points (p(z), ¢'(2)) lie on
the curve y? = 423 — gox — g3.

This equation defines a non-degenerate elliptic curve; we can see it by com-
puting the discriminant of the cubic polynomial defining the equation, namely:

Lemma 1.1.8. A = g3 —27¢2 # 0.
Proof. See [Was08, page 269]. O

So we have that E : y?* = 423 — g,z — g3 is an elliptic curve, and we have a
map from z € C to the point with complex coordinates (p(z), p'(2)) on E.
Since p(z) and ¢'(z) depend only on z(mod L), we have a map ¢ — E(C).
In fact, we have more:

Theorem 1.1.9. Let L be a lattice and E be the elliptic curve defined by
y? = 423 — g2 — g3. The map

d: & - E(C)
z = (p(2),9(2))
0 — 00
s an isomorphism of groups.
Proof. For a proof of it, see for example [Sil09, Proposition 3.6]. m

What we state here says that the natural group law defined by the addition
on the torus % matches the well-known group law (again, see [Sil09, Chap-
ter 3.2]) defined on the elliptic curve.
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1.2 From elliptic curves to tori

In the previous section, we showed that a torus gives an elliptic curve; we have
now to show the converse, namely that every elliptic curve over C comes from
a torus. Before doing it, in the following section we introduce some notions
about the modular group, a topic which will be extensively developed in the
next chapter.

1.2.1 The modular group

Let L = Zw; + Zwsy be a lattice and let 7 = :j—; Since w; and wy are
independent over R, 7 cannot be real. By switching w; and ws if necessary,
we may assume that the imaginary part of 7 is positive, in other words that
7 lies in the upper half plane

H={z+weC:y>0},

which is called Poincaré half-plane. The lattice L, = Z7 + Z is said to
be homothetic to L, as there exist a nonzero complex number A such that
L = AL, (in this case, A = wy).

We set! ¢ = €*™7; note that, if 7 = x +1y € H, then |¢| = e™¥™ < 1. We
define go(7) = g2(L7), 93(7) = g3(L,). If we express these quantities in terms
of ¢, we obtain

4t At 2. 3¢
92(7)27(1+240q+...):?(1+24oz t)

876 876 = to¢t
=—(1-504q+...)=—[1—-504 E .
A straightforward calculation shows that

A(T) = go(7)? — 27g3(7)* = (2m) 2 (g +...).

Define ( )5
. 92\T
J(T) A
Then 1
§(7) = = + 744 + 196884q + 21493760¢> + - - - = (1.1)

q

T

IThis definition is not the unique one which is used; we can also find ¢ = e



14 Basic facts about elliptic curves

oo t3gt
(14240, L0y

o 34t oo thqt \o~
(14240 7%, £40)3 — (1 — 504 Y27, £45)2

It can be shown (see [Lan87, page 249]) that A = (2m) 2?2, (1 — ¢*)**,
and this gives the expression

= 1728

0o 34t
_ramxy fy
qI12, (1 =g
More generally (and more traditionally), if L is a lattice we set
g2(L)°
gg(L)3 — 2793(L)2 .

If A € C*, then the definitions of G4 and Gy easily imply

g2(AL) = A*ga(L), gs(AL) = A%g3(L);

§(L) = 1728

therefore

J(L) = j(AL).
So, letting L = Zw; +Zws and A = w, *, we have j(Zw; + Zws) = j(7), where
T = 2. We set an action of

SLy(Z) = {(25%) : a,b,c,d € Z,ad — bc = 1}

on the upper half plane H by
a b o at +b
c d)  er+d

Proposition 1.2.1. Let 7 € H, (¢4) € SLy(Z). Then (%) = j(7).

for all T € H.

Proof. We first compute which is the result of the action on Gy:

ar +b 1
Gi( )= E _— =
d at+b k
cT + (2 00) (mCTer +n)

k ! -
= (e +4d) oo (m(at +b) + n(ct + d))*

(m,n)

H

1
((ma + ne)t + (mb+ nd))k’

= (er + d)F

(m

) )

S

0,0)

3
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Since (2 %) has determinant 1, we have (¢ g)_l = (4 ). Let now

(m',n) = (m,n)(24) = (ma+ nc, mb+ nd);

then (m,n) = (m/,n’ )( d _b), so there is a 1-1 correspondence between pairs

—C a

of integers (m,n) and (m’,n’). Therefore

ar +b
ct +d

Gi(

1
) = (CT + d)k Z m = (CT + d)ka<T>
(m’,n")#(0,0)

Now it is easy to deduce from here the behaviour of g, and g3, as they are
multiples of G4 and Gg; so we have

ar +b
ct+d

at +b
ct +d

g2( ) = (7 +d)"ga(7), gs( ) = (7 +d)°gs(7)

Therefore, when we substitute these expressions into the definition of j, all
the factors (c¢r + d) cancel. O

Let F be the subset of z € H such that

1 1
]::{|z|21,—§§Rez<i,z%ewforg<9<g}

This is what is called a fundamental domain for the action of SLy(Z) over
H, that is:

Definition 1.2.2. Let G be a group acting on a set X endowed with a topol-
ogy. A setY C X is a fundamental domain for the action of G over X

if:
1. for any x € X there exist g € G andy € Y such that y =g - x;

2. for any yi, yo € Y and g € G\ {1} such that y1 = ¢ - y2, we have
Yy1,y2 € O(Y).

Proposition 1.2.3. Given 7 € H, there exists (1) € SLa(Z) such that

Moreover, z € F is uniquely determined by 7.

This proposition is useful as it enables us to prove the following:
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Corollary 1.2.4. Let L € C be a lattice; then there exists a unique basis
{wi,ws} of L with oL e F. In other words, L = MNZT + Z) for some A € C*
and some uniquely determined T € F

Proof. Let {«, 5} be a basis for L and let 7 = % We may assume that
To € M, by changing the sign of « if needed. Let (2%) € SLy(Z) be such
that Z:g—is =7 € F. Let wy = aa + bB, wy = ca + dB. Since the matrix
isin SLy(Z), L = a + Zp = Zwy + Zws = wo(Z1 + Z), which proves the

corollary. O

Instead of proving directly Proposition 1.2.3 (a prove of which can be found,
for example, in [Ser96]), we are going now to give and to prove a slightly
different statement, which will be more useful for our purposes.

In fact, we can easily verify the identity Im(g7) = %. This shows that
H is stable for the action of SLy(Z). Moreover, we notice that the element
—1 € SLy(Z) acts trivially on ‘H and we set:

Definition 1.2.5. The group

~ SLy(Z)
- {=1

r

15 called the modular group.

Remark: Let us denote by M the set of all lattices in C. We make
C* act on it by the action (wy,ws) = (Awi, Awg) for every A € C*.
The quotient C% is identified with H by (wi,ws) — 7 = 21, and this
identification transforms the action of SLy(Z) on M into the action of I'
on H. So, from now on, we will identify the two actions; sometimes, to
better highlight the nature of the elements we are working with, we will

take elements in SLy(Z), but considered as elements of T

Let now
S=07) T=(51)
We have
ST_—%, S?=1 Tr=7+1, (ST)> =1

Namely, we have then:

Theorem 1.2.6. 1. For every 7 € H, there exists an element g € I' such
that g -7 € F.
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2. If two distinct points 7,7 € F are equivalent modulo I, then either
Re(r) =4, 7=7+1or|r|=1and 7' = —1.

3. Let T € F, and let Stab(1) = {g € I : g7 = 7} be the stabiliser of T in
['. Then Stab(7) = {1}, except in the following cases:

(a) T =1 whose stabiliser is the cyclic group of order 2 generated by

S;

(b)) T=p= e%, whose stabiliser 1s the cyclic group of order 3 gen-
erated by ST';

(c) T =—p = es, whose stabiliser is the cyclic group of order 3
generated by T'S;

4. I' is generated by S and T.

Remark: We notice here that the derivative j'(7) is non-zero for every
7 having trivial stabiliser; in the other cases, j'(7) = 0 but j”(7) # 0 if
the stabiliser is cyclic of order 2 and j”(7) = 0, j”(7) # 0 if the stabiliser
is cyclic of order 3.

Proof. Let G be the subgroup of I' generated by S and T', and 7 € ‘H. We
will show that there exist ¢ € G such that ¢’ - 7 € F, which will prove
assertion 1 of the theorem.

If g = (‘gg) € G, we have Im(g - 7) = %; since ¢, d € Z the number
of pairs (¢, d) such that |er + d] is less than a given quantity is finite. We
deduce that there exists g € G such that Im(g - 7) is maximal. We can find,
on the other hand, n € Z such that |Re(T"g- 7)| < i; this is because T acts
simply as a translation of unitary modulus, so we can make it act until the
real part lands in the interval we want it to be.

Such an element 7 = T"g7r € F; we should only verify that |7/| > 1. The
point is that if we had |7| < 1, —% would have imaginary part bigger than
Im(7’), which contradicts our maximal choice. So the element ¢ = T"g is
the element that proves the first assertion.

Let now 7 € F and (%) € T such that g-7 € F. By possibly replacing (7, g)
by (g-7,97'), we can assume that Im(g - 7) > Im(7), that is |er +d| < 1.
This is obviously impossible if |c| > 2; so we are left with the cases ¢ = 0, £1.
If ¢ = 0, we have d = £1 and ¢ is a translation of +b. Since Re(7) and
Re(g - 7) are both between —% and %, we are forced to have either b = 0,
which means g = 1, or b = £1, in which case one value among Re(7) and
Re(g - 7) should be equal to —3, the other one to 3.
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If c=1, |7+d| < 1implies d = 0, except if 7 = p (respectively, —p), in which
case we can have d = 0,1 (respectively, d = 0, —1). The case d = 0 gives
g-T=a-— % and the first part of this discussion shows that a = 0, except
if Re(7) = :I:%, id est if 7 = p, —p, in which case we could take a = 0, —1 or

a=0,1.

The case T =p,d=1 givesg-T:a—F = a+ p, that is, a = 0,1; in the
same vein we solve the case 7 = —p, d = —1.
Finally, the case ¢ = —1 can be solved in the same way just by changing the

signs of a, b, ¢, d, which does not change the sign of g € I'. This concludes
the second and the third points of the theorem.

We are left to prove that G = I'; let ¢ € I'. We choose a point 7 in the
interior of F, and let 7 = g - 79. We showed that there exists ¢’ € G such
that ¢ - 7 € F. The points 79, ¢ - 7 = ¢'g - 79 € F are congruent modulo
I', and one of them is in the interior of F. So, from the previous assertions
we deduce that these two points are the same, and that ¢’¢g = 1. Finally, we
have g € GG, which ends our proof. O

1.2.2 Proving the isomorphism

In the previous section, we introduced the j-invariant and the action induced
on it by the modular group. We can state here a proposition, whose proof is
rather technical:

Proposition 1.2.7. If z € C, then there is exactly one T € F such that
i(r) ==
Proof. See, for example, [Was08, Proposition 9.18]. ]

This enables us to prove the following;:

Theorem 1.2.8. Let y? = 423 — Az — B define an elliptic curve E over C.
Then there is a lattice L such that go(L) = A and g3(L) = B. There is an
isomorphism of groups ¢ ~ E(C).

Proof. Let j = 1728 55— 2732 From the previous proposition, we have that
there exists a lattice L = Z1 + Z such that j(7) = j(L) = j.

Assume first that go(L) # 0; then j = j(L) # 0, so A # 0. Choose A € C*
such that go(AL) = A %ge(L) = A. The equality j = j(L) implies that
g3(A\L)? = B2, 50 g3(\L) = +B. If g3(\L) = B, we are done; if g3(\L) = — B,
then g3(1AL) = 1 %g3(AL) = B and ¢go(1tAL) = 1 *go(AL) = A. Therefore,
either AL or 2AL is the desired lattice.

If (L) = 0, then j = j(L) = 0, so A = 0. Since A®> — 27B? # 0 by
assumption and since g(L)3 —27g3(L)? # 0 by Lemma 1.1.8, we have B # 0
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and g3(L) # 0. Choose u € C* such that gs(uL) = u%g3(L) = B; then
Go(uL) = pu2go(L) = 0 = A, so uL is the desired lattice. By Theorem 1.1.9,
the map ¢ — E(C) is an isomorphism. O

This proves the correspondence between tori and elliptic curves. In the fol-
lowing chapters, we will deal with elliptic curves simply by taking into ac-
count the quantities 7 = Z—; relative to their associated lattices.

1.3 Isogenies

In this section, we are going to briefly introduce isogenies, morphisms be-
tween elliptic curves. In general, we define an isogeny to be a morphism
between abelian varieties that has finite kernel and it is surjective; more, it
is automatically a group homomorphism between the group of the k-valued
points, over any field k over which the isogeny is defined. In particular, for
elliptic curves, an isogeny is a surjective morphism of varieties that preserves
the basepoint. We limit ourselves to presenting basic properties linked to the
strict computational side (for a more complete discussion on this topic, see
for example [Sil09, Chapter 3.4]).

In the rest of this work, we will be concerned with relations between invariants
of a given elliptic curve and invariants of the images that are obtained from it
by an isogeny; we start here by considering the effect of these functions over
lattices (which, as we saw, is just a different way of carrying on our analysis
of elliptic curves).

Definition 1.3.1. Let E; = L% and Fy = L% be elliptic curves over C. Let

o € C be such that oLy C Ly. Then

[Oé] : El — E2
z 6 74

gives a homomorphism from Ey to Es; the fact aly C Loy tells us that the
map is well defined. For any a # 0, a map of this form is called an isogeny
from Ey to Ey. If there exists an isogeny from Ey to E, we say that the
curves are 1SOgenous.

Lemma 1.3.2. If a # 0, then oLy is of finite index in Lo.
Proof. Let {wgk),wék)} be a basis for Ly, k = 1,2. Write

ozwzm = ai,lwf) + a¢72w§2)
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with a,; € Z. If det(a;;) = 0, then (a1;,a12) is a rational multiple of

(as.1,az2), which implies that awgl)

. . : (1
is impossible since w;

is a rational multiple of Ozwél), and this

) and wél) are linearly independent over R.

) as a two-dimensional vector over R. Then the

area of the fundamental parallelogram of Ly is | det(wgk), wék) )|. Since

: k
We consider now each wi(

det (ozwg) , awém) = det(a; ;) det(w?) : wém ),

the index of oLy in Lo, which can be seen as the ratio of the areas of the
fundamental parallelograms, is | det(a; ;)|. O

We define the degree of [a] to be the index [Ly : aLy]. If v = 0, we define
the degree to be 0. If V is the degree, we say that L% and L% are N-isogenous.
In practice, we can always find the so-called dual isogeny, that means a map
ensuring us that if £ and Fy are N-isogenous, Fy and F; are N-isogenous;
the relation of being isogenous is then symmetric.

Proposition 1.3.3. If a # 0, then card(ker([a])) = deg([«]).
Proof. Let z € C. Then [o(z) = 0 if and only if az € L, so

Oé_lLQ LQ
ki = A ——
ex(fal) = 2 = 2
where the isomorphism is given by the multiplication by a. Therefore, the
order of the kernel is the index, which is in fact the degree. O

If ker([a]) = O‘_LllLQ is cyclic, we say that [a] is a cyclic isogeny. In general,
ker([a]) is a finite abelian group with at most two generators (coming from
the generators of Ls), so it can be written in the form Z,,, & Z,,, with nq|ns;
therefore, the isogeny equals multiplication by n; on E; composed with a
cyclic isogeny whose kernel has order Z—f

Let now a # 0 and let N = deg([a]). Define the dual isogeny [(34] : L% — L%

to be the map given by multiplication by % We need to show that this is well
defined: since N = [Ls : aLq], we have NLy C aLy. Therefore, %LQ C Ly,
as desired. We have the fundamental relation [ o [a] = [deg([a])], where

[deg([a])] stands here for the integer multiplication on L% It is immediate

to show that [a] = [a], and that [a] o [o] = [deg([a])] = [deg([a])]-
A particular mention is deserved to the case @« = 1. This means we have
L; C Ly and that the isogeny is simply the map z(mod L;) — z(mod Ls).

In this case, the kernel is é—f In fact, any arbitrary isogeny can be reduced
to this situation by composing with the isomorphism L% — Q,LlLQ given by

multiplication by ot
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Proposition 1.3.4. Let C C E;, = L% be a finite subgroup. Then there exist

an elliptic curve Ey = L% and an isogeny from Ey to Ey whose kernel is C.

Proof. C' can be written as % for some subgroup Ls of C containing L. If
N is the order of C', then NLy C Ly, 80 L1 C Ly C %Ll. So, as both L; and
%Ll are lattices, they are both isomorphic to Z2. More, we have that L, is
isomorphic to Z2, hence it is a lattice; therefore, L% — L% is the isogeny we
were looking for. ]

To end with, we now prove that all nonconstant maps between elliptic curves
over C are linear. This has the interesting consequence that a nonconstant
map taking 0 to 0 is of the form [a], hence it is an homomorphism.

Theorem 1.3.5. Let £} = L% and By = L% be elliptic curves over C. Suppose
that f : By — Es is an analytic map (that means, it can be developed as a
power series in a neighbourhood of any point of E ); then there exist o, f € C
such that f(z (mod Ly)) = az + B (mod L) for all z € C. In particular, if
f(0 (mod L)) =0 (mod Ls) and f is not the 0-map, then f is an isogeny.

Proof. We can lift f to a continuous map f : C — C satisfying

f(z(mod Ly) = f(z)(mod Ls)

for all z € C. Moreover, f can be expressed as a power series in the neigh-
bourhood of each point in C; then the function f(z + w) — f(2) reduces to
0 mod L. Since it is continuous and takes values in the discrete set Lo,
it is constant; therefore its derivative is 0, so f'(z + w) = f'(z) for all z.
This means that f’ is a holomorphic doubly periodic function, hence con-
stant, as an immediate consequence of the maximum modulus principle for
holomorphic functions. Therefore, f (z) = az+ 3, as we wanted to show. [

Let us try to write down the explicit correspondence between an elliptic curve
and the image of it by an f-isogeny, that is to say an isogeny of degree /.

. . C . [}
If the departing curve is o710,z the target curve will be Eiv a2 and the

correspondence is simply expressed by writing

C C
w1Z+4woZ - %Z-&-WQZ
z — z

which means that, if we normalise the lattice by writing it as generated by
{1,7} with 7 = or, the image of the corresponding curve by an /(-isogeny
would be the curve associated to the lattice {1, %} From now on, we will
adopt this notation to denote isogenies.
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Chapter 2

Modular polynomials

In this chapter, we will give some general definitions about modular functions
and modular polynomials; we will try to understand what a modular poly-
nomial is, and we will give some examples of modular polynomials computed
by means of j-invariants over an elliptic curve.

2.1 Modular functions for I'’(m)
We are going here to focus on modular functions for the subgroup
(m) = {(24) €T :b=0mod m)} = (§2)"'T(42)NT T,

defined for any positive integer m.

The formulation we chose for giving definitions is not the most generic one;
most of the definitions can be adapted to any subgroup of I', and are not
specific for subgroups in the shape of I'°(m). Anyway, our interest is really to
focus on the polynomials defined by means of T'°(m), and this is the reason
why we chose to stick from the beginning to these subgroups; this will allow
us to work with concrete properties that a ampler generality would have
prevented.

Definition 2.1.1. A modular function for T°(m) is a complex valued
function f(1) defined on the upper half plane H, except for isolated singular-
ities, which satisfies the following conditions:

o f(7) is meromorphic on H;

o f(7) is inwariant under T°(m), that is to say f(y7) = f(7) for all
T €H and v € T°(m);

e f(7) is meromorphic at the cusps.
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We try now to understand the last condition. Suppose that f(7) satisfies the
first two conditions, and that v € SLy(Z); we claim that f(v7) has period
m.

To see this, we recall that 7 +m = Ur, where U = (7). An easy compu-
tation shows that yU~y~! € T%(m), and then we obtain

fy(r+m)) = f(UT) = f(yUy '97) = f(37),

since f(7) is I'°(m)-invariant.
It follows that, if we set ¢ = q(7) = €*™ as usual, then f(y7) is a holomorphic
function in gm = ¢*™m, for 0 < |gw| < 1. Thus f(y7) has a Laurent

expansion f(y7) = 3.7 _a,qw, which by abuse of notation will be called

the g-expansion of f(vy7). Then f(7) is said to be meromorphic at the
cusps if for all ¥ € SLy(Z) the g-expansion of f(+7) has only finitely many
non-zero coefficients for negative exponents.

It is straightforward to verify that j(7) fits these requirements: it is holomor-
phic in H, invariant under I' and meromorphic at the cusps by (1.1); thus
j(7) is a modular function for T' = T'Y(1).

The interest of this description lies in the fact that functions which are mod-

ular for I' can be easily expressed in terms of the j function:
Theorem 2.1.2. Let m be a positive integer. Then:

1. j(1) is a modular function for I' and every modular function for T is a
rational function in j(7);

2. j(1) and j(mt) are modular functions for T°(m), and every modular
function for T°(m) is a rational function of j(7) and j(m).

Remark: Note that the first point is just a special case of the second
one; here we distinguish the two as they are both important properties to
notice, and in any case we are going to use the proof of the first assertion
to prove the second.

Notice also that the function which are modular for I' are modular also

for T(m), as T'%(m) C T.

Before starting with the proof, we state a lemma that will be useful, and that
characterises modular functions:

Lemma 2.1.3. o A holomorphic modular function for I' which is holo-
morphic at oo 1s constant.
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e A holomorphic modular function for I is a polynomial in j(T).

Proof. To prove the first point, let f(7) be our modular function. Since f(7)
is holomorphic at oo, we know that f(00) = limpy(r)—oee exists as a complex
number. We will show that f(H U {co}) is compact; by maximum modulus
principle for holomorphic functions, this would imply that f(7) is constant.
Let f(7x) be a sequence of points in this image. We need to find a subsequence
that converges to a point of the form f(7) for some 7 € H. Since f(7) is
SLy(Z)-invariant, we can assume that the 7 lies in the fundamental domain
F (see Proposition 1.2.3). If the imaginary parts of 7, are unbounded, then
by the above limit a subsequence of them converges to f(0o); if the imaginary
parts are bounded, then the 7, lie in a compact subset of H, and this implies
we have a subsequence converging to the limit. In both cases, we can find
our subsequence and prove the first point.

To prove the second point, let again f(7) be our holomorphic modular func-
tion for I'; we know from Definition 2.1.1 that its g-expansion has only finitely
many terms with negative powers of ¢. Since the g-expansion of j(7) begins
with %, one can find a polynomial A(z) such that f(7) — A(j(7)) is holomor-
phic at co. Since by our hypothesis it is holomorphic on H, it is a constant
function; thus, f(7) is a polynomial in j(7). O

Proof of the theorem: To prove modularity, our definition requires to check
the g-expansion of f(y7) for all v € SLy(Z). Since f(7) is I'°(m)-invariant,
we actually need only to consider the g-expansions of f(7,;7), where the ~;
are the coset representatives of I'°(m) C T, so there are only a finite number
of g-expansions to check. The nicest case is when f(7) is a modular function
for T', because in this case we only need to consider the g-expansion of f(7)
itself.

For the first point, we already know that j(7) is a modular function for T,
so we just need to show that every modular function f(7) for I' is a rational
function in j(7). The previous lemma studies some particular cases; to set
ourselves in the general case, let f(7) be an arbitrary modular function for
', possibly with poles on H. If we can find a polynomial B(z) such that
B(j(7))f(r) is holomorphic on H, then the lemma will imply that f(7) is a
rational function in j(7).

Since f(7) has a meromorphic g-expansion, it follows that f(7) has only
finitely many poles in F and since f(7) is [-invariant, Proposition 1.2.3 im-
plies that every pole of f(7) is I'-equivalent to one in F; thus, if B(j(7))f(7)
has no poles in F, then it is holomorphic on H.

So suppose now that f(7) has a pole of order m at 7o € F; if j'(19) # 0, then
(j(1) = j(10))™f (1) is holomorphic at 79. Proceeding this way, one can find
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a polynomial B(x) such that B(j(7))f(7) has no poles, except possibly for
those where j'(79) = 0. When this happens, the last statement of Theorem
1.2.6 (the remark, in particular) says that we can assume 75 = ¢ or 7y = e*2% .
As an example, we see here how to deal with the case 7y = ¢; in this case, we
claim that m is even. To see this, we notice that, in a neighbourhood of 1,
f(7) can be written in the form

fr) = 20

where ¢(7) is holomorphic and g(:) # 0. Now (% §) € SLy(Z) fixes ¢, so
that

1 9(=)
f(T)_f< T)_<%1—Z)m
Comparing these two expressions for f(7), we see that g(%) = (Wl)m g(T).

Evaluating this at 7 = ¢ implies that g(z) = (—1)™g(2), and since g(z) # 0,
it follows that m is even. By the Remark to Theorem 1.2.6, we know that
§(7)—1728 has a zero of order 2 at 1, hence (j(7)—1728)% f(r) is holomorphic
at 1. A similar argument allows us to conclude when 7 = e*%% | and this solves
all the possible cases.

To prove the second assertion, as we already pointed out before, we have
automatically that j(7) is a modular function for T'%(m). As far as j(mr7)
is concerned, it is certainly holomorphic; we have to check its invariance
properties.

Let v = (%) € I'%m); then j(my7) = j(mgiz—;}b)) = j(4potm) - Since
v € T%(m), it follows that o/ = (£ ") € SLy(Z); thus

j(mAT) = j(y'mr) = j(mT),
which proves that j(m7) is T°(m)-invariant. In order to show that j(mr) is
meromorphic at the cusps, we introduce the set of matrices

C(m) ={(g%):ad=m,a>0,0<b<dged(a,bd) =1}.

Consider the matrix o9 = (79) € C(m); this is such that oo = mr,
and I'°(m) = (05'T'op) NT. More generally, it can be proved (see [Cox89,
page 228]) that for o € C(m), the set (o, 'T'o)NT is a right coset of I'%(m) in
I'. This induces a one-to-one correspondence between right cosets of T'°(m)
and elements of C'(m).

We compute now some g-expansions. Fix v € SLy(Z) and choose o € C'(m)
so that v lies in the right coset corresponding to . This means that ogy = Jo
for some 4 € SLy(Z), and hence

J(mry7) = jlooyr) = j(Yor) = j(oT),
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since j(7) is I'-invariant; so

j(ma) = j(oT). (2.1)

Suppose that o = (8 g); we know that the g-expansion of j(7) is

1 oo
=+ > enq" e €Z, (2.2)
n=0

at+b
d

(m = ¥, we can write it as q(o7) = Cfnb(q%)‘ﬁ7 since ad = m. This gives us
the g-expansion

at+b
2m =

and since o1 = it follows that ¢(o7) = e = e2™igi. If we set

—ab 0
CT»LQ Y e (g, (2.3)
n=0

jmyr) = jloT) =

(gm

¢, € Z. As we can see, there is only one negative exponent, which shows that
j(m7) is meromorphic at the cusps, and thus j(m7) is a modular function
for T(m).
The following step is to introduce the modular equation ®,,(X,Y); this will
be used here to complete the proof, but it will be one of the major objects
of interest of all the following discussion. Let the right cosets of T'°(m) in
SLy(Z) be T%(m)v;, t = 1,...,|C(m)|. Then consider the polynomial in X:

C(m)
O (X, (7)) = ] (X = 5(myr)).

i

3

Il
—

We will prove that this expression is a polynomial in X and in j(7). To see
it, consider the coefficients of it as polynomial in X: being symmetric poly-
nomials in the j(m~,;7), they are certainly holomorphic. To check invariance
under T', pick v € T'; then the cosets I'°(m)~y;y are a permutation of the
cosets T'%(m)~;, and since j(m7) is invariant under I'°(m), the j(m~y;y7) are
a permutation of the j(m~,;7). This shows that the coefficients are invariant
under I

We then have to show that the coefficients are meromorphic at infinity.
Rather than expanding in powers of ¢, it suffices to expand in terms of
q% = e?™m and show that only finitely many negative exponents appears.
From (2.1), we know that j(m~y;7) = j(o7) for some o € C(m), and then the
g-expansion (2.3) we computed shows that the g-expansion for j(m~,;7) has
only finitely many negative exponents. Since the coefficients are polynomials
in the j(m~,;7), they are clearly meromorphic at the cusps. This proves that
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the coefficients of ®,,(X,7) are holomorphic modular functions; thus they
are polynomials in j(7), as shown in the Lemma 2.1.3.

This means that there exists a polynomial ®,,(X,Y) € C[X,Y] such that
., (X,j(7)) = HLZ({”)‘(X — j(m~;7)). The equation ®,,(X,Y) = 0 is called
the classical modular equation, and we will call the polynomial ®,,(X,Y)
the classical modular polynomial.

It is easy to prove that ®,,(X,Y) is irreducible as a polynomial in X (an
explicit proof can be found for example in [Cox89, page 230]). By (2.1), each
j(m~;7) can be written as j(o7) for a unique o € C(m); thus we can also
express the modular polynomial in the form

On(Xj(r) =[] (X —j(or). (2.4)

oeC(m)
Note that j(mr) is always one of the j(o7) since (7§ 9) € C(m); hence

©,(j(m7), (7)) =0,

which is one of the important properties we will exploit about this polyno-
mial.

We compute now the degree in X of ®,,(X,Y): we can see immediately
that it is equal to |C(m)|, and counting the number of elements there we
get [C(m)] = m]],,(1+ i) = degy (P, (X,Y)) (again, for the explicit
computation we refer to [Cox89, page 228]).

Now let f(7) be an arbitrary modular function for I'%(m). To prove that
f(7) is a rational function in j(7) and in j(m7), consider the function

- . |C(m)] F(r) -
GIX.7) = Bu(X, 7)) 3 i = (25)

|C(m)]
= > fon) [J(X = d(myr)).
i=1 i#j
This is a polynomial in X, and one can check that the coefficients are modular
functions for I' (to verify it, we have to do computations analogous to what
we did above for classical modular polynomials); but once we know that the
coefficients are modular functions for I', by Theorem 2.1.2 they are rational
functions of j(7). Hence G(X,7) is a polynomial in C(j(7))[X].
We assume now that v; = 1; by the product rule, we obtain
o, . . .
O (), () = [TGm) ~ i),
i#1
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The substitution X = j(m7) in (2.5) gives

G(imr), (7)) = F(r) 52 (imr). (7))

Now, we know that ®,,(X, j(7)) is irreducible, hence it has all distinct roots,

so that %(j(mT),j(T)) # 0; so we can write f(7) = W, which
X mT),J\T

proves that f(7) is in fact a rational function in j(7) and j(mr). O

The polynomial will be one of the objects of study for all the rest of this
work; so, we recall here the definition in order to set it in a better evidence:

Definition 2.1.4. We call classical modular polynomaal the polynomial
9, (X,Y) eClX,Y]

such that
|C(m)|

O (X, j(7) = ] (X =5(myr)).

i

3

I
—

We end this chapter by a last remark, which will be massively exploited
during computations. We said that the set |C'(m)| is in bijection with the
right cosets of I'°(m) into I'; actually, there is a very easy and useful way to
represent these cosets by means of the matrices S and T we introduced in
the preceding chapter, when working with a prime m. Namely:

Proposition 2.1.5. For any prime integer m, T°(m) has index m+1 in T,
and {(§%) ke[0m—-1}u{(3 )} ={T":kelo,m—1} U{S} isa

set of representatives for the cosets o\

Proof. We set R,,, = {((1){) ckel0,m— 1]} U {((1) _01)}, defined for every
prime m. To prove our assertion, we have to show that different elements in
R, are not equivalent modulo the action of I'%(m), and that on the other
side every element of I is equivalent to an element of R,,, modulo this action.
Let us take k,t € [0,m — 1]; then ((1){)((1] ’f)fl = ((1) kft), and this matrix is
in I'%(m) if and only if ¢ = k.

Moreover, we have S( § ’f)_l = (12) € I'°(m), and this proves that different
elements are not equivalent modulo the action of the group. On the other
hand, we know that I is generated by 7" and S; since T = ST~1S, we can
say as well that T' is generated by S and ‘T. Since ‘T € T'%(m), for any
k € [0,m — 1] we have that ‘T’(}7) is in the same class as ({7) and that
TS is in the same class as S; a direct check tells us that S(}%) is in the
same class as S, and we have SS = 1. So, we cannot have classes different
from the m + 1 that we have already considered. ]
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This description will turn out to be really useful when doing computations,
as it will enable us to characterise in a precise and simple way the elements
of the group FO(m)\F, when we will use them to build the classical modular
polynomial and other modular polynomials.

2.2 Properties of the classical modular poly-
nomial

In this section, we will prove some of the fundamental properties of the
modular polynomial ®,,,, which will be massively used in the last part of this
work, doing computations.

Theorem 2.2.1. Let m € N.
1. ¢,,(X,Y) e Z[X,Y];
2. ©,,(X,Y) is irreducible when regarded as a polynomial in X ;
3. ifm>1, ¢,(X,Y)=2,(»Y,X);

4. if m is not a perfect square, then ®,,(X,X) is a polynomial of degree
> 1 whose leading coefficient is +1;

5. if mis a prime p, then ®,(X,Y) = (X? =Y )(X —Y?)(mod pZ[X,Y]).

Remark: Here we state the theorem in this form for sake of completeness,
but we are not going to prove the last point, as it boils down to be
just technical computations, which can be found for example in [Cox89,
Theorem 11.18] or in [Lan87, pages 57-60].

Proof. To prove the first assertion, it suffices to prove that an elementary
symmetric function f(7) in the j(o7), 0 € C(m), is a polynomial in j(7)
with integer coefficients.

We begin by studying the g-expansion of a generic f(7) more in detail. Let
(m = €*m. By (2.3), each j(o7) lies in the field of formal meromorphic
Laurent series Q(Gn)((gm)), and since f(7) is an integer polynomial in the
j(o7)s, f(7) also lies in Q(¢n)((gw)). We will prove, by using Galois theory,
that f(7) is contained in the smaller field Q((gm)).

An automorphism ¢ € Gal(Q((,,) \ Q) induces, by acting on the coefficients,
an automorphism of Q(¢)((gm)). Given o = (25) € C(m), let us see how ¢
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affects j(o7). We know that 1((,,) = ¥ for some integer k relatively prime
to m, and from (2.3) it follows that

N C;labk S aorn L (12TL

V(o) = 2+ D el (gm)" T,
(qm) n=0

since all the ¢,, are integers.

Let &' be the integer 0 < &' < d such that b = bk(mod d). Since ad = m, we

have (%% = (%' and consequently the formula can be written

Ciabl > g 1 2
seve D DL (LD
n=0

(gm)

If we let o’ = (§%) € C(m), (2.3) implies that ¢ (j(o7)) = j(o'7), thus the
elements of Gal(Q((,)|Q) permute the j(o7)s. Since f(7) is symmetric in the
j(o7), it follows that f(7) € Q((g)). We conclude that f(7) € Z((q)) since
the g-expansion of f(7) involves only integral powers of ¢ and the coefficients
of the g-expansion are algebraic integers.

It remains now to show that f(7) is an integer polynomial in j(7). By
Lemma 2.1.3, we can find A(X) € C[X] such that f(7) = A(j(7)). In the
proof of the Lemma, we had that A(X) was chosen so that the g-expansion
of f(7) — A(j(7)) has only terms of degree > 0. Since the expansions of f(7)
and j(7) have integer coefficients and j(7) has only -1 as negative exponent,
it follows that A(X) € Z[X]. Thus f(7) = A(j(7)) is an integer polynomial
in j(7), and the first point is proven.

U(j(oT)) =

Remark: This way of proving, that is to say the passage from the coef-
ficients of the g-expansion to the coefficients of the polynomial A(X) is
a special case of the Hasse g-expansion principle, which we will not
explain here (one can find more about it for example on [Lan87]).

Then the second point comes from the fact that I' permutes the functions
j oo, where g; = (%1 f;l) and

joo(r)=j(oT)
(from now on, we will use the right-hand short notation to express this com-

position); moreover, the elements in I" act as automorphisms on the field
C(j,joor,...,Jo0cmm)), as we have seen before.
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Now we prove the symmetry of that polynomial. One of the matrices o; can
be seen as ((1) 75’1); hence, if we denote by n the multiplication for a generic

A

quantity n, j o % is a root of ®,,(X,j), id est
T
(I)m (— ) - =0
G(D).3(7)
for all 7, that is to say,

©p(§(7), 5 (m7)) = 0;

using the new notation we introduced, we can say ®,,(j,j o m) = 0. So,
jom is a root of ®,,(j,X), but it is also a root of ®,,(X,j), correspond-
ing to the matrix (’(’} (1)); since ®,,(X,j) is irreducible, we conclude that
®,, (X, j) divides ®,,(j, X), that is to say D,,,(7, X) = ¢(X, )P, (X, j) for
some polynomial g(¢,j) € Z[t,j] from the Gauss Lemma. From the prop-
erties above this would mean ®,,(j, X) = ¢(X,7)g(j, X)®,,(j, X), whence
9(X,7)g(5,X) =1 and so g(X, ) should be constant, = +1. If g(X, j) = —1,
then ®,,(7,7) = —®,,(4,7), and hence j is a root of ®,,(X) € Z[j]; but this
is impossible, since we know ®,,,(X) to be irreducible over Q(j).

Lastly, assume that m is not a square, so that if ¢ = (g Z) is a primitive
element and ad = m, then a # d. We have the g-expansion

o 1+ 1
]_joo-:_ e e — T —
q Cbqa

Since a # d, there is no cancellation in the fractional summand, and the
leading coefficient of this g-expansion is a root of unity.

We know that ®,,(7,7) € Z[j]; taking the product of the j — j o g;, we see
that the g-expansion for ®,,(7,j) starts with o for a certain integer n (the
maximal degree of the polynomial), where ¢, = £1, because it has to be an
integer but also a root of unity. Hence ®,,(j,j) = ¢nj™+. .. is a polynomial
in j with leading coefficient ¢, = £1, as was to be shown. O

As we have seen, the properties of the modular polynomial are straight-
forward consequences of the properties of the j-function, which makes the
modular polynomial seem a reasonable object to deal with. This is true only
on an abstract level, but if one asks for concrete examples the situation gets
surprisingly complicated; in particular, the point is that we find ourselves to
deal with polynomials that, though nicely shaped, turn out to have very big
coefficients. Here we give some examples:

[=2: X% — X%Y? 4+ 1488X?%Y — 162000X? + 1488XY? + 40773375 XY +
+ 8748000000X + Y2 — 162000Y2 + 8748000000Y —
— 157464000000000;
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[=3:X*"— X33 +2232X3Y? — 1069956 X3Y + 36864000.X >3+
+2232X%Y3 + 2587918086 X %Y + 8900222976000.X2Y +
+ 452984832000000X 2 — 1069956 X Y 4+ 8900222976000 XY 2 —
— 770845966336000000XY 4 1855425871872000000000X + Y4+
+ 368640002 4 452984832000000Y %+
+ 1855425871872000000000Y ;

l=5:X%— X5Y® +3720X°Y* — 4550940 X°Y3 + 2028551200 X°Y 2~
— 246683410950X°Y + 1963211489280X° + 3720 XY 5+
+ 1665999364600 X *Y* 4 107878928185336800.X 1Y >+
+ 383083609779811215375X 1Y 2+
+ 128541798906828816384000.X 1Y +
+ 1284733132841424456253440X* — 4550940 XY+
+ 107878928185336800.X3Y* —
— 441206965512914835246100X %Y 3+
+ 26898488858380731577417728000. XY 2 —
— 192457934618928299655108231168000.X3Y +
+ 280244777828439527804321565297868800.X >+
+ 2028551200X %Y + 383083609779811215375X2Y 4+
+ 26898488858380731577417728000.X2Y 3+
+ 5110941777552418083110765199360000.X 2Y 2+
+ 36554736583949629295706472332656640000.X 2Y +
+ 6692500042627997708487149415015068467200.X 2 —
— 246683410950X Y5 4 128541798906828816384000.X Y 4 —
— 192457934618928299655108231168000.X Y3+
+ 36554736583949629295706472332656640000.X Y —
— 264073457076620596259715790247978782949376 XY +
+ 53274330803424425450420160273356509151232000X + Yo+
+ 1963211489280Y° + 1284733132841424456253440Y*+
+ 280244777828439527804321565297868800Y > 4-
+ 6692500042627997708487149415015068467200Y 2+
+ 53274330803424425450420160273356509151232000Y +
+ 141359947154721358697753474691071362751004672000.

As we see, they are not very handle to deal with; by increasing the degree,
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we increase the size of the coefficients as well, and they grow dramatically
fast. We have bounds limiting the size of coefficients; if we set h to be the
(logarithmic) height of a given polynomial as the logarithm of the maximum
of the absolute value of its coefficients, R. Broker and A. Sutherland proved
in 2010 ( [BS10]) that for any integer m > 1 we have

h(®,,) < 6mlog(m) + 16m + 14y/mlog(m); (2.6)
in practice, we may use the more convenient bound
h(®,,) < 6mlog(m) + 18m.

(the same article provides also a table for values of h(®,,) for m < 3307).
This justifies our assertion about coefficients growing with the level of the
modular polynomial we have. The difficulties in handling such big coefficients
motivate to think about different approaches to the problem: the strategy
could be looking for new tools that would allow us to carry the same kind
of analysis we could do by means of modular polynomials. But in fact, what
are these modular polynomial important for? We will explain it in the next
section.

2.3 Relations with isogenies

In this section, we want to understand the modular polynomials in term of
j-invariants of lattices. The basic idea is that if L is a lattice, then the roots
of ®,,(X,7(L)) = 0 are given by the j-invariants of particular sublattices,
namely those L' C L which are sublattices of index m in L, with [L : L'] =m
and such that the quotient % is a cyclic group. We call those L’ cyclic
sublattices of index m. Our aim is to prove the following:

Theorem 2.3.1. Let m be a positive integer. If u, v € C, then ®,,(u,v) =0
if and only if there is a lattice L and a cyclic sublattice L' C L of index m
such that w= j(L') and v = j(L).

Before proving it, we are going to study in more detail cyclic sublattices of
the lattice [1,7], 7 € H:

Lemma 2.3.2. Let 7 € H, and consider the lattice [1,T].

o Given a cyclic sublattice L' C [1,7] of index m, there exists a unique
0= (8 g) € C(m) such that L' = d[1,07];

e conversely, if we have o = (&%) € C(m), then d[1,07] is a cyclic
sublattice of [1,7] of index m.
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Proof. We know from the previous chapter that a sublattice L' € L = [1, 7]
can be written L' = (a7 +b, cT+d] and we know that [L : L'] = |ad—bc| = m.
Furthermore, a very easy argument shows that

% is cyclic < ged(a,b,c,d) = 1. (2.7)
In fact, we see immediately that a necessary condition for % to be cyclic is
ged(a, b, ¢, d) = 1; now suppose ged(a, b, ¢, d) = 1.

By the elementary divisor Theorem, we know that we can find bases {wy, ws}
for L and {w},wy} for L' such that w; = ejw; and w) = eqws, e1|eq. Since
ged(a, b, ¢, d) =1, we are forced to set e; = 1, so %(wﬁ is cyclic.

Now suppose that L' C [1,7] is cyclic of index m. If d is the smallest
positive integer contained in L', then it follows easily that L’ is of the form
L' = [d,at 4 V] for some integers a and b. We may assume that a > 0, and
then ad = m. However, if k is any integer, then

L'=[d, (ar +b) + kd] = [d, a7 + (b+ kd)];

this means that, if we choose k in a proper way, we can assume 0 < b < d.
We also know by (2.7) that ged(a,b,d) = 1, thus the matrix o = (¢4) lies
in C(m). Then L' = [d,ar + b] = d[1, “=F%] = d[1, o7], showing that L’ has
the desired form. These computations also show that ¢ € C'(m) is uniquely
determined by L', thus we proved the first point.

The proof of the second one follows immediately from (2.7), and we are
done. [

We can now prove Theorem 2.3.1:

Proof of the theorem: We know from the lemma that the j-invariants of
cyclic sublattices L' of [1, 7] of index m are given by

J(L) = j(d[L, o7]) = j([1,07]) = j(oT).

By 2.4, it follows that the roots of ®,,(X,j(7)) are exactly the j-invariants
of the cyclic sublattices of index m of [1,7]. We conclude then thanks to the
surjectivity of the j function. ]

What is the advantage of this point of view? We know that the function j it-
self parametrises isomorphism classes of elliptic curves; for any possible I'°(¢),
the correspondent modular polynomial parametrises isomorphism classes of
elliptic curves together with an isogeny of degree /.

The real point of interest of this application is that the theorem still holds
true when considering curves defined over finite fields.
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Consider for example E, E’ defined over I_:q of characteristic p, with invariants
jE, jE respectively; moreover, we denote by ®,, the reduction modulo ¢ of a
generic classical modular polynomial. If we take ¢ € N, coprime with p and
such that ®y(jg, jr) = 0, then there exist an isogeny of degree ¢ mapping F
to £’

If we descend over F,, the situation is more delicate. Given two curves E, E
defined over F, such that ®,(jg,jm) = 0, with (¢,p) = 1 as above, they are
not necessarily isomorphic; in fact, we have the following result:!

Proposition 2.3.3. Let E, E’ be two ordinary elliptic curves defined over
F,. ¢ = p", such that jp # 0,1728. If £ € N is such that ({,p) = 1 and
®y(jg,jrr) = 0, then there exists a degree { rational isogeny E — E', where
E' is a twist of E'.

Essentially, this proposition presents two different kinds of problems. One
sees immediately, in fact, that the hypothesis of the curve not being super-
singular and the j invariant not being equal to 0 or 1728 is essential; as soon
as we try to weaken the hypothesis, we find counterexamples (see [Sch95]).
Moreover, we have a priori no difference between the existence of an isogeny
landing on a curve or on its twist in terms of roots of the modular polynomial.
So, once the roots are computed, we need some way to detect what is the
target of the isogeny they define; a way for doing it is very well explained
in [Ler97].

In any case, we see that it is only over C that we have the clear situation we
described above.

2.4 Other modular polynomials

From Lemma 2.1.3, we know that for any modular function f we can find a
rational function F'(X) € C(X) such that for any 7 € ‘H we have

(this comes really from the second point of the Lemma, it is enough to treat
denominator and numerator separately and we get a polynomial as numerator
and a polynomial as denominator, so a rational function). Here we show a
result which allows us to generalise all the discussion we did up to now:

Proposition 2.4.1. Let I be a finite index subgroup of I' and f a modular
function for I'". Then there exists a polynomial P(X,Y") € C[X,Y] of degree

1For a proof of all these assertions, see [Sch95] and [Sil09].
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[[': V] in X such that, for all T € H,

P(f(7),j(7)) = 0.

Proof. Let T” be a subgroup of I' of finite index n, and let {%}ie{l,_._n} be

a set of representatives of the cosets of \'. We consider f a modular
function for I", and the functions (c;);cqo,...n-1} : H — C defined by writing
[Lep, (X = fly7) = X™ + Z;:Ol ¢;j(1)X7, for every 7 € H. These
functions are symmetric with respect to the map 7+ f(;(7)), and since f
is a modular function for IV and we chose «; as representatives of the cosets
for r/\', the functions ¢; are invariant under the action of T'; moreover, they
are meromorphic on H and at co, so they are modular functions for I'. As an
immediate consequence of Lemma 2.1.3, there exist some rational functions
(F})jefo,...n—13 such that, for any 7 € H, ¢;(7) = Fj(j(7)); from this we
deduce the desired result. ]

We can now extend the definition of modular polynomial:

Definition 2.4.2. LetI'; andI'y be subgroups of finite index for I', and f,, f,
be modular functions respectively for I'y, I'y,. We call modular polynomaial

the irreducible polynomial @y, r (X,Y) € C[X,Y] the non zero polynomial
such that, for any T € H, ®(f,(1), f,(1)) = 0.

Remark: We know that such a polynomial exists in case f, = j, or f, = j
(it is the content of Lemma 2.1.3). To show the existence in the general
case, it is enough to consider the resultant of two such polynomials to
make j vanish.

A modular polynomial is then nothing else than an algebraic relation between
two generic modular functions.

We saw that the principal inconvenient about working with classical modular
polynomials lies in the size of their coefficients, which a priori can grow really
fast. The idea of looking for modular polynomials different from the classical
one is not a new one; in [Ler97], we can find a brief presentation of the main
ideas that have been developed in this direction. All the different polynomials
presented there have smaller coefficients, and carry with them the same kind
of information about isogenies, even if their construction is done by means
of functions that could be more complicated than the j invariant.

Now, one could ask oneself how to generalise this framework to a higher genus
situation. Of course we have classical invariants characterising surfaces built
by means of a quotient by a lattice, and we can build polynomials by means
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of them; the point is that, if we had some size problems in genus 1, the
situation precipitates dramatically already in genus 2 (see [Dup06] to have
an idea of the situation). We need in this case to think about a function that
could be easily generalised to higher genus (which is not the case for all the
functions built starting explicitly for j, as for example 7, see [Dup06]). This
is the case of ¥ functions: in the following chapter, we will introduce them
in genus 1, and we will see how to use them to build modular polynomials;
then, we will try to discuss as an example the case of genus 2, and we will
see that again using ¥ functions we can still hope to find some polynomials
which should be better than the classical ones.



Chapter 3

Theta functions

In this chapter we introduce the function J(z,7) that enables us to define
some invariants linked to each elliptic curve different from the j-invariant we
already presented.

3.1 Definitions and basic properties

Definition 3.1.1. We define the theta function as the analytic function
in two variables defined by

19(2 7_) _ Z ewzn27+27rznz
)

neZ
where z € C and 7 € H.

The series converges absolutely and uniformly on every compact set; in fact,
if [Im(z)| < ¢ and Im(7) > €, then [e™*7+2mn2| < (e=7)n*(¢2m¢)n  Hence, if
no is chosen so that (e7™)" (e?™) < 1, then the inequality

|e7rm27+27rznz’ < (e—ﬂe)n(n—no)
shows that the series converges, and in fact that it converges very rapidly.

We may think about this series as the Fourier series for a function in z,
periodic with respect to the transformation z — z + 1:
2

I(z,7) =D an(r)e”™, a,(r) = €™

neZ

which highlights the fact that 9(z + 1,7) = J(z, 7).
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Moreover, we can remark a peculiar behaviour of ¥ with respect to z — z+47;
we have:

19(2 + 7, ,7_) — E emn27+2mn(z+7) _
neZ

Z 1)2r—mr+2 2 : 2r—mir+2 -2 —mT—2
— 6m(n+ )T —miT42minz _ e mTH2mmz—2mz __ e~ ™7 7”'219(2’, 7_)‘

nez m=n+1€Z

We can say that ¢ has a kind of periodic behaviour with respect to the lattice
L, C C generated by 1 and 7. If we put the two periodicities together we get

Oz + ar + b, 7) = e ™ TG (4 1),

We will show that this function is in fact the simplest possible having this
behaviour. Suppose we are looking for entire functions f(z) with the simplest
possible quasi-periodic behaviour with respect to L,; we know by Liouville’s
Theorem that f cannot actually be periodic both in 1 and in 7, so we may
try the simplest more general possibilities:

flz+1) = f(2) and f(z+7) = T f(2). (3.1)

From the first periodicity, we can write f as a Fourier series:

f(Z) _ Z an€27rmz7

neZ

a, € C. By combinining the preceding functional equations, we get
fletr+1) =fz+7)=e""f(2),

and
flz+741) =G5 4 1) = %P f(2),

hence a = 2mik for some k € Z. Now, substituting the Fourier series into the
second equation of (3.1), we find that

Z an62ﬂ'm7'€2mnz — f(Z + 7—) — 62mkz+bf(z) —

neZ

_ E an627rz(n+k)zeb _ E :anikebe%rmz.

neZ nezZ

So, we can also express the Fourier coefficients as

a, = an_keb—QﬁznT (32>
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for all n € Z. By setting k = 0, we get the trivial possibility f(z) = ¢*™; for
kE # 0, we get a recursive formula for expressing a, 4, in terms of a, for all
p € Z. For instance, if k = —1, we find easily that a, = age” ™ T™(*=D7 for
all n € Z.
This means that

f(z) =ao Z g~nb—mmT gmniT+2mng _ ap(—z — 17' — ém, T).

neZ 2 2

If £ > 0, the recursive relation 3.2 leads to rapidly growing coefficients a,, and
hence to no entire functions f(z). On the other hand, if £ < —1, we will find
a |k|-dimensional vector space of possibilities for f, depending essentially on
b, that is studied in detail below.
Now we are going to introduce the theta functions with characteristic,
which play a very important role in the application of 9 to the study of elliptic
curves. To better explain this, we are going to reintroduce elements and
groups we already know, and we will see how they act not on elliptic curves,
but on theta functions. We will actually see that the actions are compatible
and this allow us to make very useful observations about elements which are
invariant under these actions.
Let us fix 7 and introduce the transformations as follows: for every holomor-
phic function f(z) and a, b € C let

Spf(z) = f(z+0b), Tof(2) = e’”“zﬂzmazf(z + ar).
Note then that

Sbl (sz)f = Sb1+b2f and Tal (Ta2f) = Ta1+a2f

These are called the one-parameter groups. They do not commute, but
we can find an easy relation between them; namely, we have

SUTuf)(2) = Tul ) (4 B) = €727 (5 4 b 4 ar),
and
Ta(Sbf)(Z) — eﬂza2T+27r7,aszf(z + CLT) — 671'2(12T+2ma2f(z +ar+ b),

hence
Sy o T, = ™ o S,.

The group of transformations generated by the T, and the S, is the 3-
dimensional group

Gg=C xCxC,
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with the convention C; = {z € C: |z| = 1}; the element (), a,b) € G stands
for the transformation

Unap) f(2) = AT, 0 5) f(2) = AT £ g 4 b).

We see immediately that with this notation, for any a,b € R, we identify T},
with (1, a,0) and S, with (1,0,0) € G.
The group law on G is given by

(A a, D)X, d' b)) = ANe¥™ o +d' b+ V).
We note that the subset
I'={(l,a,b) e G:a,be Z}

is a subgroup of G. Our characterisation immediately shows that 9 is the
unique entire function invariant under the action of I'. Suppose now that [
is a positive integer; set I[I' = {(1,la,lb)} C T and

V, = {entire functions invariant under [I'} .
Then we have the following:

Lemma 3.1.2. An entire function f(z) is in V, if and only if

f(Z) o Z c 67rm2'r+27rmz
- n

nE%Z
such that ¢, = ¢y, if n —m € IZ. In particular, dim(V;) = I%.

Proof. If f € V, then by invariance of f under S; € II" it follows that

f(z) = Z c e*™n=,
nG%Z
On the other hand, if we write the coefficients as ¢/, = cn€™'T and we impose
the invariance of f(z) under 7}, a short computation shows that ¢, = ¢,
for all n € Z, as required.
The converse is obvious: if ¢, = ¢, any time that n—m € [Z, then the action
of I on f, which does nothing different than a translating any coefficient of
[ positions, sends any coefficient on another which is equal; so f is obviously
invariant under this action. O]
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For m € N, let p,,, C Cj be the group of m-th roots of unity. For [ € N, let
G; be the finite group defined as
G —dnan):a be 1z (mod i) 12, 12
= : - = X t— X =
l , a, € M2,a,0 € I mo iz 1Z 1Z
with group law given by (X, a,b)(N,d’, ') = (ANe*™ o +a',b+ V). Now
the elements Si, T1 € G commute with [I" because of (3.2) and hence act on
V,. This induces an action of G; on Vj; in fact, the generators of G; act on V]
as follows:

2 n 2
Sl( E : Cnefrm ‘r+27r'mz) — E Cn627rzl eﬂzn T+27rznz’
[

ne+Z ne1Z
2 2
T%( E Cneﬂzn T+27F’an) — § cn_%em" T+2mnz‘
netz netz

This gives us the following:
Lemma 3.1.3. The finite group G; acts irreducibly on Vj.

Proof. Let W C V, be a G;-stable subspace. Take a non-zero element f € W,
say f(z) = Ene%z Cpe™ T2z Cno 7 0; operating by powers of S% on f(z),

we find in W:
D e TS f)(2) =

0<p<iz—1

— P 2 2
— E Cn(E 627rz(n no) ¥ e T+27I’ZTLZ) — Z2Cn0( E e 7'+27|”LTLZ).

nG%Z p neng+iZ

. . . 2
Since ¢, # 0, we see that W contains the function )7 . ™" 72wz,

Now, working with 7' 1 and doing a similar procedure, we find that W contains
1z

similar functions for every ng € %=; hence, W = V. O

So, thanks to the irreducibility, the action of G; on V; determines, up to a
constant, a canonical basis for V; (which, from all the previous considerations,
is clear to have dimansion /?).! The standard basis for V; is given by the theta
functions with rational characteristic 9, :

1Usually, to specify a basis in this way we will need to specify the element we start
from and consider all the elements we get letting G act on it; depending from the element
we start with, we may obtain different representations.

The point here is that the group G is a very well-known and well-studied group, called
the Heisenberg group, which is known to have a single irreducible representation. In
this specific case, the choice of the initial element does not affect the basis we obtain
making the element of the group act on it; the basis that we obtain will be always the
same, up to a constant.
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Definition 3.1.4. Takea, b € %Z; then the theta function with rational
characteristic (a,b) is oy = SpT,0 = e*™PT, S0, that is

Gap(z,7) = em‘ZQTHm“(”b)ﬁ(z‘ +ar +b,7) =
_ Z errz(a2+n2)T+27rm(z+a7+b)+27rza(z+b) _ Z eﬂz(a+n)2T+2ﬂZ(n+G)(Z+b).

neZ neZ
These functions, when considered as a basis for Vi, are also called theta
constants.

Straightforward properties of this definition are:
1. 19070 = 19,

2. Sb1 (ﬁa,b) = 19(1,1)+b1 fOl" CL, b’ bl e %Z’
3. Ta1 (ﬁa,b> = 6_27ma1b19(l1+a,b7 \V/CL, a’la b S Z7

4 Datppiqg = €™ Wap, Vp,q €Z, a,b € 1Z.

1
From 4, we have that 9,;, up to a constant, depends only on a,b € 172

Moreover, from Lemma 3.1.2 and from the Fourier expansion given for 9,

it is clear that as a, b run through coset representatives of i;, we get a basis
of V.

We notice that in fact ¥, is just a translate of 9, except for a trivial expo-
nential factor.

Relations between ¢} constants for a fixed 7 depending on the values of z
have been an important object of study. This quest has produced a lot of
formulae, as for example addition and multiplication formulae and other gen-
eral formulae which are known under the name of Riemann Theta formulae
(see [Mum83, page 14]); these are relations exploiting the symmetry in the
expressions of the different ¥ constants.

We focus now on the case [ = 2; in this case, we have just four elements
generating our space V5. To simplify notations, we are going to call them
Y0, Vo1 = 1907;, Ho = 19%70, Yy = 19;’;, and to consider them just as functions
of z, keeping 7 fixed. Here we dispfay the results of the formulae mentioned
above; notably these are formulae linking ¥ computed in z = 0 and in a
generic z, for a fixed value of 7:

D00(2)*00(0)* = Do1(2)*J01(0)* + D10(2)*I10(0)*; (3.3)
1911(2)21900(0)2 = 1901(2)2191()(0)2 - 1910(2)2’1901 (0)2 (34)

In particular, if we specify the first one for the value z = 0, we get the
so-called Jacobi identity:

00 (0)* = 901 (0)* + 919(0)*. (3.5)
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3.2 Embeddings by theta functions

We are going here to see the geometric applications of the theta functions
we introduced above.

Take any [ > 2. Let E, be the complex torus L%, where L, = Z+Z7, and let
(a;,b;), 0 < i < I? be a set of coset representatives for (%)2 in (7Z)2. Write
Vi = Vg, p;-

For all z € C, consider the I*-tuple (Jy(l2,7),...,%2_1(lz,7)) modulo scalars,
id est the homogeneous coordinates of a point in the projective space pri-1 (C)
(we should check, and we will do it soon, that there is no z,7 for which all
the coordinates are 0).

Since

Doz +1,7),..., 02 1(z+1,7)) = (Wo(2,7),...,02_1(2,7))
and
(Dolz +11,7), ..., Vp_1(z +17,7)) = AXDo(2, T, ..., 0p2_1 (2, 7))
where A = e~™*T=2mlz it follows that

¢ B — pi-t

2 o [z T) ] (3.6)

defines a holomorphic map. To better study it, we prove the following

Lemma 3.2.1. Every f € Vi, f # 0 has ezactly I*> zeros (counted with
multiplicities) in a fundamental domain for ;&; the zeros of Uap are the

L.’
points (a+p—+ )71+ (b+q+3), p,g. € Z.

Remark: This means, in particular, that ¢; is well defined, as ¥;, 9, have
no common zeros for ¢ # j.

Proof. The first part comes from the argument principle, in a very standard
way. We choose a parallelogram built on the fundamental parallelogram of
the lattice [L,, and we translate it in order not to have zeros of f on the
border, for any f € V; let it be P = 0+ 6 + o* + 0", where o, 0* run parallel
to the = axis, and §, §* are parallel to the vector I7 (see the graphic below).
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From the argument principle and the fact of f being without poles we have

1 /
card {zeros of f} = 2—7”/ dez.
o+6+o*+0*

Since f(z +1) = f(z) and f(z + I1) = ke ?™=f(z) where k is a constant

term, we get that
/+/ =0 and /+/ = 2mil?.
) o* o o*

To compute exactly the zeros in the case of 1} constants, we notice that

Y(z,7) is even and it has a single zero in Li; when looking at 1 constants, so

at translated of ¥, we have:?

9y 1 (—27) = 3 et e
272 nezZ
=Y e )
m=—1—neZ
=) emlmtalriammip) () 2mints) = _y, 4 (z,7),
meZ 22

hence J1 1 is zero at z = 0.

A direct (?omputations for all the values stated above tells us that they are
1

all zeros for the correspondent ¢ constants, and they are distinct modulo 772;
they are exactly {? in each case, and from the discussion above we know that
they can not be more. O]

1
Next, we observe that the group G; modulo its center, that is the group (172)2

naturally acts on both E, and Plz_l, and the map ¢; is equivariant. To see
this, we let a,b € (%Z)z; this element acts on E, by

at +b

l )

2Here we keep the complete notation as we are considering the function in itself, not
as element of the basis for the space generated by ¢ constants when [ = 2, as above.

2= z+
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and the action is free.
On the other hand, if Uy )0 = Zogjgpil ¢;jV;, the action on Pl-1ig given

by
(200122 4] [Z Coj2j i e chz,uzj].
J J

Now we see that

o) (z—i—m—;rb) =[-:0(z4+ar+b7T):...]=
=[ - UnapVillz, 7). ] =] ZCZ'J??J‘(ZZ,T) sl

so the group action is preserved and ¢; is equivariant.
We prove now that ¢; is an embedding; suppose we have ¢;(z1) = ¢(22),
21 # 2o in E, or that d¢;(z1) = 0 (the limit case, when zo — 27). Translating

by some 22 q b € 1Z, we find a second pair 2}, 2} such that ¢;(2]) = ¢y(23),
or de¢y(2}) = 0.
We choose 12 — 3 further points wy,...,w;2_3 such that all our points are
distinct modulo [L,. Now, we can find an f € V}, f # 0 such that

f(z1) = f(z1) = f(w1) = - = f(we_s) =0;
this is possible because, writing f = > \jd;, A; € C, we get [ — 1 linear
equations in the [? variables X, ..., A\2_; and so they have a non-zero solu-

tion. Since ¢;(z1) = ¢y(22), it follows that f(z2) =0 or, if d¢y(z1) =0, f has
a double zero at z;.

Similarly, we get that f(25) = 0 or f has a double zero at 2{. Therefore, f
would have at least (% + 1 zeros in %, contradicting Lemma 3.2.1.

Thus ¢;(E;) is a complex analytic submanifold isomorphic to the torus E;

moreover, we have the following result:

Theorem 3.2.2 (Chow). Fvery closed projective analytic subspace is an al-
gebraic subspace.

Proof. See [Ser56]. O

This tells us that ¢;(E,) is even an algebraic variety, id est it is defined by
some homogeneous polynomials; we know already that these polynomials are
the polynomials giving the equation of the elliptic curve related to our torus.
We can make explicit these considerations considering, as above, the example
[ = 2; in this case, we have that ¢o(FE,) is indeed the curve C' in P? defined
by the equations

(3.7)

’1900(0)2.73(2) = 1901 (0)2513% + 1910(0)2.%’%
1900(0)2.%% 1910(0)21'% — 1901 (0)21'%
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By Bézout’s Theorem, we know that a generic hyperplane in P? meets C in
at most four points. The generic hyperplane ) a;x; = 0 meets ¢o(E,) at the
points where agoo(2x) + a1901(22) 4+ as¥10(2x) + agh(22) = 0, and we can
find exactly four points on this kind mod 2L,. These are really the points
which satisfy the equations (3.7) by means of (3.3), (3.4). We definitely have
that ¢o(F,) should coincide with C', and this gives explicit formulae linking
¥ constants with elliptic curves.

The case | = 2 gives us, from what we saw above, an explicit description of
an elliptic curve in terms of ¥ constants. We will see in the remaining part
of this chapter how to exploit this description to build convenient modular
polynomials, which will profit from the properties of the ¥ functions.

3.3 The functional equation of theta

In the previous sections we focused on the behaviour of J(z, ) as a function
of z. It behaves nicely also as a function of 7, but in a more subtle way.
Just as ¥ is periodic up to an elementary factor for a group of transformations
acting on z, it is also periodic up to a factor for a group acting on z and 7. In
fact, if we consider 9¥(z, 7) for a fixed 7, the definition involves the generators
1 and 7 of the lattice L, quite asymmetrically; still, when considering the
application to F) this asymmetry disappears.

In other words, if we had picked any two other at + b, ¢ + d generating the
lattice L., a,b,c,d € Z, ad — bc = £1, we could have constructed different
theta functions, which would have been periodic with respect to z — z4c7+d
and periodic up to an exponential factor with respect to z — 2z 4+ a7 + b, and
these theta functions would have been equally useful for the study of E.; the
different choice for the generators should not make any difference.

If we try to make this point precise, we obtain a relation which is known as
the functional equation for ¥ in 7.

Fix (2%) €T, id est a,b,¢,d € Z, ab— bc = 1; we determine the sign of this
element by setting ¢ > 0 and we assume that ab, cd are even. Consider the
function 9((cr + d)y, 7); clearly, when y is replaced by y + 1, the function is
unchanged except for an exponential factor.

We want to make this factor explicit and convert the function ¥((ct +d)y, 7)
to a periodic function y — y + 1. If we set

Wy, T) = e”ZC(CT+d)y219((CT +d)y, 1),

a simple calculation shows that ¢¥(y+1,7) = ¢(y, 7) (the fact that cd is even
helps in the verification, as a factor €™ comes out). The periodic behaviour
of ¥ with respect to z — 2z + 7 gives another quasi-period for 1, namely
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o aTtb . .
U(y + i;j:s, T) = e ™erra W) (y 7). We do some computations in order to

show this; formally writing we have by definition

at+b
¢(y + cT+d? T) _ 67Tzc(c7'+d)y2+27rzcy(a7+b)+7rzc(‘Z:j_bd)z
Y((er+d)y +ar +b,7) ’

and

V(e +d)y +at + b, ) e_m“27_27r7““y(”+d)19((c7' +d)y, 1)

Py, 7) N emeler+dy?J((er + d)y, T)

— e*ﬂ’L(ZQT*QTI'Zay(CT#*d) —mic(er+d)y?

So, multiplying these equations and exploiting the fact ad — bc = 1, we get

at+b 2
w<y + cr+d? y) - e—27r7,y(ad—bc)+mcM—7rw2T _

= cT+d =
by, 7)
_ 672#17%(azT(CT+d)7C(aT+b)2) _ 6727r1y7#frd(a27'd72ab077b20),

but
a’*td—2aber —b*c = a(ad—be)T —ab(cr+d)+b(ad—be) = (aT+b) —ab(cr+d)

Now what we want comes from the simple observation that ab is even.

By the characterisation we gave, ¥(y, 7) is the unique function (up to scalars)
invariant® under L./, where 7 = %3; since we showed that ¢ (y,7) shares
this property, it must be a function of that kind, so we get

wlnr) = o0 (1 7

cT +d
for some function ¢(7). In other words, if y = 2, then
Wz, 7) = (;S(T)efmc%ﬂ z arth
T cr+d er+d)’

We would like to evaluate ¢(7); note that 9(z, 7) is normalised thanks to the
property that the constant term of the Fourier series is just 1, that means

1
/ Wy, 7)dy = 1.
0

3We saw the sense of this invariance with respect to the second variable; it is invariant
up to an exponential factor, which is exactly what we want here.
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Hence ) )
_ / by, )y = / e T Y (cr 4 d)y, 7)dy
0 0

From a computational point of view, this integral is not too hard to evaluate;
first we notice that ¢(7) = d = £1 if ¢ = 0, so we can assume ¢ > 0. Now
we substitute the defining series for ¥ and we get:

/ Z m(cy+n)? ’T'+ )—mn? Cdy _ Ze—mn C/ 7r7,(cy+n)2(7-+%)dy.

nezZ

(n+6)

2
—md~———— —mm
=€

. . d
But, since cd is even, we have e < and so we get

+o00o
o) = 3 et [ emenietigy
—00

1<n<c

We evaluate the integral by supposing at first that 7 = ot — g; in this case

we get
+o0 +oo
/ mc y2 (44 )dy _ / e e y2td

and if we set by a change of variables u = ct%y, we obtain that the same

integral becomes
1 [t _ 1
- e T du =0
ctz J-co ctz

using the well-known value f_Jr;o e ™ dy = 1.
It follows then by analytic continuation that for any 7 with Im(7) > 0 we

have
+o0 ( 4 ) 1
7rzc yo(T _
/ dy T+Q 1
e o(==)2

where the denominator is chosen in such a way to have strictly positive real
a2 . :
part. The sum ), .. e ™" ¢ is a very well known Gauss sum, which gives

just ¢z times some 8-th root of unity. In fact, what we get is the following:

Theorem 3.3.1. Given a,b,c,d € Z such that ad — bc =1, ab and dc even,
there exists ¢ a 8" root of 1 such that

z ar +b

1 mez?
e CT—l—d) Cler +d)zeer+ad(z, 7). (3.8)

In some particular situations, we are even able to compute C exactly:
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1. if ¢ is even and d is odd, then ( = 12(d=1) <ﬁ), where (i) s the
0
1

2. if ¢ is odd and d is even, then ( = ™™ (g)

Proof. See [Mum83, Theorem 7.1]. O

3.4 Theta as a modular form

In this section we are going to recall some definitions and results we gave
previously and to put them together in order to study some properties char-
acterising the theta functions.

We saw in the previous sections that the matrices corresponding to substi-
tutions in the variables z, 7 for which ¥ is a quasi-periodic function form

a group; in fact, SLy(Z) acts on C x H by (z,7) = (53, g:j:g)? because

o Vet 2 (ad/+b/ )T+ (a'b+b/d)
o Z:Is Td ¢ /ar+b L — \ (dat+d'c)T+(b+dd")? (ca+d c)T+'b+d'd )
Moreover, this action normalises the lattice action on z, id est we have the

action of a semidirect product SLy(Z) x Z? on C x H, where the element
((25), (m,n)) acts by (z,7) - (e, oty

Actually, not all of these transformations carry 9 exactly to itself; this is
the reason for adding the conditions ab, cd even. To understand this condi-
tion theoretically, we recall here some properties and definitions we already
presented in the previous chapters; we will state them under a more compu-

tational point of view, in order to apply them to Cornputations for 9.
SL2

We have a natural homomorphism ~yy : I' — ) for every N. Its kernel
I'y, the so called principal congruence subgroup of level N is given by
I, ={(2}) €T :bc=0(mod N),a,d =1(mod N)}.

As an example we examine here the case [ = 2. We start by defining I'; o C T’

to be v, * of the subgroup of 2(22) consisting of ((1) (1’) and ( ) this is the
subset of I' such that ab and cd are even.

FN is a normal subgroup, whereas I'; 5 is not; in fact, it has two conjugates,
Y ((89), (§1))T0(2) and v ((§9), (19)) = I'°(2) respectively, described
by the condition ¢ even and b even (so, respectively, ¢ and b = 0(mod 2),
notation which allows us to extend immediately this definition to any case
# 2. We already saw the second of these groups in the previous chapter).
These are the groups for which 1901 and 19 have functional equations; this
means that we can express ¥(2-, 10), for (¢4) ¢ T'i» as a multiple of

ct+d’ ct+d
Yo1(z,7) or ¥10(2,7) by means of an elementary factor.
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Rather than trying to express the transformation that a completely generic
(‘}: Z) € I' produces over an arbitrary ©; ; we will consider the action of the
generators (§1) and (9 7'). This is what we get:

I
S

Doo(z, 7+ 1) = o1 (2,7),  Poo(2, —1) = (—w)%em?sloo(z,ﬂ

(=7 +1) =Voo( 7). dun(E 1) = (m)2e 7o (z,7) (3.9)
Dro(z, 7 +1) = eF019(2,7), V10(2,—1) = (—e7)2e™5 g (2, 7)

V(2,7 +1) = eT0(2,7), V11(Z, —%) = —(—27-)%@7”722 V11(2,7)

Geometrically, the reason why the subgroup I'; 5 appears is that J(z, 7) van-
1

ishes at 3(7+1) € 217 and it is easy to check that (25) €Tz if and only

L,
if the transformation z — carries 1(7 + 1) to 3(7' + 1)mod L., where

7_/ — CLT+b.
ct+d
We shall pose from now on z = 0, and we will study the behaviour of the

¥ functions as functions in the single variable 7. In this case, the functional
equation of ¥(0, 7) reduces to

z
cT+d

at +b 1
0 (0. 552) = cler + o),

where ( is an 8-th root of unity as given from Theorem 3.3.1.
This expression will lead us to show that (0, 7)? is a modular form, that
is that it fits this definition:

Definition 3.4.1. Let k € NU{0} and N € N. A modular form of weight
k and level N is a holomorphic function f(r) on the upper half-plane H
such that:

1. forallT €H, (24) €Ty, f(EZL) = (er + d)F f(7);

cT+d

2. f is bounded as follows:

(a) 3t,s constants such that |f(7)| <t if ImT > s;

(b) V& € Q, 3 positive real t, 4, Spq such that |f(7)| < ty4|T — §|_k if
T — B —1s,4| < Spg-
q ) )

The set of modular forms of weight k£ and level N is a vector space and it is
denoted by Mod,(gN). Condition 2a of the previous definition gives the bound
at oo for modular forms defined on H; the action of I' is defined on the points

of QU{oo} and since f(2+) = (cr+d)* f(7), then the bound at £ € QU{oo}
af+b

-
cq+d

is equivalent to the bound at
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The definition above relies on the fact that the factor (er + d)* satisfies the
l-cocycle condition, that is to say, if we write e,(7) = (c7 + d)¥, where
v =(2%), for all 71, 72 € Ty we can write €,,1,(7) = €, (127) €, (7).

This condition, together with the fact that I'y is normal in I', gives an action
of % on the vector space Mod,(cN): if f is a modular form and v = (‘c‘ 3),
define f7(1) = e,(7)"'f(y7). This is a modular form of the same kind as f,
as it follows directly by checking the definition.

More, we notice that if f € Mod,(CN) and g € ModgN), then the product
fg € Mod,(ﬁzl. Thus Mod®) = Drenufo} ModlgN) is a graded ring, namely
the ring of modular forms of level V.

We can now state the following:

Proposition 3.4.2. 9%,(0,7), 92,(0,7) and 9¥2,(0,7) are modular forms of
weight 1 and level 4.

Proof. To start with, verifying condition 1 of the definition amounts to saying
that ¢, the 8-th root of unity that appears in the functional equation (3.8) is
+1 when (‘; Z) € I'y; this comes directly from the description of ( we gave
in Theorem 3.3.1(1), as we only need ¢ even and d = 1(mod 4). We can
also verify immediately the bound 2a at oo for ¥3,(0, 7). In fact, the Fourier

expansion
2

1900(0, T) = Z e
neZ
shows that, as Im(7) — oo we have ¥y(0,7) = 1 + O(e~™™()), hence
92,(0,7) is close to 1 when Im(7) > 0. Before checking the last condition
of the definition, we consider the action of T on ¥3,(0, 7). We can check the
following equalities, by means of (3.9):
T(ﬁgo(()? T)) = 1931 (07 7-)7 S<1930(07 T)) = _“9(2]0«)7 T)
T<19(%1(07 T)) - 7930<07 7-)7 5(19(2]1(07 T)) - _“9%0(07 T)
T(0%0(07 T)) = ”9%0(07 T)v 5(0%0(0’ T)) = _“931(07 T)'

This shows that the three elements span an I'-invariant subspace of Modg4).
We have now to check the last point, which boils down to verifying condition
2a for the three functions, because a suitable element ~ € I' carries any cusp
to oo.

Proceeding in the same way we did for J¢0(0, 7), with Fourier expansions, we
have, for Im(7) — oo,

’1901 (0, T) =1 -+ O(G_Trlm(T))

and
V10(0,7) = O(e @),
this completes the proof of the proposition. O
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3.5 Building modular polynomials

We saw in Chapter 2 the inconvenience of working with classical modular
polynomials.
From what we know, we can say that 1 constants could carry information
about elliptic curves, since they are invariants when computed on the element
defining the lattice; in fact, they are even more precise than the j invariants,
as they identify a single curve, not a class of curves modulo isomorphisms (for
example, the values of the ¥ functions enable us to distinguish a curve from
a twist of it). We can think about building modular polynomials by means
of vartheta functions; Proposition 3.4.2 tells us that we have a modular
structure if we consider their squares. The existence of a modular polynomial
having them as variables is then ensured by the analysis we did in the previous
chapter (see the Remark at Definition 2.4.2).
We have to consider a priori four different values, the values of the ¥ constants
evaluated in z = 0 and in the value of 7 characterising the lattice of the elliptic
curve we are working on. We know from Lemma 3.2.1 that in fact we need
only three of them, as ¥;; = 0 in this case. In fact, we can even pass from
a projective environment to an affine one, by means of one of the non-zero
constants; again, Lemma 3.2.1 ensures that this process is well defined (we
already have a constant which is 0, we could not have another one). This
make us work with only two variables; but now, thanks to (3.5), we can
express the fourth power of one by means of the fourth power of the other,
and determine the squares up to a sign.
By doing this, we can already retrieve the information we had when consid-
ering j invariants; in fact, we have even a formula expressing the j invariant
by means of ¥ constants, namely
(?900(7')8 + 1910(7')8 + 1901 (7')8)3
(oo (7)01(7)V10(7))®
We give a sketch for the proof of this. Let usset f = 432 (190(21(92)2')12;001({7))8 1;: ?E’;)()Ts)g)g .
To show (3.10), we have to show that f has a unique simple pole at oo; if
this is the case, after multiplying by a constant ¢ we have that 7 — c¢f has no
poles at 0o, so it is holomorphic; then it is constant by Liouville’s Theorem,
since it is continuous over a compact space, so it is bounded (this is more
or less the same kind of reasoning we had in Lemma 2.1.3). To prove that
in fact this constant is 0, and that our ¢ = 1, it is enough to evaluate the
functions at two distinct points; so we have proven the equality.
Formula (3.10) tells us in particular that we do not have to worry about the
sign; any ¢ constant is considered to a power 8, the sign ambiguity mentioned
above that occurs while determining 92 does not emerge.

j(r) = 432 (3.10)
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The polynomials we obtain this way are already smaller than the classical
ones; one can find some examples on [BB87, Chapter 4.5], where the authors
compute them explicitly. Our project was in fact a more ambitious one: we
wanted polynomials taking into account just the single variables v, not their
squares. This is possible if we consider not the functions evaluated in 7, but
in 7; in practice, this allows us to eliminate the squares.

To summarize, we take into account a ratio of two different ¥ constants
and we compute the modular polynomial with respect to it. Our departing
function was, in particular, f = g—‘fg; for any ¢ € N, our /-polynomial, once
we evaluate in f(%) for a given 7 € C, the variable X, have as zeros in Y the
values of f(3;), so the same function evaluated on (-isogenous curves. Once
we have the ratio for isogenous curves, we can retrieve the value of the third
constant up to a sign, and this is enough to retrieve the correct value of j by
means of (3.10).

In practice, we see immediately that we can forget that we are dealing with
5, as we are free to choose our element on the whole H; the division by 2 it
is just a formal remark we have to consider, but in practice it does not pose
any constraint on our 7. We are then free to choose a generic 7 € C.

We remark also that formula (3.10) is useful to forecast some heuristic infor-
mations about the coefficients of the polynomial we are looking for; naively,
it says that relations between 1 constants could possibly be expressed by
polynomials whose coefficients are twenty-four times smaller than the coeffi-
cients of the classical modular polynomials. We say this simply by looking
at exponent appearing in the expression; both the denominator and the nu-
merator present ¥ function with 24 as maximal exponent. We could guess
that an expression involving directly the modular structure of 1 without any
direct regard to j could possibly have coefficients whose size is of the order
of a 24-th root of the coefficients of a classical modular polynomial.

We will see in the next chapter that this is actually the case: these poly-
nomial relations exist, can be computed by means of two independent ¢
constants which we choose between all of them, and have coefficients which
are significantly smaller.

As we already said, we did all this work not only to compute polynomials
with smaller coefficients, but also in view of a generalisation to a higher genus
case. In fact, genus 1 curves are peculiar from the characterisation point of
view: the single j invariant is enough to characterise all the isomorphism
classes.

In genus 2, for example, we have the Igusa invariants which do the same kind
of characterisation, but to identify a single class we need the value of three
distinct invariants. This means also that, if we look for a polynomial linking
between them the invariant of a given curve and all the invariants of curves
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which are [-isogenous to it, we cannot rely on a single polynomial any more;
we will need three of them, and the computations of them for low isogeny
degrees reveal that they will have very huge coefficients. The computations
of modular polynomials by means of ¥ constants would mean an important
advantage in terms of polynomial size, so in terms of computational time.
More generally, we could extend this way of proceeding in any genus, without
knowing a priori invariants classifying curves up to isogenies.



Chapter 4

Algorithms and computations

In this section we are going to explain different algorithms for computing
modular polynomials and to present our implementation of them.

The program we used is PARI/GP version 2.5.1, and we used quite a lot
of pre-implemented functions, whose detailed behaviour we are not going to
specify; we are going to explain more extensively what we did when writing
original parts of code.

We will compare different strategies that can be followed in computations
of classical modular polynomials or of modular polynomials by means of 1
functions, a comparison that will be carried on both on the practical side
and on the side of complexity; we will see that the new modular polynomials
we will obtain by means of ¥ functions are indeed smaller, and that the fact
of having smaller coefficients asymptotically cuts the computational cost.

The structure of this chapter reflects the way of proceeding we adopted while
programming and doing computations: in the first section we present the
different algorithms, as well as their computation of complexity, and we test
them over j invariants. The advantage of this method consists on the fact
that we already knew the final results we should get, so this was a good way
to check the correctness of our codes.

In the second section we explain the work we did with ¢ functions. We ex-
plain the difficulties we faced in adapting the algorithms to this case; we
did not know a priori the final shape of the results, so sometimes we had to
pay attention to some details that were not dangerous when working with j
invariants. We display and comment then the results we got, always specify-
ing which method carried which results, and how much time did it take; we
will see that already for low isogenies levels there are significant differences
between the algorithms, not only in terms of time but also in terms of results.
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4.1 Modular polynomials for j-invariants

First of all, we tried to compute the modular polynomials linking the usual
J-invariant of a given elliptic curve with the j-invariant of the curves obtained
from it by applying an isogeny of a given degree . We tried essentially two
methods, which were tested here in order to be applied to the analogous
study with theta constants. All these methods, together with a computation
of complexity, are presented in [Eng09].

The case of j-invariants was simpler since we already know the shape of
the desired result and we could therefore simplify some computations when
performing them; moreover, the value of the j-invariant for a given a value
of 7 defining the lattice is already implemented in the PARI system, so we
did not have to program a separate function for doing it.

4.1.1 Substitution in ¢g-expansion

The first method one can think about, from what we saw in the preceding
chapters of this work, is to find a linear relation between g-expansions for j(7)
and for j(7). This is a very naive method: one compares the two expressions
(2.2) and (2.3) (this last taken for the identity matrix), and tries to cancel all
the appearing terms, starting from the lowest ones. We know the polynomial
we are looking for is symmetric, we know that it is monic and we know its
degree; these are important clues that enable us to spare time and to proceed
in a more assured way.

The strategy is to proceed by cancellations; one compares the g-expansions
relative to j(7) and to j(7), and tries to find a combination that cancels all
the terms, starting from the lowest degrees. The information we know about
the final shape of the polynomial helps us in this procedure: every time we
add a monomial to the polynomial we have to add its symmetric as well, and
we know at lest a coefficient, which is the coefficient of the leading term.
This method works, but it is not really efficient; finding the right term could
be not immediate, and the fact of dealing with infinite sums is not making
things simpler; though, it is a very intuitive strategy, easy to understand and
not requiring particular mathematical tools (the only tool that is needed is
in fact a performing machine to compute coefficients, as the calculations can
turn out to be really hard and memory-demanding!).

Actually, we could even proceed in a smarter way, using some properties we
know of the polynomial we are looking for, and in particular the characterisa-
tion we gave for the representatives of the classes in o)\ (we took this idea
from [Mor95]). If we set f(z) = j(%), we can in fact express the polynomial
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as
-1

[IxX = fx = f£s). (4.1)
b=0
where fy(2) = f(Tp2) and fs(z) = f(Sz), by means of g-expansions.
To do so, we have to study the changes produced on g-expansions by the
actions of the representatives of Fo(l)\r; if the g-expansion of f is

oo
k 1
f(z) =) arqt € C((q1)),
k=vl
with q% = ¢?™7 with a rational integers, the g-expansion of the conjugates

fv(2) are of the same form, with the coefficients a; being multiplied by the
root of unity ¢ = e2"t".

This is not the case for the last conjugate, f(Sz), which requires separate
computations to be expressed; anyway, as it is the only case that should be
dealt with separately, this does not affect too much the total complexity. The
reason for this difference is that in this case f(Sz) = j(lz), so it express an

isogeny which does not fit the notation we employ for all the others.

4.1.1.1 Computation of complexity

Even if we did not implement this algorithm directly, we present here a brief
analysis of its computation of complexity, in order to compare it with the
methods we present above. According to [Mor95], the second method we il-
lustrate above is the fastest between all the methods exploiting g-expansions.
This is easily understandable, as this method boils down to computing a fixed
product of terms really close one to the other (coefficients differ only by mul-
tiplication by an [-th root of unity) and a single different term. We know we
have a bound on the size of the coefficients of the polynomial; so, as Enge ex-
plicitly computes, the final complexity is O(I3log(l)M (n)) C O(i*1log(1)>T¢),
where M(n) € O(nlog(n)*™) is the complexity of performing a multiplica-
tion between integers of size n by means of the fast multiplication methods
(we will keep this notation fixed from now on), and n is the bound (2.6) we
have on coefficients size.

This estimate does not come from direct computations as we presented
them above, but from performing them modulo a big prime of bit size
n € O(llog(l)), which prevents coefficients in the product from growing
too much, or from performing all the computations modulo small primes
and then retrieving the desired result by means of the Chinese Remainder
Theorem.
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4.1.2 Looking for linear relations
4.1.2.1 Computing kernels...

One can think about another very intuitive method: to build a matrix with
all the possible monomials evaluated in the j invariant of a curve and of the
image of it by an [-isogeny, and to look for a linear dependency relation by
looking at its kernel. In practice, we look at the coefficients of the modular
polynomial as solutions of a big linear system whose equations are given
by the rows of the matrix, so the evaluated monomials are considered as
coefficients.

It was very straightforward to implement this method, as we already knew
that the final result should be a polynomial of degree [ + 1, so for a given
[ we had a fixed number of monomials to consider, (I + 2)? a priori. The
situation was even better as we knew that the polynomial has a single term
of degree [+1 in each variable, monic, and this allows us to reduce even more
the number of monomials we should consider.

We built a square matrix whose columns are given by the evaluation of the
different monomials and whose rows are given by different values of 7 we
chose randomly; then we applied to the matrix the methods for computing
kernels.

In practice, though, when using the pre-implemented command in PARI,
this gave no results. This is due to the fact that, even if we are dealing with
matrices whose determinant is very close to zero, it is not exactly zero due
to the errors of the floating point representation. So we decided to make
computations more explicit, in order to see better how things developed.

4.1.2.2 ...or solving an affine linear system

To make computations simpler (in order to deal with smaller matrices) and
we can specify the leading terms and solve an affine linear system having the
leading terms evaluated in j(7) and in its image® via the [-isogeny as column
of solution; this gives the desired result.

This method is indeed more stable than the previous one. In fact, while
computing kernels, computations may give rise to very small values in place
of zeros; the problems is that these values are really difficult to deal with,
as when performing divisions they make the result explode. So, even if we

1Usually, when we speak about the image via an isogeny we are referring to the action
of the map on the curve, so to the map sending one point of the domain curve to a point
in the target one. Here we use the word image to denote the action of this ma on the j
invariants; in other words, if we start from j(7), we say that its image via an [-isogeny is

3(3), or j(IT).
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start from little approximation errors due to the floating point notation, they
progressively increase all along the computations giving us at the end a result
which could be very far from the correct one. The advantage of solving an
affine linear system is that this make us deal with an invertible matrix; in
general, we are not suppose to deal with very small values and so even if we
start from a matrix of perturbed data, this perturbations do not dramatically
amplify.

What we got by those computations was a symmetric 2-variables modular
polynomial; we knew that we were looking for integer coefficients, and the
coefficients we got were indeed very close to integer ones. We wrote some
lines of codes in order to erase the not integer part; we could not use the
rounding pre-implemented function as a priori we had to deal with complex
coefficients (even if the imaginary part was always negligible). Essentially, we
rounded separately the imaginary and the real part of each coefficient. Our
code takes as input a parameter p: for the imaginary part, it checks whether
it is less than 10%, and if this is the case, it rounds it to 0; for the real part,
it checks if the difference with an integer is less than 107, and again, if this
is the case, it sets this integer as the new real part of the coefficient. If those
verifications are negative, it leaves the coefficient unvaried.

Here is the code we used for [ = 2, preceded by the function we used to
detect integer values:

reductionc (t, p)=

/* Given a complex number t, and the precision p at
which we are performing computations, this function
gives as output a reasonable rounding of t, allowing
us to see that in our case the modular polynomial
has all integer coefficients.x*/

{

my (r, i);

i=imag(t);

if (i<10°(-p/2), 1i=0);

t=t-imag (t)*I+ix*1;

r=round (real (t));

if (abs (r-t) <10~ (-p/2), t=r+ix*I);
t

}

/*With this procedure, we should have in p the modular
polynomial we were looking for, with 1 as coefficient
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for X~ (1+1).
Knowing this, we can directly isolate the
values of X~ (1+1):%/

1=2;
d=(1+2) x(1+1) ;

V=vector (d,k,

(random (1000) -500) /1000.0 + I*(1 + random(1000)/1000.0))
lV=vector(d, k, V[k]l*1l );

jV=vector(d, k, ellj(V[k]));

jlV=vector(d, k, ellj(1V[k]));

ex=vector(d, k, (k-1) % (1+2));

ey=vector(d, k, (k-1-ex[k])/(1+2));

M=matrix(d, d, k, i, jlV[k]-ex[i] * jV[k]“eyl[il);
s=vectorv(d, k, -jVI[k]~(1+1));

b=matsolve (M, s);

p=0;

for(k=1,d,
p=p+treductionc(b[k], 100) * Y~ ex[k] * X"eyl[k]);
p=p+X~(1+1)

At row 31, in the vector V we put all the 7 € C we randomly generate.
We see that the choice of the values is not a completely random one; this
choice avoids the generation of very big values or of values too close to 0,
still remaining inside H.

4.1.2.3 Computation of complexity

First of all, we have to build the big initial matrix. For doing so, for any
7 we choose we have to evaluate j in 7 and 7, and then to create all the
possible monomial combinations up to degree [ + 1. In the Phd Thesis of
R. Dupont, [Dup06], we have the description of an algorithm that requires
O(M (n)log(n)) bit operations for any evaluation performed at precision n;
this algorithm can be adapted to a wide class of modular functions, and its
complexity (as we can see) does not depend on the value of 7 we choose.

Basically, our code performs 2t evaluations for different values of 7, where in
any case t > [+ 1; we have (I+2)(I+1) possible monomial combinations, and

computing each of them costs O(log(l41)2M (n)) bits operations. Definitely,
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we can say that building our matrix costs O((llog(n) + log(1)*)M(n)) bits
operations.

We apply then to it well-known algorithms; we know, following for exam-
ple [VzGGO03, Chapter 12], that the cost for performing the Gauss reduction
of a matrix of size [? (or of the same order) takes O(I*) arithmetic operations;
this means that computing kernels and solving linear systems has the same
complexity (in both cases, we need to provide ourselves with a reduced ma-
trix). This makes, in terms of bit operations, O(I*M(n)). Finally, the total
cost is O((I* + llog(n) + log(1)*)M (n)).

4.1.3 Evaluation-interpolation

This method is more subtle than the previous one, and it is proven to have a
better complexity; the main difference is that here we are going to exploit the
properties of our functions j, instead of simply considering them as unknown
generic objects linked by a polynomial relation. We do this by treating the
two variable separately, dealing at first only with j(7) and then considering
j(7) only in a second moment.

The idea is simple: basically, we would like to use the fact that we are dealing
with a modular polynomial, and that we are able to specify all the roots in
a single variable. In fact, what we are looking for is a polynomial ®;(X,Y)
such that ®;(j(7),j(7)) = 0. The fact of being a modular polynomial tells
us that if we consider 7/ = M o7, M €rogy \, we have ®;(j(7'),5(%)) = 0 for
any 7" we can define in this way. More, we know that the polynomial should
be monic; if we define the function j;(7) = j(7) for any 7 € C, we can set:

oY) =0(j(r),Y)= [ ¥ -im)=

ocAut(C(4,41)C(7))

= ] v-ior) =

MGFO(Z)\F

l
Y 4 ey, (4.2)
=0

and of course we have
) =0. (4.3)

We have already seen this construction before, and precisely in the equation
(4.1); that equation shows explicitly the action of each element of the group
FO([)\F, by means of the characterisation we gave in Proposition 2.1.5.
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Up to now, we have considered our polynomial ® in just a single variable; in
fact, what we are looking for is intimately linked to it, it is now enough for us
to analyse the behaviour with respect to the other variable. If we take into
account the expression (4.2), that is to say, if we write ® as sum, we can say
that all the coefficients a; are nothing more than polynomials a;(X) evaluated
in j(7), that can be recovered by interpolation if we consider different values
for 7; that means, we just have to explicit the property (4.3) with respect to
j(r).

We know exactly the number of different 7 we need to perform interpolation;
in fact, as our result ® should be a symmetric polynomial, each polynomial
a; cannot have degree more than [ + 1, [ 4+ 2 values for 7 would be enough.
We need indeed even less: as the polynomial is symmetrical, and it is monic
in its leading terms, we can say that to compute each of the polynomials a;
we should need [ + 1 values for 7; we have that all the polynomials a; have
degree X! except for dg, whose leading term is X't (and we are sure that
the coefficient is 1).

This procedure is faster, and again, gives the desired result; as before, we have
to cope with some little errors due to computer calculus, but we recognise
easily the result. Here is the code:

{

W=vector (1+1, k,
(random (1000) -500) /1000.0+I*(1+random(1000))/1000.0) ;
GW=matrix(1l+1, 1+1);
for(i=1, 1+1,

GW[1,il=ellj (W[il*1);

for(kt=1, 1,

GW[lkt+1,il=el11j ((W[il+kt-1)/1)

)
);
sist=vector (1+1, k, prod(i=1,1+1, Y-GW[i, k]));
val=matrix(l+1, 1+1, x, y, polcoeff(sist[x],y-1));

tn=vector (1+1, k, ellj(W[k]) " (1+1));/*This is
because I already know that my polynomials here
are symmetric, so I just put the right coefficient
for the highest degree term at the end, without
needing interpolation*/

jW=vector (1+1, k, ellj(w[k]));
P=polinterpolate(jW, vall ,1]17-tn, X);
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P=P+X~"(1+1)+Y"(1+1)+sum(i=1, 1,
polinterpolate (jW, vall[ ,i+1]17, X)*Y"i);
p=0;

for(i=0, poldegree(P, Y),

for(j=0, poldegree(polcoeff(P, i, Y), X),

p=pt

reductionc(polcoeff (polcoeff (P, i, Y), j), 100)
*X"j*Y"i));

p

}

4.1.3.1 Computation of complexity

From our discussion above, we can decompose the method in various steps:
first, we need an evaluation phase, which requires (I + 1)(deg;(®;) + 1) eval-
uations of f = j(7), that is to say (I + 1)(l 4 2) evaluations whose cost is
O(log(n)M (n)) each, which gives a complexity O(I*E(n)). Then, we need
to build [ + 2 degree [ + 1 polynomials starting from their roots. This step
takes O((I + 1)llog?(1)M(n)), plus an eventually negligible term of order
O(log(n)M(n)) coming from the features of the FFT (we need to know a
primitive root of unity of sufficiently high order to perform the computations;
for more informations about FFT, we refer again to [VzGGO03, Chapter §]).
Then we pass to the interpolation phase; again, using fast algorithms, we can
say that this can be done in O(I(I + 1)log®(l 4+ 1)M(n)) (we already have a
suitable root of unity from the previous step). So we reach a total cost of

O(1(log* (1) + log(n)) M (n)).

4.2 Modular polynomials via theta functions

This section is devoted to the computation of modular polynomials by means
of theta functions. As we explained in the previous chapter, we can choose
to compute these polynomials by means of a ratio of theta constants; we
simplify the notations by writing

Joo(r) =o(r) =Y ™™ =142 (™)™,

neZ neN*
1910(7_) — 191(7_) — Zezw7n2+z7rn — Z(_l)nezm—nZ =142 Z (_1)n(ez7r7')n2’
nezZ nezZ neN*

and we will compute our polynomials by means of g—?(T) and g—‘;(%)
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We need first of all to program the function ¢, as in this case it is not a
pre-implemented function; we have to be particularly careful as it is defined
as a series, so we have to fix an exponent at which it is reasonable to cut off
computations. Then we exploit the very same methods as before, adapting
them to the particular situation in which we are now.

4.2.1 Computation of theta constants

We define once for all a quantity that we will use all along the computations:
go = €™, which depends only on the 7 at which we are evaluating our
function®. Actually, as we can see from the formulae above, both ¥y and 9,
present the same summands; in the second function we are just taking them
with alternating signs.

A smart way to proceed here is to compute at each step the new term and
then to add it to the partial sum of all the previous other (in the case of
Y1, we just pay attention to the sign we put before it). To compute the
new term, we just exploit the formula for the binomial square, that is to say
(n +1)% = n? + 2n + 1; we define 2 sequences, A, = ¢¢" and B, = ¢@", as
follows: A; = qo, B1 = ¢*; Ani1 = Ay - Bn - qo, Buy1 = By, - B? (in [Coh96,
Chapter 7.6] it is describe a similar method for the computation of 7). Then
the sequence (A, ),en provides us with the terms we have to add at each step.
As we said, we need a termination rule for the sum. Actually we can easily
see that at each step the terms we are adding become smaller and smaller,
and we can guess that at a certain point they should be so little that they
will no more change the result we see as output from the computer.

If we decide a priori to work with k digits of precision, this happens when
|A,| < 107" that is to say when

n?In(|qo|) = n*7 Im(7) > k1n 10, (4.4)
so the resulting bound is n > %. Alternatively, we can just set a

desired precision and keep on adding new terms until the terms we are adding
are smaller than the bound we decided. Here is the code:

thetaconstants (tau)=

{ /*Given a complex value tau as imput, gives as output
a vector containing the two values of the desired theta
constants and their quotient:*/

2Beware of the difference between this quantity and ¢ = g3, the values we employed all
along the preceding chapters.
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my (k,q0,theta0,thetal ,N,i,A,B);
k=600;
qO0=exp (Pi*I*tau) ;
thetalO=1;
thetal=1;
/*N=round (sqrt (k*xlog (10) /Pi*imag(tau))) ;*/
A=q0;
B=q0°2;
q2=B;
i=1;
while (2%abs (A) >10" (-2x*k) ,
thetaO=thetaO+2x*A;
thetal=thetal+2*x(-1) “ix*A;
A=AxB*q0;
B=Bx*q2;
i++
);
[thetaO, thetal, thetaO/thetal ]
}

Notice that at row 8 we fix a value for the parameter k; this choice depends
on the precision we finally want to reach. Here, we chose to keep it fixed as
we only used this code to computations for low [; in fact, as [ increases, we
should decrease k if we want to get some output. Maybe it would have been
better to define a variable to have some control on it; anyway, this value
works for all the computations we chose to perform.

4.2.1.1 Computation of complexity

The algorithm we used for evaluating 1 constants is simple to evaluate in
terms of complexity: at each step we have to perform two sums, three mul-
tiplications, a square and two multiplications by 2 (which can be seen as
addictions); so the only thing we have to take into account is the number of
iterations we perform.

If we keep the bound we set at Section 4.2.1, that is to say (4.4), the resulting

cost is O(M(n), /ﬁ), where n is the precision at which we want to evaluate

our function.

We see that the bound depends here on the choice of 7; in the next section,
we will briefly describe a method to pass from a generic 7 to a value in the
fundamental domain F, which with this method would lower the computation
of complexity.
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How to reduce an element to the fundamental domain

We have seen from the analysis above that the computational complexity de-
pends on the imaginary part of the value 7 we choose. We know that in the
fundamental domain we have the values with the smaller imaginary part al-
lowed; more, we know that transformations via elements of I'(/) do not affect
the value of the ¥/ constants. Definitely, if we find a way to reduce our val-
ues in the fundamental domain we can reduce remarkably the computational
costs; we know from Proposition 1.2.3 the existence of such a transformation
for any choice of 7 € ‘H. So, the strategy was to apply recursively elements
of I'(1) to our random 7 until we land in the fundamental domain, and only
then compute our ¥ constant.

The elements we apply are elements which are meant to reduce the norm;
thanks to the action of the elements of I'(l), we make perform a sort of Gauss
reduction on the associated quadratic form, until we land in F.

This is the code; a similar algorithm is performed internally by the PARI
system when computing j.

t=tau;

S=[0,-1;1,0];

T=[1,1; 0,1];

G=[1,0;0,1];

n=round(real(t));

t=t-n;

G=T"(-n);

while (norm(t)<1, t=-1/t; G=S*G; n=round(real(t)); t=t-n;
G=T"(-n)*G)

/*At each step, we keep track in the matrix G of the
elements of Gamma that are acting on our initial
value tau. At the end, in t we will find the element
act (G, tau), where act is the action defined by the
elements of Gamma on the upper complex half-plane.

0f course, this procedure can easily be adapted when
working, as above, in Gamma(l), simply by taking the
correspondent class of our matrix G.x/

Actually, the algorithm we presented is not the fastest way to evaluate v
functions; as we already said above, in his Phd thesis ( [Dup06]), R. Dupont
explains how to exploit in this sense the AGM method, an idea that may
date back to Gauss’ times (for a discussion on this topic, see [Cox84]).

In his work, Dupont presents an algorithm which costs O(M (n)log(n)) and
can be adapted to compute 9 functions; in this case, the cost does not depend
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4.2 Modular polynomials via theta functions 69

any more on the element 7 we are considering. However, we did not take
into account this method, which is hard to implement and at our level would
not have produced an appreciable advantage in terms of computing time.

4.2.2 Looking for linear relations

As in the previous case, we tried to obtain some relations linking monomials
evaluated in the ratios of ¥ constants. We applied exactly the same method
as before, so we built a matrix having as columns the different monomials
evaluated in different choices of 7, choices ranging on the rows.

relatq(l, L, t)=

/*Here we define big matrices and we compute their
kernels, in order to get a relation with integer
coefficients between the elements involved. L 1is
the final degree of the polynomial we want to obtain
as output; our aim is, via computing the kermnel of
the matrix of relations of a given degree, to decide
if such a polynomial exists or not. The parameter t
gives us the dimension of the matrix, that is to say
the number of values we consider when building it:*/
{
my (W, thet, i, j, M, k);
W=vector(t, j, I*(10000+random (20%x10000))/100000.0) ;
thet=matrix(t, 2);
for(i=1, t, thet[i, 1]=thetaconstants(W[i]) [3];

thet [i,2]=thetaconstants (W[i]/1) [3]

)
M=matrix(t, (L+1)"°2);
for(k=1, t,
for(i=0, L,
for(j=0, L,
M[k,(L+1)*i+j+1]=thet [k, 1]~ (i)*thet[k, 2]1°(j)

)))
(M, W]
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4.2.2.1 Computing kernels...

In this case, we did not know in advance the shape of the result; what we
knew was simply that the evaluated monomials should be linearly dependent.
We took a big number of different 7 and we tried to compute the kernel of
that matrix. Actually, we could not use the pre-implemented function to
build the kernel; we wrote a code performing Gauss reduction and putting
the matrix in a triangular form. We know that there exists a dependency
relation involving columns of that matrix, and the Gauss algorithm should
highlight it by the presence of 0 as an eigenvalue on the diagonal of the
triangular matrix (as we are dealing with floating points quantities, this is
not an exact value, but just an approximate one).

To summarize, the Gauss algorithm made us find R and C unitary matrices
and a triangular matrix M such that Ro M o C' = M:; any time we find 0 as
an eigenvalue on the diagonal of M, say in the k-th position, it means that
the k-th column of C' belongs to the kernel of M.

gaussker (M, eps)=

/*Here we try to implement the Gauss reduction,
stopping when we find an element of the kermnel
(we in fact need just a single vector). Our
inputs are the matrix we want to reduce, and a
value epsilon that gives the bound under which
we will consider the values to be 0. */
{
my(l, R, C, i, j, m, k,v, h , kernel);
l=length(M);
c=length(M~);
h=vector (1) ;
R=matid(c);
C=matid (1) ;
i=1;
kernel=[;];
while(i<=1, m=M[i, i];

k=1i;

for(j=i+1l,c, if(abs(M[j,i])>abs(m), k=j;

m=M[j,i]1));
if (abs (m)<eps,

kernel=concat (kernel, C[ ,il),
v=M[i, ];

M[i, 1=M[k, 1;

M[k, J=v;
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ML ,i]=M[ ,il/m;
for(j=i+1, 1, h[jl=M[i,j];
ML ,j1=M[ ,j1-nljI1*M[ ,il);

v=R[i, ];
R[i, 1=R[k, 1;
Rlk, J]=v;

C[L ,il=C[ ,il/m;
for(j=i+1, 1, C[ ,jl=C[ ,jl-h[jl*C[ ,il);
)

i++);

/*If the loop ends because of the break, it
means we have found a zero column, which means
we have a non-zero element in the kernel of
the matrix we are considering. If this is not
the case, we have an invertible matrix, and so
we can not find any element in its kernel.
Actually, what we do want is an element whose
coefficients are integer values; we have kept
track of all the operations we performed on
the matrix M by means of the matrix G, that
enables us to recover the element of the kernel
we are looking for. In fact, its k-th column
will belong to the kernel of Mx*/

kernel

}

We expected to find a one-dimensional kernel with integer coordinates; and
in fact, that was the final result, that we display here for low isogenies levels:

1=3:Y*—4XY +6X°Y? —4X%Y3 + X*

[=5:Y%—16XY +10XY5 + 15X?Y* —20X3Y? + 15X*Y? + 10X°Y —
—16X°Y° + X6

I=7:Y%—64XY +56XY° — 112X2Y? 4+ 140X2YS — 112X3Y5 + 56 X3Y "+
+ 70XV + 56 XY — 112X°Y3 4+ 140X°Y2 — 112X°Y 5+
+56X7Y3 —64X7YT + X8

Remark:From what we see here, we have already something encouraging.
As in the case of j, we have symmetric polynomials, but here even in a
broader sense than before: the variable X is symmetric to the variable Y,
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but they are symmetric also with respect to the substitutions X %,
Y = 5.

Another surprising feature is the low degree. After the Remark to Defini-
tion 2.4.2, we base the existence of such polynomials on the computation
resultants; but we see from (3.10) that this degree could be very high,
242(1 4+ 1) a priori. When computing the relation matrix we did not fix
a priori the degree of the monomials inside it; from these concrete exam-
ples we see that in fact a degree [ + 1 is enough. The degree is the same
as for classical modular polynomials; this, together with the fact of the
coefficients being so small, makes these polynomials really suitable for
practical computations. Some considerations about the precise rate of
decreasing for the coefficients’ size will be performed in the final section
of this chapter.

This method works, but it is not very stable. Even for [ = 7, for example,
we needed a precision of 500 digits.

So, trying to optimize the computations, we used the algorithm LLL. This
algorithm builds a basis for the lattice we create with the columns of the
matrix filled with evaluated monomials by taking the smaller integer combi-
nations of vectors that give a basis (see [LLL82] for a complete description
of the algorithm). In our case, as we have to reduce ourselves to work only
with real quantities, so we consider separately real and imaginary parts,
doubling the numbers of the row we consider. From this algorithm, we can
easily deduce an algorithm for computing integer kernels, as it is explained
in [Coh96, Chapter 2.7.1]. Here we are working with complex values, so
we have to use the adapted LLL algorithm as presented in [BK93|, which
has a cost of O(16(n)®M(n)). We see that this is more demanding from a
computational point of view, but it turns out to be more stable.

When doing it, with the pre-implemented function for computing LLL in
PARI/GP, we obtained the same results as before but less precision was
needed for computations; for example, we passed from 500 to 200 digits
needed for [ = 7.

4.2.2.2 ...or solving an affine linear system

Exactly as in the previous case, we could think about isolating a column and
deal with it as column of solutions.

Here we don’t know a priori the shape of the result, so we can’t assume, for
example, that the leading coefficient is 1 as we did in the j-invariants case;
still, we can impose this condition, and then look for rational coefficients
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instead of looking for integer ones. As a matter of facts, we see from the
examples above that the leading coefficient is indeed 1, so this condition does
not make any difference for the computations; a priori, though, this could
have been dangerous, because if we have chosen a term whose coefficient is
0 in the polynomial this may have caused a bug.

The other problem here is that we need to deal with a square matrix, that
means that there is no point in taking a big number of different 7, which was
the strategy we adopted before; in this case, we consider only (I + 1) — 1
values of 7 at each time.

We already explain why this method is stabler than the computations of a
kernel, even with a LLL algorithm. However, it needs a quite good precision
to work; to find the result for [ = 7, we needed again a precision of 200 digits.

affinesist (M, 1)={
/*Here we want to deal with the matrix as with an affine
system; that means, we need to separate a single
column from the matrix and to deal with it as column
of solutions. The strategy here is, even if we don’t
know the coefficient concerning that particular
column, we set it to be one, and we look for the
other coefficients that could possibly be ratiomnal
quantities, and not integers any more. We have to be
very careful in choosing the column we want to
specify, as we have to choose a column whose
coefficient should not be 0; to be sure of it, we
choose the term of highest degree in just one
variable. We compute then the correspondent column,
we extract it from the matrix and we fill the
correspondent column with Os; this gives us an affine
system, whose solution is the column of coefficients

we are looking for. */

my (A, x, s,d, L,m);

d=length (M) ;/*We need this information, as we want to
extract a square submatrix in order to solve the
system x*/

L=1+1;/*this is the complexive degree of the polynomial
we are looking forx*/

m=2"((L+1) *L);

s=vecextract (M, m);

A=vecextract (M, 2°(d-1)-1, 2°d-1-m);

s=vecextract(s~, 2°(d-1)-1)";

x=matsolve (A, -s);

x}
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4.2.3 Evaluation-interpolation

We wanted here to exploit the same technique of evaluation-interpolation to
get the modular polynomials for the theta functions; in the computations of
the ¢ functions polynomials the computation time is consistent, so it could
be worth approaching the computations this way in order to spare time.
We tried to adapt the same code we had for j-invariants; the difference here
is in the choice of the group for the matrices M which have to act on our ¥
functions. The modular group now it is not any more FO(Z)\F but the group
FO(l)mr(g)\F(8), as we saw in the preceding chapter. So we have to think about
a method to produce the representatives of this group.

We consider left cosets; we have to compute the coset correspondent to any
element of the group rogy\", so elements G o M € I'(8), for M € I'’(l) and G
in FO(l)\F.

We compute first the element coming form the action of S; we need a matrix
M = (2%) such that So (%) = (25 %) € I'(8) and acting like S, that means
ad —bc =1 and —b = 1(mod 8), ¢ = 1(mod 8), 8 | a, 8 | —d. More, we have
that M € T°(1), so [ | b. We can express our elements as a = 8d’, d = 8/,
b=—-14+80=Fkl,c=1+38c.

Thanks to the Chinese Remainder Theorem we can compute the values of
b, U'; the relation we have on the determinant becomes

16d/d — (=1 — 8¢ + 8 + 16¢V) = 1,

that means 8(a'd’ — V) =V — ; so ¢ — 8V = b'(mod 8), that is to say
d = 17b—;b,(mod 8), that allows us to choose a suitable ¢ and to compute a’, d’
from it, obtaining the exact values for the entries of M. Here is the complete

code:

inverse(1l)=

{

/* Creates the modular correspondent for the matrix S in
the group Gamma, that is to say our analogue to the
operation of taking the inverse with opposite sign */

my(d, c, A, L, s);

A=[-1,0;1,0];

L=[8,11";

s=[1,0]1";

b=component (1ift (matsolvemod (A, L,s)), 1);

c=(b+1)+1;

a=c-1;

d=c-1;

[c, d; -a, -b]
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}

In the code above, we see that at the line 8 we do not use the simplest formu-
lation possible; indeed, we could have used an extended Euclidean algorithm
to obtain the same result.

By performing the same kind of computations over the power of T" we get
that they simply act as translations. In fact, we need matrices (‘CZ g) such
that T"o (‘Cl 3) € I'(8). By imposing as above that our starting matrix should
belong to I'°(1) and that its determinant should be 1, we obtain the relations®

a+nc=1 (mod 8)
b+ nd =0 (mod 8)
¢ =0 (mod 8)
d=1 (mod 8).

We see that a possible solution is a = 1 = d, ¢ = 0, b = nl + 8[, which
correspond to translations; this is the corresponding code:

translation(l, n)={

/*creates the modular correspondent for the matrix T n
in the group Gamma(8), that is to say the analogue to
the operation of taking the translation*/

my(d, c,b, a, A, L, s);

A=[1,0;1,0];

L=[8,1]1";

s=[n,0]"7;

b=component (1lift (matsolvemod (A, L,s)), 1);

b

0
1;
1

5
a+n*c, b+n*xd; c, d]

“Y—Q M O
I

As we are looking for representatives for cosets, all computations are easier
if we consider as representatives translations whose module is a multiple of
8. Analogous results for the group rg)nr(s)\" (%) are presented in [Eng09).
Exploiting these results in the final code we have:

polinteriq(w, 1)={

SRemember that (§§)o(37) = (§*17), that is equivalent to say that the composition

of two translations gives as result the translation whose module is the sum of the module
of the two; in our case, we simply denote T" = ((1) Tf)

|
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/*Here we try to adapt the same procedure we used for
modular polynomials for j-invariants: x*/

my (GW, 4, kt, i, sist, val, tW, P);

d=length (W) ;

/*W=vecextract (W, 2~ (d+1)-1);x*/

GW=matrix(1+1,d);

for(i=1, 4,
GW[1l,i]l]=thetaconstants (act(inverse(l), W[il]) /1) [3];
for(kt=1, 1,

GW[kt+1,il=thetaconstants ((W[il+(kt-1)*8)/1) [3]

)

);

sist=vector(d, k, prod(i=1, 1+1, Z-GW[i, k]1));

val=matrix(d, 1+1 , x, y, polcoeff(sist([x],y-1));

tW=vector(d, k, thetaconstants(W[k]) [3]);

P=Z"(1+1)+sum(i=0, 1, polinterpolate(tW, vall ,i+1]1~, X)
*Z71i);

P

}

This method, being more stable, enabled us to compute relatively fast poly-
nomials for higher degree of isogeny:

[ =11:Y"™ 4 (—1024X" 4+ 140X7 — 396 X*) Y + (—5632X 0+
+ 4400X°% + 1298 X )Y + (—16192X° + 16368X° — 396X )Y+
+ (—18656X° 4+ 19151 X*)Y® + (1408 X" — 18568 X "+
4+ 16368X%) Y7 + (4400X 10 — 7876 X° 4 4400.X?)Y °+-
+ (16368 X7 — 18568 X° 4 1408 X )Y + (19151X% — 18656 X *)Y*+
+ (=396 X' + 16368 X7 — 16192X°)Y? + (1298 X + 4400X°—
— 5632X%)Y? 4+ (=396 X° + 1408 X° — 1024X)Y + X'?;

[ =13: Y™+ (—4096 X" + 6656 X7 — 2704X° + 130X )Y+
+ (26624 X" + 21632X° + 5083X%) 2" + (—66560X " +
+4160X7 + 62036 X°) Y + (—26624 X% — 168064X°+
+195689X4) Y™ + (6656 X — 295776 X" + 289822 X° —
—2704X)Y? + (—168064X " + 149435 X° + 21632X°)Y 5+
+ (4160X M — 11752X7 + 4160X3)Y7 + (21632X 1%+
+149435X® — 168064 X *)Y® 4 (—2704 X + 289822 X7 —
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— 295776 X° + 6656X)° + (195689X ' — 168064.X°—
—26624X%)Y* + (62036 XM + 4160X 7 — 66560.X°)Y >+

+ (5083X 12 + 21632X°% — 26624X*)Y? + (130X " — 2704.X°+
+6656.X° — 4096 X)Y + X'

[ =17: Y™ 4+ (—65536 X" 4 139264X " — 91392X° 4 17952.X°—
—306X)Y" 4 (835584 X — 2067200X 0 4+ 1203328 X+
+ 28441 X2)Y'0 4 (2506752X " — 10000896 X + 8287296 X " —
— 793968X %)Y + (835584X 1'% — 15131904.X "2 + 12179072X 5+
42120308 X )Y 4 (139264 X7 — 21176832X " 4 8712160 X7+
+ 12298888 X° + 17952X )Y + (—15131904X ™ — 19510016 X+
+ 33457156 X° + 1203328 X?)Y'? 4 (—10000896.X *°—
— 26236032X ! 4 27917808X " + 8287296 X°)Y 11+
+ (—2067200X ' — 19510016 X" 4 9441902.X 3+
+12179072X )Y + (—91392X "7 + 8712160X ™ — 17290156 X7+
+ 8712160X° — 91392X)Y? + (12179072X ™ + 9441902.X -
— 19510016 X° — 2067200X2)Y® + (8287296 X '* 4 27917808 X M —
—26236032X7 — 10000896 X2)Y" + (1203328 X0 + 33457156 X 12—
— 19510016 X® — 15131904 X *)Y® + (17952X'7 + 12298888 X *+
+ 8712160XY — 21176832.X° + 139264.X)Y > + (2120308 X
+12179072X 10 — 15131904 X° + 835584 X2)Y* + (793968 X 1+
+ 8287296 X! — 10000896 X 7 + 2506752X°)Y? + (28441X '+
+ 1203328 X"? — 2067200X°® + 835584 X*)Y? + (=306 X"+
+17952X " — 91392.X7 + 139264 X° — 65536 X)Y + X'

4.3 Considerations

By looking at the polynomials above, we can immediately see that our remark
about the ¥ polynomials for [ = 3,5, 7 are confirmed by the further examples
displayed here. Indeed, they are symmetric both in X, Y and in X — %,
Y — %, they are monic and they have degree [ + 1.

Moreover, it is self-evident that the polynomials we obtain by means of 9
functions are more practical to deal with, as their coefficients are significantly
smaller. We would like to estimate the rate of their size decrease, and in
particular to show that they fit the bound of being twenty-four times smaller

that we set in the last chapter.
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The following table allows us to better visualise the situation: we display
here the number of bits occupied by the biggest coefficient for classical and
theta functions modular polynomials respectively; in the last column we put
an approximate value for the ratio between these quantities, expressing the
gain we have in terms of size. We see immediately that this quantity is never
less than 24, on the contrary tends apparently to be even bigger.

Classical polynomials | Theta polynomials | Ratio
=3 71 3 24
=5 157 5 31
=7 220 8 27
=11 421 15 28
[=13 496 19 26
=17 705 25 28

It is immediate the advantage of having smaller coefficients when perform-
ing the algorithms above; the parameter n, so the number of binary digits
considered when performing computations, is twenty-four times smaller. In
any case, it is clear that for any application the fact of dealing with smaller
polynomials is a big advantage, and a factor 24 is not a negligible one when
considering high isogeny levels.

Moreover, this way of building modular polynomials can be easily generalised
to higher genus computations; modular polynomials are in fact really hard to
retrieve when considering traditional invariants over higher genus varieties.
We would like to point out a last consideration about the precision we used
doing computations. Indeed, to get some results with all the kernel methods
we need a relatively high precision, as we already mentioned all along this
chapter.

If we choose to proceed by the evaluation-interpolation method, instead, we
can gain something in terms of precision. In this case, indeed, we do not
need a big number of values for 7 any more; it is enough to consider just the
values that allow us to interpolate (that is to say, [ + 2 values as we know
that the maximal degree is [ + 1), retrieving the polynomials a; from the
coefficients.

In this case, the number of values 7 we need increases as [ increases; so,
when [ is relatively small we do not need a high precision, because we are
performing interpolation on a low number of values. It is self-evident that,
as [ increases, we have to interpolate on a higher number of 7, so we need a
higher precision. This in principle allow us to predict which is the precision
at which we have to perform the computations; heuristically, a function linear
in [ gives good values for the precision.
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This simplifies remarkably computations for high isogenies levels, as we could
work at a relatively low precision and get the right result all the same, which is
no more true when using the kernel method. So, the evaluation-interpolation
method reveals itself to be better not only on the side of the computation of
complexity, but also on the precision side.
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Chapter 5

Perspectives: genus 2

In this section, we will try to give a short overview of the situation in genus 2.
We will try to explain how to extend the notions we presented for genus 1
such as modular polynomials and ¥ functions, and we will present the com-
putations we did.

Our discussion here does not want to be more than a general overview; we will
not give proofs for theorems and propositions we will state here. We suggest
to refer to [Mum83] for a complete discussion about ¢ functions in general
variables, and to [BGL11] or to [BLO4] for a discussion about invariants for
complex surfaces in genus 2.

5.1 Theta functions

We seck a generalisation of the function 9(z, 7) in dimension 2, where z € C
should be replaced by a pair z = (z;) € C? and which should be quasi-
periodic with respect to a lattice L where L € C2. It is not obvious what
should be the analogue of 7 in an higher dimension, but it turns out to be a
2 x 2 symmetric complex matrix {2 whose imaginary part is positive definite.
Let Hs be the set of such matrices; it is then a subset in C3, called the Siegel

upper half-space. We define our ¢ function to be
19<27 Q) _ Z emiﬁQﬁ-s-%zfﬁ.;

nez2

This definition gives a convergent series provided we choose {2 to be in H,.

5.1.1 Theta constants with rational characteristic

As in genus 1, to any €2 we can associate a lattice Lo = Z? + QZ? C C?,
id est the lattice generated by the unit vectors and the columns of €2. The
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basic property of 9 is to be quasi-periodic for the transformation z — z + a,
a € Lq, that is to say, periodic up to a multiplicative factor; what we have
is 9(Z 4+ m, Q) = ¥(z,Q), ¥z + Qm, Q) = e ™M 2mmzy(z Q) for any
m € Z2. As in genus 1, ¥ is the simplest function we can find enjoying
this property: if f(Z) is an entire function such that f(z + m) = f(2),
f(Z + Qm) = e m™mm=2m'mz £(2) then f(zZ) = k- 9(%,Q), where k is a
constant term.

We can slightly generalise this concept:

Definition 5.1.1. Fiz Q € Hy. Then an entire function f(z) on C? is
Lq-quasi-periodic of weight [ if

fz+m) = [(2)

and - B
f(g + Qm) — 6—7rzl~ mQm—2mal- sz<2)

for all m € Z2. We call R{* the space of such functions.

As in genus 1, one of the applications of such functions is to define holomor-
phic maps from the torus % to the projective space. In fact, if we consider
Lg-quasi-periodic functions fy, ..., f, of the same weight [ with the property
that at every a € C?, fi(a) # 0 for at least one 7, then we have a well defined
holomorphic map

% — p"

z o= [fo(2) s fu(B))
A basis for the space R{* can be found by means of a slight generalisation
of theta functions with characteristic, which are in fact nothing more
than translated of ¥ multiplied by an elementary exponential factor:

Dap(2,0) = Z EW(n+a)Q(n+m)+2iwt(,erb)(nJra)7

nezZ9

that is to say
Va2, Q) = e a@m2maEty(z 4+ 0a + 5, Q)

for any a,b € Q.

We can easily see that ¥ = ¥y, and that integral vectors hardly modify our
original function: Vg 5.em(Z, Q) = e2™@Y,; for any m,n € Z2 Finally,
the quasi-periodicity of ¥, is given by ¥,5(Z + m,Q) = e%’t&mﬁa’g(i, ),
Va5(2 + Qm, Q) = e_27”tBm_mtmgm_%ztmzﬁa’g(2, Q), that means, the quasi-
periodicity is ruled by the same law that holds for ¥, except for a root of
unity. We then have:
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Proposition 5.1.2. Fiz Q € Hy. Then a basis of RS is given by either
o fa(2) = Va,(I%,1Q), for 0 < a; <I;
o g(2) = 0,1 (7,79), for 0<b; <.
o Ifl=FkK?, then we have also
hep(2) =9
for 0 <a;,b; <k.

These bases are related by

lt,* lt*7
g5 = Z 627”1 ab - ha,B _ Z 627”’@ beé-

a e=amod k

We can then describe the embeddings we have from this construction, not
.. 2 . . C2 .

only for standard tori in the form g—ﬂ but also isogenous tori %, L a generic

lattice in LnQ. The result we have is the following:

Proposition 5.1.3. A complex torus %2 can be embedded into some projec-
tive space if and only if A(L) C QQ* + Q? for some 2 x 2 complex matriz A

and some ) € Hs.

Proves for all these assertions, as well as a complete discussion on the topic,
can be found in [Mum?70].

5.1.2 Theta as a modular form

We want now to consider the dependence of the function 9(z,2) on 2. We
have in fact, as in the 1-dimensional case, a functional equation for ¥ for the
action of a subgroup Sp(4,Z) (which is to say the set of the elements v that,
modulo 2, preserve the classical scalar product, that is to say the orthogonal
form

4

_t . QE—
Q(nlﬂh) ="Ni- Ny € 57

as well as the alternating form

A((ﬂﬂb 1‘2)7 (yla y2) = Ty Y2 —t T2 - Y1,

and this second condition turns in fact out to be a particular case of the first
one) on both variables z and (2, that is

I(H(CQ + D)1z, (AQ + B)(CQ + D)) = (5.1)
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— (¢, det(CQ + D)ze™ 2D C2y (5 )

where {s =1,v= (é g) € Sp(4, Z) satisfies the condition that the products
of the diagonal elements for YAC and for !BD are even. This set form a
subgroup of Sp(4, Z); we call it I'; 5. If we set

I, ={y€Sp4,Z):v=1ymod n},

I'; 2 is an intermediate subgroup between I's and I'y = Sp(4,Z), that is to
say 'y CI'1p C Ty

We would like now to recover some of the invariance properties we had in
genus 1; for doing this, we work directly on the functional equation above,
and we set J5 . (Q) = em mOmtminnzg(Qn, 4 n, Q). Then we have the
following

Proposition 5.1.4. Let Sp(4,Z) act as follows:
e On Z' by (ny,ne) — (Dny — Cng, — By + Any);
e OnHy by Q— (AQ+ B)(CQ+ D)™,
e OnC2 by Z —! (CQ+ D) 7.

Then the functional equation for ¥ (5.1) asserts that, up to an 8-th root of
unity, 9% . ()V/dzy A -+ ANdzy is invariant under T'y o C Sp(4, Z).

ni,n2

A useful corollary is the following:

Corollary 5.1.5. If v € Ty, id est v = 14(mod 4), then in the functional
equation (5.1) ¢ = £1.

We can generalise to a higher dimension the concept of modular form we
already introduced in genus 1:

Definition 5.1.6. Let I' C Sp(4,2Z) be a subgroup of finite index. Then a
modular form of weight k and level " is a holomorphic function f defined

on the Siegel upper half-plane Hy such that, for all v = (6‘ g) € I'" we have
FU(AQ+ B)(CQ+ D)1 = det(CQ+ D) £(Q).

Note that here the hypothesis we needed in genus 1 to set the behaviour at
the cusps is no more needed. In fact, the boundedness is ensured by the
Koecher principle (see [Mum83, page 198]).

IfT" =T, then f is said to be a modular form of level n. In fact, it can be
shown that any I' contains some subgroup I',, for some n, so a modular form
of level I' is a modular form of level n for some n. The functional equation
for 9 states that 9(0,)? is a modular form of level 1 and weight 4.
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More precisely, we can introduce the so-called intermediate levels (n,2n)
by setting
F2n C Fn,2n C Fn

where n is assumed to be even and v = (é f;) € I'y 9, if v = 14(mod n) and
2n divides the diagonals of B and C'; then we prove:

Proposition 5.1.7. Let n be even. Then for all ni,ne, mq, mq € %22,
19”1’”2 (07 Q)ﬂml)mQ (07 Q)
is a modular form of weight 1 and level (n?,2n?).

Geometrically, we can proceed as in genus 1, and define a holomorphic map:

Ho N PN—I
Fn2,2n2
Q= [ (0,0, (0,Q) 1

. . . i Z . .
where N is given by the number of pairs [Zﬂ, [Zl] we have to consider in
2 2
1

t2-. This gives an isomorphism of the
with a quasi-projective variety, that means a subset of

a system of coset representatives of

analytic space T2
n2,2n2

PN-1 defined by a polynomial variety minus a smaller set of the same type
(that is to say, the algebraic set that makes the v functions vanish).

We can do even better; if we extend the definition of modular forms to half-
integral weights we can express modularity in terms of a single ¢ function.
Namely:

Definition 5.1.8. LetI' C I'; 5 be a subgroup of finite index. Then a modular
form f of weight k € %Z and level T is a holomorphic function f on Ho such

f((AQ+B)(CQ+D)™Y f(Q A
that T0.0(AQ+B)(CO+D)-1)2F — F90(2) for all (c g) cl.

With this definition, we can extend Proposition 5.1.7 as follows:

Proposition 5.1.9. For all ny,ny € Q*, 1 € N, ¥, ,4(0,1Q) is a modular
form of weight % for a suitable level T'.

All these tools will enable us to extend computations we did in genus 1 to
the case of genus 2; that will be our aim in the final part of this chapter.
The following section will be devoted to an analysis of the Igusa invariants,
which could be considered the analogue of the j-invariant for genus 2; we will
see that in the genus 2 case the considerations we had in genus 1 about the
polynomial size are even more important than before.
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5.2 Igusa invariants

Before starting computations with ¢ functions by applying the strategies we
presented in the past chapter, we would like to try to understand why in
genus 2 computations by means of 9 functions turn out to be even more
convenient than in case of genus 1.

The immediate generalisation of the case we dealt with in the previous chap-
ters is a surface on the form

C2

Ao — — —
¢ 72 1072

Q) € Hy;! these are the so-called principally polarised abelian surfaces,
whose moduli space is denoted by As.

In fact here we consider the subspace My C A,, the space of Jacobians of
curves. We can describe the elements of this space by means of equations
of the form Y? = agX® + -+ + ap = f(X), which are in fact equations
which describe genus 2 curves; if aq,...,aq are the roots of f, we denote
(i7) = (ar, — ag,) for a given ordering of the roots. Then, following [Igu60],
we define the Igusa-Clebsch invariants by

I =ag Y (12)*(34)*(56)
I =ag Y (12)*(23)°(31)*(45)*(56)(64)"

10

I =af Y (12)*(23)*(31)*(45)*(56)7(64)*(14)(25)*(36)

60
Lo =ag”» (if) = ag” disc(f)

1<j

where we sum over all root orderings {ay,} that give distinct summands (in
the definition of I, I, and I we specify the number of terms we take into
account in that sum). This definition gives rise to a subspace of the weighted
projective space P3 (C) with weights 2, 4, 6, 10

{[lr: 1 : I : o) € P3(C) : 1 # 0}

which is isomorphic to My (see [Igu60] for a proof of this). We remark that
the condition Iy # 0 ensures that the polynomial f defining the genus 2
curve is separable.

"Which is in fact the case we had also in the previous chapter, and by means of what
we learned how to compute ¥ functions.



5.3 Computations 87

The most common convention is to work not with this weighted projective
space, but with a non-weighted affine subspace of it, namely

Y

L > 1,13 I 12
(]17]27]3):( : 2 : 2)

Ly Tp ' I

these are the so-called Igusa invariants. They are frequently compared to
the classical j invariant in dimension 1, as they have the property that for
Q, € corresponding to Jacobians of curves, the equalities j;(7) = j;(7') # 0
for ¢+ = 1, 2,3 imply that our objects are isomorphic.

In [Dup06] we can find detailed computations about these invariants and
some examples of the modular polynomials they give. They are not at all
practice to deal with; they have been computed only for [ = 2, they are
rational functions and, simply by stocking the numerators for [ = 2, they fill
26.8 Mo of space!

Again, as in case of genus 1, we have formulae similar to (3.10) linking Igusa
invariants to ¢ functions (see [Igu67, pag. 848] for a proof of this). Again,
we look for some polynomial relations built by means of ¥ functions, hoping
to find relations with smaller coefficients.

5.3 Computations

In this section, we will try to explain how to proceed to generalise the compu-
tations of the previous chapter relative to ¢ functions to the case of genus 2.
First of all, we notice that here computations become far more difficult than
before; we are working in a dimension 3 space, so we need at least three
invariants to identify the object we are working with. In fact, if we think
about it, even when considering Igusa invariants we consider the value of
three distinct functions to determine a single object; we would like to reduce
to this case even when working with .

The problem here is that we do not have anything similar to Lemma 3.2.1; we
start with the usual four ¥ constants built as in case of genus 1, but now none
of them is constantly 0 when evaluated in z = 0. This could be dangerous if
one wants to restrict to the affine case; we do not have any way to check if
a function gets the value 0, a thing that can very well happen here. So we
have no way to be sure that the process of passing from the projective to the
affine space is well defined; we have no way to check if we are dividing out
by 0. So, we have to carry the four ¥ functions all along the computations.
Moreover, from a strict computational point of view, we have problems even
when evaluating 9 constants, as even the simple evaluation requires around
a minute to be performed at a relatively low precision (ten digits computed).
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In the rest of this chapter, we are going to detail our computations and to
explain the methods we follow.

5.3.1 Computation of ¥ constants

We apply the same reasoning as before; we need here four different theta con-

stants,thatistosayﬁ{g 8](09) 19{(_) 8](079)779{8 (_)](OQ)

2 2

9 { 8 0 ] (0,€2), where here Q is a square matrix of dimension 2, and we

2 2
interpret a and b as row vectors. In fact, with this choice, we have that the

vector a is always the 0-vector; what we definitely have to compute is

in nQn+227rtlm
ﬁob 0 (2 e

nezZ?

Again, as in the case of genus 1, we can simplify this expression by remarking
that e™ = —1, so we are dealing with alternating sums involving always the
same terms, where the sign for each term depends only on the value of b. If

. T T2
we consider () = (

o ), matrix with complex entries, we have
2 T3

nQn = Tln% + 279n M + Tgng,

st . T
where n = < n ) So if we compute ¢; = €™, our sum turns out to be
2

> atadn g (—1) @),

nezZ2

Here we cannot proceed as before, reducing our sum over natural numbers;
what we can do is to implement the sum over half the values of the lattice
instead of taking the whole lattice Z2, by remarking that vectors with the
same values and opposite signs actually give the same value to add (so we
can pair them, and just add twice each value coming from an element taken
in the half lattice).

theta2 (M, k)=

/*Given a matrix and a given precision, this function
computes the theta constants in genus 2 evaluated at
that matrix x*/

{

my (Theta, q1, 92, 93, n, p, nl, n2, s, t1, t2, t3, a, b,
e, m, V);
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t1=M[1,1];
t2=M[1,2];
t3=M[2,2];
Theta=vector (4,
gql=exp (Pi*xIx*t1l);
gq2=exp (Pi*I*t2) ;
q3=exp (Pi*I*t3) ;
n=1;

p=0;

v=vector (10°k, i, 1i72);
m=matrix (10°k, 10"k, i, j,
while (abs (Theta[1]-p)>10~(-k),

k,1);

2xi*j);

p=Theta [1];
nl=n;
for (n2 -n, n,
a=abs(nl); b=abs(n2); if
(n1*n2>0, e=1;e=-1);

nl=-n;
for (n2

n2=n;
for (n1

s=ql~(v[al)*q2~(e*m[a, D
1)*q3~ (v [bl);

Theta[1]=Thetal[1l]l+s;

Theta [2]=Theta [2]+(-1) "
nlx*xs;

Theta [3]=Theta [3]+(-1)"
n2x*s;

Theta [4]=Theta [4]+(-1) " (
ni+n2) *s;

)

-n, n,
a=abs(nl) ;b=abs(n2);if(
nl*n2>0, e=1;e=-1);

s=ql1~(v[al)*q2~(e*m[a,b
1)*q3~ (v [bl);

Theta[1]=Theta[1l]l+s;

Theta[2]=Theta [2]+(-1)"
nlx*s;

Theta [3]=Theta [3]+(-1)"
n2%*s;

Theta[4]=Theta [4]+(-1) ~(
nl+n2)*s;

);

-n+1, n-1,
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a=abs(nl);b=abs(n2); if(
n1*n2>0, e=1;e=-1);
s=ql~(v[al)*g2"(e*m[a,D
1)*xq3~ (v [bl);
Theta[1]=Theta[1]+s;
Theta [2]=Theta [2]+(-1) "
nlxs;
Theta [3]=Theta [3]+(-1)"
n2x*s;
Theta[4]=Theta[4]+(-1) " (
ni+n2) *s;
);
n2=-n;
for(nl = -n+1, n-1,
a=abs(nil) ;b=abs(n2); if(
nl*n2>0, e=1;e=-1);

s=ql~(v[al)*q2~ (exm[a
,bl1)*q3° (v [bl);
Theta[1]=Theta[1]+s;
Theta [2]=Theta [2]+(-1)"
nlxs;
Theta [3]=Theta [3]+(-1)"
n2x*s;
Theta [4]=Theta[4]+(-1) ~(
nl+n2)*s;
);
n=n+1) ;

Theta

}

/*At the end, Theta is a vector containing the 4 values
for the theta functions at that matrix. To be well
defined , the theta functions must be invoked on
matrixes whose imaginary part should be positive. */

5.3.2 Looking for modular polynomials

After having defined our new ¢ functions, we try to compute now polynomial
relations. As we said, we had a priori four ¥ constants to consider, that
reduced to three variables when passing from a projective perspective to
an affine one. In genus 2, though, the landscape is more complicated than
in genus 1; we may have abelian varieties defined not only as Jacobians of
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hyperelliptic curves, but also as product of elliptic curves, so of two curves
of genus 1.

This is the dangerous case, the case at which the ¥ functions may vanish.
In fact, this is a critical case even when considering Igusa invariants; in this
case, in fact, the Iy defined above vanish, making the definitions of Igusa
invariants fail. Coming back to ¥ functions, we can solve this problem by
means of quotients. In fact, once we choose the ¢ constant which we want
to divide out to get an affine space from the projective one, we start by
subtracting from the domain all the values of {2 that make this constant
vanish; but still, this is not enough. The same problem may in fact arise
when considering isogenous curves; we have to be sure that the 1 constant
does not vanish on them. So what we need is to quotient our domain by
the equation describing the locus of €2 linked by an isogeny to a matrix that
makes our 9 constant vanish.

This prevents us from looking for a single polynomial; we have to look for
rational functions, that is to look for a denominator and a numerator sep-
arately. Moreover, in this case we have no conditions on the coefficients; a
priori we are looking for coefficients in C.

We see immediately that the evaluation-interpolation method becomes really
hard to apply; we need to compute a set of representatives for the modular
group, which cannot be described in an easy way as in genus 1. After having
computed them, though, we have to cope with another problem: we are
not dealing with polynomials any more, but with rational functions, so the
interpolation phase we have to perform on coefficients obtained from the
evaluation phase cannot be carried on in a simple way any more.

We tried to perform the other method, that is to build the big matrix con-
taining all the evaluated monomials and to work with it in order to compute
its kernel; a priori, we have to consider eight variables, which makes a con-
siderable number of monomials to take into account even for low degrees.
Just to start with and to test complexity and time of calculus, we build
a matrix involving only five different variables instead of eight; luckily, we
could hope to find a relation involving just the five of them, and in any case it
was a good test to understand if our generalisation could really be performed
in that simple way. Our worries revealed themselves to be justified: the
computations gave no result, as the calculator stacked overflow.

This is not surprising, if we consider the size of the matrix we are building
and the cost of every single evaluation for a 9 function computed in genus
2: by a rapid glance at the code above, we see that we have four cycles to
repeat at each step, each of them consisting in five lines of computations; in
general, the number of steps depends on the growth of the terms we add, so
depends again on the particular element €2 we consider. So a good choice for
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the starting elements could be a significant point in sparing some time; we
can easily see, in any case, that the evaluation step is really heavy to perform
in terms of computational cost.

Then we have to build the matrix, so to consider all the possible monomials;
if we think for a while about it, we realise that the number of columns of
this matrix is really high. Taking the most simple case, the case in which we
look for relations between only five different variables, and taking a very low
level for the isogeny, for example [ = 3, we see that the number of columns
we have to build is [°, that is to say 3% = 243 different columns, so we have
to deal with matrices of size 243, and this could even not be enough to find
something interesting!
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