Artin conductors of tori

Huajun Lu *

master thesis
under the supervision of Prof. Qing Liu

Abstract

This article is based on the paper "Congruences of Néron models for tori and the Artin conductor" by Ching-Li Chai and Jiu-Kang Yu, published in Annal of Mathematics 154 (2001).

Let K be a complete discrete valuation field with perfect residue field. Let T be a torus over K, with Néron model T^{NR} over the ring of integers O_K of K. The Néron model does not commutate with the base change in general. Choose a finite Galois extension L/K which splits T. One can measure the change of Néron models by comparing $(\text{Lie} T^{NR}) \otimes O_L$ with $\text{Lie}((T \otimes L)^{NR})$. We define an invariant $c(T) \in \mathbb{Q}$ by

$$c(T) = \frac{1}{e_{L/K}} \text{length}_{O_L} \frac{\text{Lie}(T \otimes L)^{NR}}{(\text{Lie} T^{NR}) \otimes O_L}$$

where $e_{L/K}$ is the ramification index of L/K and Lie() denotes the Lie algebra. Let $X_*(T)$ be the ocharacter group of T and let $a(X_*(T) \otimes \mathbb{Q})$ be the Artin conductor of the Galois representation $X_*(T) \otimes \mathbb{Q}$ of $\text{Gal} (\bar{K}/K)$. The main theorem 10.2 states that $c(T)$ is invariant by isogeny and

$$c(T) = \frac{1}{2} a(X_*(T) \otimes \mathbb{Q}),$$

answering a question of B. Gross. Note that in the final step of the proof of theorem 10.2, we restricted ourself to the special case when K has characteristic 0.

* Email : uniquehuajun@hotmail.com
1 Notation

- Let \(\mathcal{O} = \mathcal{O}_K \) be a discrete valuation ring with residue field \(\kappa \) and let \(K \) be its field of fractions. Let \(\pi = \pi_K \) be the a prime element of \(\mathcal{O} \). The strict henselization and the completion of \(\mathcal{O} \) are denoted by \(\mathcal{O}^{sh} \) and \(\mathcal{O} \) respectively. Their fields of fraction are denoted by \(K^{sh} \) and \(\hat{K} \) respectively. The residue fields of \(\mathcal{O}^{sh} \) is the separable closure \(\kappa^{sep} \) of \(\kappa \). Denote the algebraic closure of \(K \) by \(\overline{K} \).

- Denote the multiplicative group scheme over a ring \(A \) by \(\mathbb{G}_{m,A} \).

- Let \(T \) be a torus over \(K \). Denote by \(\Lambda \) the cocharacter group

\[
X_\ast(T) = \text{Hom}(\mathbb{G}_{m,\overline{K}}, T \otimes \overline{K})
\]

of \(T \) and by

\[
X^\ast(T) = \text{Hom}(T \otimes \overline{K}, \mathbb{G}_{m,\overline{K}})
\]

the character group of \(T \). We will often denote by \(L/K \) a Galois extension such that \(T \) is split over \(L \) and by \(\Gamma \) the Galois group \(\text{Gal}(L/K) \).
• we will also work with another discrete valuation ring \(\mathcal{O}_0 \). We will analogous constructs by the same notation with a subscript 0. And introduce a series of congruence notation:

- \((\mathcal{O}, \mathcal{O}_L) \equiv_\alpha (\mathcal{O}_0, \mathcal{O}_{L_0}) \) (level N): this means that \(\alpha \) is an isomorphism from \(\mathcal{O}_L / \pi^N \mathcal{O}_L \) to \(\mathcal{O}_{L_0} / \pi^N \mathcal{O}_{L_0} \) and induce an isomorphism \(\mathcal{O} / \pi^N \mathcal{O} \to \mathcal{O}_0 / \pi^N \mathcal{O}_0 \).

- \((\mathcal{O}, \mathcal{O}_L, \Gamma) \equiv_{\alpha, \beta} (\mathcal{O}_0, \mathcal{O}_{L_0}, \Gamma_0) \) (level N): this means \((\mathcal{O}, \mathcal{O}_L) \equiv_\alpha (\mathcal{O}_0, \mathcal{O}_{L_0}) \) (level N), \(\beta \) is an isomorphism \(\Gamma \to \Gamma_0 \), and \(\alpha \) is \(\Gamma \)-equivalent relative to \(\beta \): \(\alpha(\gamma \cdot x) = \beta(\gamma) \cdot \alpha(x) \).

- \((\mathcal{O}, \mathcal{O}_L, \Gamma, \Lambda) \equiv_{\alpha, \beta, \phi} (\mathcal{O}_0, \mathcal{O}_{L_0}, \Gamma_0, \Lambda_0) \) (level N): this means that \((\mathcal{O}, \mathcal{O}_L, \Gamma) \equiv_{\alpha, \beta} (\mathcal{O}_0, \mathcal{O}_{L_0}, \Gamma_0) \) (level N), and \(\phi \) is isomorphism \(\Lambda \to \Lambda_0 \) which is \(\Gamma \)-equivalent relative to \(\beta \).

- If it is not necessary to name the isomorphisms \((\alpha, \beta, \text{etc.}) \), we omit them from the notation.

• In this paper, ”X is determined by \((\mathcal{O} / \pi^N \mathcal{O}, \mathcal{O}_L / \pi^N \mathcal{O}_L, \Gamma, \Lambda) \)” means if \((\mathcal{O}, \mathcal{O}_L, \Gamma, \Lambda) \equiv_{\alpha, \beta, \phi} (\mathcal{O}_0, \mathcal{O}_{L_0}, \Gamma_0, \Lambda_0)(\text{level N}) \), then there is a canonical isomorphism \(X \to X_0 \) determined by \((\alpha, \beta, \phi) \).

• All rings in this paper are \(\mathcal{O} \)-algebras or \(\mathcal{O}_0 \)-algebra. All maps between two group schemes are the homomorphisms of group schemes.

• If \(X \) is an \(\mathcal{O} \)-scheme, we sometimes denote \(X \times \text{Spec} \mathcal{O} / \pi^N \) by \(X \otimes \mathcal{O} / \pi^N \). Similarly, we have the same meaning for \(X \otimes \mathcal{O}_0 \), etc.

• For a group scheme \(X \) over base scheme \(S \), we denote the module of translation invariant top differential forms on \(X \) by \(\omega(X) \).

2 Basic properties of tori

Definition 2.1. Let \(K \) be a field, a torus \(T \) over \(K \) is an affine group scheme \(T \) over \(K \) such that \(T_{\bar{K}} = T \otimes_K \bar{K} \simeq G^d_{m, \bar{K}} \), where \(d \) is the dimension of \(T \). We say that \(T \) is split over some field extension \(L/K \) if \(T \otimes L \) is isomorphic to \(G^d_L \), and that \(L \) is a splitting field of \(T \).

Assume \(L/K \) is a Galois extension, and \(X, Y \) are \(K \)-schemes, then there exists a right \(\text{Gal}(L/K) \)-action on \(\text{Hom}_L(X_L, Y_L) \). Let \(\sigma \in \text{Gal}(L/K) \), \(\phi \in \text{Hom}_L(X_L, Y_L) \), we have \(\text{id} \otimes \sigma : X \otimes L \to X \otimes L \). Define the action of \(\sigma \) on \(\phi \) to be \((\text{id}_Y \otimes \sigma) \circ \phi \circ (\text{id}_X \otimes \sigma)^{-1} \), denoted by \(\phi^\sigma \). Then \(\phi^\sigma \) is also an \(L \)-morphism.
If $\phi^\sigma = \phi$ for every $\sigma \in \text{Gal}(L/K)$, there exists $\psi \in \text{Hom}_K(X,Y)$ such that $\hat{\phi} = \psi \otimes id_L$. Hence $\text{Hom}_K(X,Y) = \text{Hom}_L(X_L,Y_L)^{\text{Gal}(L/K)}$, where subscript $\text{Gal}(L/K)$ means the $\text{Gal}(L/K)$-fixed morphisms.

Let G be a group and let M, N be two $\mathbb{Z}[G]$-modules. Then $\text{Hom}_\mathbb{Z}(M, N)$ has a G-action defined as follows. Let $f \in \text{Hom}_\mathbb{Z}(M, N), g \in G$. We define $f^g(m) = g(f(g^{-1}(m)))$, for $m \in M$. Then similarly, we have $\text{Hom}_\mathbb{Z}(M, N)^G = \text{Hom}_{\mathbb{Z}[G]}(M, N)$.

Notation. In this section the character group $X^*(T)$ of a torus T over K will be denoted by \hat{T}.

From the above, we have a $\text{Gal}(\hat{K}/K)$-action on \hat{T}. Let A be the affine ring of T. Let $\phi \in \hat{T}$, then ϕ is determined by the image of X in A, where $\mathbb{G}_m,K = \hat{K}[X, X^{-1}]$. Suppose $\phi^\#(X) = \sum_{\text{finite sum}} k_i \otimes a_i$, where $k_i \in \hat{K}, a_i \in A$, then $(\phi^\sigma)^\#(X) = \sum_{\text{finite sum}} \sigma(k_i) \otimes a_i \in \hat{K}' \otimes A$, K' is a finite Galois extension containing all k_i, hence the $\text{Gal}(\hat{K}/K)$-action on \hat{T} is continuous.

Proposition 2.2. The category of tori over K is anti-equivalent to the category of finitely generated, torsion-free abelian groups with continuous $\Gamma_K = \text{Gal}(\hat{K}/K)$-action.

Proof. We have defined a functor F between two categories by $T \longrightarrow \hat{T}$. First, we want to show that $\text{Hom}(T_1, T_2) = \text{Hom}(\hat{T}_1, \hat{T}_2)$.

$$\text{Hom}(T_1, T_2) \simeq \text{Hom}_K(T_1 \times \hat{K}, T_2 \times \hat{K})^{\Gamma_K}$$

$$\simeq \text{Hom}_{\hat{K}}(\mathbb{G}^{d_1}_{m,\hat{K}}, \mathbb{G}^{d_2}_{m,\hat{K}})^{\Gamma_K}$$

$$\simeq \text{Hom}(\mathbb{G}^{d_1}_{m,\hat{K}}, \mathbb{G}^{d_2}_{m,\hat{K}})^{\Gamma_K}$$

$$\simeq \text{Hom}_{\mathbb{Z}[\Gamma_K]}(\hat{T}_2, \hat{T}_1)^{\Gamma_K}$$

$$\simeq \text{Hom}_{\mathbb{Z}[\Gamma_K]}(\hat{T}_2, \hat{T}_1)$$

For any \mathbb{Z}-torsion-free and finitely generated $\mathbb{Z}[\Gamma_K]$-module M, we want to construct a torus such that $\hat{T} = M$. Let $d = \text{rank}_\mathbb{Z}M$. Consider the group algebra $\hat{K}[M]$, where the group operation on M is written as multiplication. Let $A = \{ x \in \hat{K}[M] : \sigma(x) = x, \forall \sigma \in \Gamma_K \}$. Since Γ_K-action is continuous, and M is finitely generated, Γ_K-action factors through $\text{Gal}(L/K)$-action for some finite Galois extension L/K. By descend theory, we have $A \otimes \hat{K} = \hat{K}[M]$. Let $T = \text{Spec} A$, then T is a torus over K, and $\hat{T} = \text{Hom}(\hat{K}[X, X^{-1}], \hat{K}[M]) = M$. \qed

Corollary 2.3. For every torus T, there exists a minimal (for the inclusion) splitting field L/K. Moreover L/K is a finite Galois extension.
Proof. Since the Γ_K-action is continuous and \hat{T} is finitely generated, it is enough to take L to be the field fixed by the kernel of the representation $\Gamma_K \to \text{Aut}(\hat{T})$.

Example 2.4. Let L/K be a finite Galois extension, $G = \text{Gal}(L/K)$. Let $T = \text{Res}_{L/K}(\mathbb{G}_{m,L})$ be the Weil restriction of $\mathbb{G}_{m,L}$ to K, then $\hat{T} = \mathbb{Z}[G]$.

Proof. Let $T = \text{Spec} \, A$ be the torus such that $\hat{T} = \mathbb{Z}[G]$, where $A = \mathbb{Z}[\sigma_1, \ldots, \sigma_n]_{\sigma \in G}$. For any K-algebra R, the L-homomorphism $f : A \otimes L = L[\sigma_1, \ldots, \sigma_n]_{\sigma \in G} \to R \otimes L$ is determined by the image of σ in $R \otimes L$. If $\sigma \circ f = f \circ \sigma$, this means $\sigma f(x) = f(\sigma x)$. Thus the homomorphism $A \to R$ is naturally corresponding to an invertible element $f(x)_{\sigma}$ in $R \otimes L$, which is also corresponding to a homomorphism from $L[X, X^{-1}] \to R \otimes L$. Hence $T'(X) = \text{Hom}_{L}(X \otimes L, \mathbb{G}_{m,L})$ for any K-scheme X. Then by definition T' just is $\text{Res}_{L/K}(\mathbb{G}_{m,L})$.

Definition 2.5. Let T, T' be tori over a field K. A homomorphism $\alpha : T \to T'$ is an isogeny if α is a surjection with finite kernel. The map $\hat{\alpha} : \hat{T} \to \hat{T}'$ is then injective with finite cokernel. Note that the degree of α is equal to the cardinality of $\text{Coker} \, \hat{\alpha}$.

We write $T \sim T'$ when T is isogenous to T'.

For any $n \in \mathbb{Z}$, let us denote by $[n]_G$ the multiplication by n map on a group scheme G.

Proposition 2.6. Let T, T' be tori defined over K, let $\alpha : T \to T'$ be an isogeny. Then there exists an isogeny $\beta : T' \to T$, such that $\beta \circ \alpha = [\deg \alpha]_T$, and $\alpha \circ \beta = [\deg \alpha]_{T'}$.

Proof. Since $\hat{\alpha} : \hat{T} \to \hat{T}'$ is injective with finite cokernel, then there exists $\hat{\beta} : \hat{T} \to \hat{T}'$, such that $\hat{\beta} \circ \hat{\alpha} = (\deg \alpha) \cdot \text{id}_{\hat{T}'}$, $\hat{\alpha} \circ \hat{\beta} = (\deg \alpha) \cdot \text{id}_{\hat{T}}$. Let $\beta : T' \to T$ be the isogeny corresponding to $\hat{\beta}$. Then $\beta \circ \alpha = [\deg \alpha]_T$, and $\alpha \circ \beta = [\deg \alpha]_{T'}$.

Proposition 2.7. Let T, T' be tori over K and L be a common splitting field of T and T'. Let $G = \text{Gal}(L/K)$. Then $T \sim T'$ if and only if $T \otimes \mathbb{Q} \simeq T' \otimes \mathbb{Q}$ as G-module.

Proof. If $T \sim T'$, we have an exact sequence

$$0 \longrightarrow \hat{T} \longrightarrow \hat{T}' \longrightarrow M \longrightarrow 0,$$

where M is a finite abelian group. After tensor with \mathbb{Q}, we get an exact sequence

$$0 \longrightarrow \hat{T} \otimes \mathbb{Q} \longrightarrow \hat{T}' \otimes \mathbb{Q} \longrightarrow 0.$$
Conversely, if $\hat{T} \otimes \mathbb{Z} \cong \hat{T}' \otimes \mathbb{Z}$, then $n\hat{T} \hookrightarrow \hat{T}'$ (as $\mathbb{Z}[G]$-modules) with finite cokernel for some integer n. Let $\hat{\alpha}$ be the composition of $\hat{T} \xrightarrow{n} n\hat{T} \rightarrow \hat{T}'$, then $\hat{\alpha} : \hat{T} \rightarrow \hat{T}'$ is injective with finite cokernel. By Proposition 2.2 it corresponds a homomorphism $\alpha : T' \rightarrow T$ which is a surjection and with finite kernel. Hence $T \sim T'$. \hfill \square

Let T be a torus over K, split over L. Let $G = \text{Gal}(L/K)$, $g \in G$ and $K_g := L_g = \{x \in L | g(x) = x\}$. Let χ_T be the character of the representation $\hat{T} \otimes \mathbb{Q}$ over \mathbb{Q} and $T_g = \text{Res}_{K_g/K} (\mathbb{G}_m)$, then \hat{T}_g is $\mathbb{Z} \langle g \rangle$ where $\langle g \rangle$ is the subgroup generated by g in G. The character of corresponding representation is denoted by χ_{T_g}.

By a theorem of Artin [Serre2, thm 9.2], there exist positive integers $n_h, n_{h'}$ and subsets H, H' of G such that $H \cap H' = \emptyset$, and

$$n\chi_T + \sum_{h' \in H'} n_{h'}\chi_{T_{h'}} = \sum_{h' \in H'} n_{h}\chi_{T_{h}}.$$

Hence we get:

Proposition 2.8. There exist positive integers $n_h, n_{h'}$ such that,

$$T^n \times \prod \text{Res}_{K_{h'}/K}(\mathbb{G}_{m,K_{h'}}) \sim \prod \text{Res}_{K_{h'}/K}(\mathbb{G}_{m,K_{h}}).$$

3 Dilatation

Let K be a discrete valuation field with valuation ring \mathcal{O}.

Definition 3.1. Let X be a \mathcal{O}-scheme of finite type, whose generic fibre X_K is smooth over K. Let W be a closed subscheme of X. The *dilatation of W on X* is a pair $(X', u : X' \rightarrow X)$, where X' is a flat \mathcal{O}-scheme of finite type and $u : X' \rightarrow X$ factors through W, satisfying the following universal property:

if Z is a flat \mathcal{O}-scheme, and if $v : Z \rightarrow X$ is an \mathcal{O}-morphism such that its restriction v_κ to the special fibre factors through W, then v factors uniquely through u.

Construction of dilatation

Let \mathcal{J} be the sheaf of ideals defining W in X. Let X' is an open subset of the blow-up $\text{Bl}(X, W)$ of X with center W, where $\text{Bl}(X, W) = \text{Proj} \bigoplus_{t \geq 0} \mathcal{J}^t$ and $X' = \{x \in \text{Bl}(X, W) : (\mathcal{J} \cdot \mathcal{O}_{\text{Bl}(X, W)})_x$ is generated by $\pi\}$. Locally, if X is affine and A is the affine ring of X, and the ideal sheaf \mathcal{J} of W is
generated g_1, \ldots, g_n, then $X' = \text{Spec } A'$ and let $u : X' \to X$ be the canonical map corresponding to $A \to A'$, where

$$A' = A[\frac{g_1}{\pi}, \ldots, \frac{g_n}{\pi}]/(\pi - \text{torsion})$$

and

$$A[\frac{g_1}{\pi}, \ldots, \frac{g_n}{\pi}] = A[X_1, \ldots, X_n]/(\pi X_1 - g_1, \ldots, \pi X_n - g_n).$$

Proposition 3.2. Let (X', u) be constructed as above, then (X', u) is the dilatation of W on X.

Proof. We just need to show that (X', u) satisfies the universal property of dilatation. Since the problem is local, we can assume $Z = \text{Spec } B$ is affine. Keep the notation as before. The fact that v_κ factors through Y_κ implies that the ideal $J \cdot B$ is contained in πB. Hence there exist elements $h_i \in B$ with $v^*(g_i) = h_i$; the elements h_i are unique, for B has no π-torsion. Thus the A-morphism $A[X_1, \ldots, X_n] \to X$ sending T_i to h_i yields a morphism $w^* : A' \to B$ and hence a morphism $w : Z \to X'$ such that $v = u \circ w$. \hfill \Box

Corollary 3.3. Let X be a closed subscheme of an \mathcal{O}-scheme Z, and let Y_κ be a closed subscheme of X_κ. Then the dilatation X' of Y_κ on X is a closed subscheme of the dilatation Z' of Y_κ in Z.

Proof. This is clear from the construction of dilatation. \hfill \Box

Proposition 3.4. Let X be a smooth scheme over \mathcal{O}, and W be a closed subscheme over $X \otimes \kappa$. Let X' be the dilatation of W on X. Then $X' \otimes \mathcal{O}/\pi^N$ depends only on $X \otimes \mathcal{O}/\pi^{N+1} \mathcal{O}$ in a canonical way.

Remark. Canonicity. Assume X_1 and X_2 are \mathcal{O}-schemes, and ϕ is an isomorphism $X_1 \otimes \mathcal{O}/\pi^{N+1} \mathcal{O} \to X_2 \otimes \mathcal{O}/\pi^{N+1} \mathcal{O}$. Assume also that $W_1 \subseteq X_1 \otimes \kappa; W_2 \subseteq X_2 \otimes \kappa$ are closed smooth subschemes over κ, and ϕ induces an isomorphism from W_1 to W_2. Form the dilatation X'_i and $Y_i = Bl' (X_i, J_i) = \text{Proj } \bigoplus_{i \geq 0} J_1^i$, $i = 1, 2$. The canonicity statement is that the natural isomorphism $Bl' (\phi) : Y_1 \otimes \mathcal{O}/\pi^N \to Y_2 \otimes \mathcal{O}/\pi^N$ induces an isomorphism from the subschemes $X'_i \otimes \mathcal{O}/\pi^N$ of $Y_1 \otimes \mathcal{O}/\pi^N$ to $X'_2 \otimes \mathcal{O}/\pi^N$.

Proof of Proposition 3.4. Let $i = 1, 2$. Let x'_i be a point on $X'_i \otimes \kappa$ which projects to $x_i \in X_i \otimes \kappa$. Since X_i and W_i are smooth, we can choose a system of local coordinates $f_1^{(i)}, \ldots, f_r^{(i)}, g_{r+1}^{(i)}, \ldots, g_n^{(i)}$ at x_i on X_i such that W_i defined by $(\pi, g_{r+1}^{(i)}, \ldots, g_n^{(i)})$ near an affine neighborhood U_i of x_i and X'_i above U_i is Spec($B_i' \otimes \pi^N$-torsion), where $B_i' = \mathcal{O}_{X_i}(U_i)[Y_{r+1}^{(i)}, \ldots, Y_n^{(i)}]/(\pi Y_{r+1}^{(i)} -$
\[g_{r+1}, \ldots, \pi Y_i^i - g_i^i \). The \(f_1^i, \ldots, f_r^i, Y_{r+1}^i, \ldots, Y_n^i \) form a system of local coordinates at \(x_i^i \) in \(X_i \). We can shrink \(U_i \) such that \(B_i^i \) is free of \(\pi^\infty \)-torsion.

If \(\phi(x_1) = x_2 \), we can assume \(\phi^*(f_j^j \mod \pi^N) \equiv f_j^j \mod \pi^N \) and \(\phi^*(g_k^k \mod \pi^N) \equiv g_k^k \mod \pi^N \), and \(\phi \) induces an isomorphism \(\tilde{\phi}^*: \mathcal{O}_{X_2}(U_2) \otimes \mathcal{O}/\pi^N \to \mathcal{O}_{X_1}(U_1) \otimes \mathcal{O}/\pi^N \). Clearly, there is an isomorphism \((\phi')^*: B_2' \otimes \mathcal{O}/\pi^N \to B_1' \otimes \mathcal{O}/\pi^N \) which extends \((\tilde{\phi}^*) \) and sends \(Y_j^j \) to \(Y_j^1 \). It remains to show that \(\phi': X_1' \otimes \mathcal{O}/\pi^N \to X_2' \otimes \mathcal{O}/\pi^N \) is induced by \(B_1'(\phi) \). Above \(U_i \otimes \mathcal{O}/\pi^N \), the affine ring of \(B_1'(X_1, J') \otimes \mathcal{O}/\pi^N \) is \(B''_{i'} = (\prod_{t \geq 0} \text{Sym}_{B_{j''}}^t J_i')_{\pi, 0} \), where \(B_i' = \mathcal{O}_{X_i} \otimes \mathcal{O}/\pi^N \), \(J_i' = (\pi, g_{r+1}^i, \ldots, g_n^i) \otimes \mathcal{O}/\pi^N \), \(\pi \) is regards as a homogeneous element of degree 1. The element \(\pi_i \) is an element of degree 1 in \(\prod_{t \geq 0} \text{Sym}_{B_{j''}}^t J_i' \), and the subscript indicates localization. The ring \(B''_{i'} \) maps to \(B_1' \otimes \mathcal{O}/\pi^N \) by sending \(\pi_{i-1}g_k^i \) to \(Y_k \). Then it is clear that \((\phi')^* \) is induced by \(B_1'(\phi) \).

\[\square \]

4 Néron’s measure for the defect of smoothness

Let \(X \) be a scheme of finite type over \(\mathcal{O} \) such that \(X \otimes K \) is smooth over \(K \). Consider \(x \in X(\mathcal{O}^{sh}) \) as a morphism \(\text{Spec} \mathcal{O}^{sh} \to X \).

Definition 4.1. Define \(\delta(x) = \text{the length of the torsion part of } x^*\Omega_{X/\mathcal{O}}^1 \) as Néron’s measure for the defect of smooth at \(x \), sometimes we also denote it by \(\delta(x, X) \).

The rank of free part is just the rank of \(\Omega_{X/K}^1 \) at \(x_K \), which is the dimension of \(X_K \) at \(x_K \), since \(X_K \) is smooth.

Lemma 4.2. Let \(x \) be an \(\mathcal{O}^{sh} \)-value point of \(X \). Then \(x \) factors through the smooth locus of \(X \) if and only if \(\delta(x) = 0 \).

Proof. If \(x \) is contained in the smooth locus \(X_{\text{smooth}} \) of \(X \), then \(x^*\Omega_{X/\mathcal{O}}^1 = x^*\Omega_{X_{\text{smooth}}/\mathcal{O}}^1 \), where \(\Omega_{X_{\text{smooth}}/\mathcal{O}}^1 \) is locally free, so \(\delta(x) = 0 \). Conversely, if \(\delta(x) = 0 \), then \(x^*\Omega_{X/\mathcal{O}}^1 \) can be generated by \(d \) elements where \(d \) is the dimension of \(X_K \) at \(x_K \). In particular, \(x^*\Omega_{X_{\kappa}/\kappa}^1 \) can be generated by \(d \) elements at \(x_{\kappa} \). Since the relative dimension at \(x_{\kappa} \) is at least \(d \). So \(X_{\kappa} \) is smooth over \(\kappa \) at \(x_{\kappa} \) of relative dimension \(d \). Then \(X \) is smooth over \(\mathcal{O} \) at \(x \). \[\square \]

Let \(U \) be a neighborhood of \(x \) in \(X \) which can be realized as a closed subscheme of an \(\mathcal{O} \)-scheme \(Z \) where \(Z \) is smooth over \(\mathcal{O} \), and has constant relative dimension \(n \). Assume that there exist functions \(z_1, \ldots, z_n \) on \(Z \) such
that \(dz_1, ..., dz_n \) generate \(\Omega^1_{X/\mathcal{O}} \), and let \(g_1, ..., g_m \) be functions which generate the sheaf of ideal of \(\mathcal{O}_Z \) defining \(U \) in \(Z \). Then we have \(d g_u = \sum \frac{\partial g_u}{\partial z_v} dz_v \), and define Jacobian matrix \(J \) of \(g_1, ..., g_m \) to be \((\frac{\partial g_u}{\partial z_v})_{m \times n} \). Let \(d \) be the relative dimension of \(X_K \) at \(x_K \), and \(v(a) = \pi \)-order of \(a \) in \(\mathcal{O} \).

Lemma 4.3. \(\delta(x) = \min \{ v(\Delta) | \Delta : (n - d) \)-minors of \(J \} \).

Proof. By Jacobi criterion, there exist a \((n - d)\)-minors \(\Delta \) with \(x^* \Delta \neq 0 \), and any minor \(\Delta \) of \(J \) with more than \(n - d \) rows will satisfying \(x^* \Delta = 0 \). We know \(x^* \Omega^1_{X/\mathcal{O}} \) is representable as a quotient \(F/M \), where \(F := x^* \Omega^1_{Z/\mathcal{O}} \) is a free \(\mathcal{O}^{sh} \)-module of rank \(n \), and \(M \) is the submodule generated by \(x^* d g_1, ..., x^* d g_m \). Since the rank of \(M \) is \(n - d \) and \(\mathcal{O}^{sh} \) is P.I.D, one can find a base \(e_1, ..., e_n \) of \(x^* \Omega^1_{X} \) such that \(M \) is generated by \(a_{d+1} e_{d+1}, ..., a_n e_n \), where \(a_i \in \mathcal{O} \) and \(a_i \neq 0 \). Thus by the theory of elementary divisors, we have \(\delta(x) = v(a_{d+1}) + ... + v(a_n) \).

Now consider the ideals in \(\mathcal{O}^{sh} \) generated by all elements \(x^* \Delta \), where \(\Delta \) is \((n - d)\)-minor, and this ideal is generated by \(a_{d+1}...a_n \), and there is a minor \(\Delta \) with \(x^*(\Delta) = a_{d+1}...a_n \).

Proposition 4.4. Let \(Y \) be the Zariski closure of \(\{ x \mod \pi \in X(\kappa) : x \in X(\mathcal{O}^{sh}) \} \) as a closed subscheme of \(X \times \kappa \). Let \(X' \to X \) be the dilatation of \(Y \) on \(X \). For each \(x \in X(\mathcal{O}^{sh}) \) with \(x_\kappa \in Y \), denote \(x' \in X'(\mathcal{O}^{sh}) \) be the unique lifting of \(x \). Then \(\delta(x') \leq \max \{ 0, \delta(x) - 1 \} \).

Proof. The proof takes too many pages, see the details in [BLR, 3.3 Prop 5].

Lemma 4.5. 1). Suppose \(X \) is a group scheme over \(\mathcal{O} \), and \(e \in X(\mathcal{O}^{sh}) \) is the identity element. Then \(\delta(e) = \delta(x) \), for any \(x \in X(\mathcal{O}^{sh}) \).

2). Change of base field. Let \(x \in X(\mathcal{O}^{sh}) \), consider \(x \) as a point of \(X \otimes \mathcal{O}_L \), then \(\delta(x) = e(L/K) \cdot \delta(x, X) \), where \(e(L/K) \) is the ramification index of \(L/K \).

3). Closed immersion. Let \(i : X \subseteq X' \) be a closed immersion of \(\mathcal{O} \)-scheme such that \(i \) induce an isomorphism \(X \otimes K \to X' \otimes K \). Then we have a surjection \(\iota^* \Omega^1_{X'/\mathcal{O}} \to \Omega^1_{X/\mathcal{O}} \). Therefore, for any \(x \in X(\mathcal{O}^{sh}) \), we have \(\delta(x, X) \leq \delta(i \circ x; X') \).

Proof. Let \(r_x : X \otimes \mathcal{O}^{sh} \to X \otimes \mathcal{O}^{sh} \) be the isomorphism of right multiplication by \(x \). Then \(x = r_x \circ e \), hence \(e^* \Omega^1_{X/\mathcal{O}} = x^* \Omega^1_{X/\mathcal{O}} \), so \(\delta(e) = \delta(x) \). The other two are clear.
5 The construction of the Néron model of a torus

Let K be a discrete valuation field.

Definition 5.1. Let T be a torus over K, the (finite type) Néron model of T is a smooth group scheme T^{NR} over Spec \mathcal{O}_K with generic fibre isomorphic to T, such that the image of $T^{NR}(\mathcal{O}^{sh})$ is in $T(K^{sh})$ is the maximal bounded subgroup of $T(K^{sh})$.

Remark. The usual definition of Néron model for a smooth and separated K-scheme X of finite type is the following: it is a smooth, separated \mathcal{O}-scheme X, locally of finite type, satisfying the following universal property:

For each smooth Spec \mathcal{O}-scheme Y and each K-morphism $u_K : Y_K \to X$, there is a unique Spec \mathcal{O}-morphism $u : Y \to X$ extending u_K. For more details, see [BLR].

For a torus T over K, the (finite type) Néron model T^{NR} is an open subscheme of T. Its special fiber consists in the union of the connected components of $T_κ$ which are of finite order in the group of components $\Phi(T)$.

When T is anisotropic (i.e. T does not contain any factor $\mathbb{G}_{m,K}$), then $T^{NR} = T$. In general, both models have the same neutral component.

Follow the construction of the Néron model of T as explained in [BLR].

- Step 1, construct a group scheme T^0 over \mathcal{O} such that $T^0(\mathcal{O}^{sh}) = T^{NR}(\mathcal{O}^{sh})$ is the maximal bounded subgroup of $T(K^{sh})$.

Let $R = \text{Res}_{L/K}(T \otimes L)$, then there exists a canonical closed embedding $T \to R$, and choose T^0 to be the schematic closure of T in $R^{NR} \simeq X_*(T) \otimes (\text{Res}_{\mathcal{O}_L/\mathcal{O}_K}(\mathbb{G}_{m,\mathcal{O}_L}))$, where $X_*(T)$ is the cocharacter group of T.

Proposition 5.2. $T^0_K = T$ and $T^0(\mathcal{O}^{sh}) = T^{NR}(\mathcal{O}^{sh})$.

Proof. Since all schemes are affine, the first equality is easy from algebraic facts. Let A, B, C, D be the affine rings of R^{NR}, R, T, T^0 respectively, and assume $f : A \to B, g : B \to C, h : A \to C$ are the corresponding morphisms and $h = g \circ f$. Then $D = A/\text{Ker}h$ and h induce a mapping $h' : D \to C$. Now we want to show $D \otimes K \to C$ is isomorphic. It is surjective since $A \otimes K = B$ and g is surjective. The injectivity follows from K is flat \mathcal{O}-module. Thus $h' \otimes id : D \otimes K \to C \otimes K$ is injective and $C \otimes K = C$.

\[\text{10}\]
Let \(u \in T^0(O^{sh}) \), then it is in the maximal bounded subgroup of \(R(K^{sh}) \) since it is in \(R^{NR}(O^{sh}) \). So we have \(T^0(O^{sh}) \subseteq T^{NR}(O^{sh}) \). Conversely, let \(t \in T^{NR}(O^{sh}) \), then it lifts \(t' \) in \(R^{NR}(O^{sh}) \), we want to show it factor through \(T^0 \). And this is clear from the universal property of quotient of rings.

- Step 2, apply the smoothening process to \(T^0 \), then we can get the Néron model \(T^{NR} \) of \(T \).

Let \(Z' \) be the Zariski closure of \(\{ x \mod \pi \in T^i(K^{sep}) : x \in T^i(O^{sh}) \} \) as a closed subscheme of \(T^i \otimes \kappa \) with the reduced induced structure. Let \(T^{i+1} \) is the dilatation of \(Z' \) on \(T^i \).

Let \(\delta = \max \{ \delta(x) : x \in T^0(O^{sh}) \} \), where \(\delta(x) \) is the Néron measure for the defect of smoothness. Then \(T^{NR} = T^i \) for \(i \geq \delta \).

Similarly, do the same process to \(R^0 = R^{NR} \). For \(i \geq 0 \), let \(W^i \) be the Zariski closure of

\[
\{ x \mod \pi \in R^i(K^{sep}) : x \in T^0(O^{sh}) \subseteq R^i(O^{sh}) \},
\]

as a subscheme of \(R^i \otimes \kappa \) with the reduced induced structure. Then \(R^{i+1} \) is the dilatation of \(W^i \) on \(R^i \). Clearly, we have \(T^0(O^{sh}) \subseteq R^i(O^{sh}) \subseteq (R^{i+1}(O^{sh})) \).

Lemma 5.3. For \(i \geq 0, N \geq 1 \), \(R^{i+1} \otimes \mathcal{O}/\pi N \) depends only on \(R^i \otimes \mathcal{O}/\pi N+1 \mathcal{O} \) in a canonical way.

Proof. This is just a corollary of Proposition 3.4. \(\square \)

Lemma 5.4. The schematic closure of \(T \) in \(R^i \) is \(T^i \) for all \(i \geq 1 \). In particular, it is \(T^{NR} \) for \(i \gg 0 \).

Proof. Prove it by induction on \(i \). \(T^{i-1} \) is a closed subgroup of \(R^{i-1} \), and \(W^{i-1} \) is the image of \(Z^{i-1} \) in \(T^{i-1} \rightarrow R^{i-1} \). Then \(R^i \) is a closed subscheme of subgroup of \(R^i \) by Corollary 3.3. So the schematic closure of \(T^i \)'s generic fibre \(T \) in \(R^i \) is itself. \(\square \)

Remark. When \(i \geq \delta(e; T^0) \), \(T^i \) is smooth, hence \(T^{NR} = T^i \). So we want to control \(\delta(e; T^0) \). Let \(T^0_L = T^0 \otimes \mathcal{O}_L \), the schematic closure of \(T \otimes L \) in \(R^{NR} \otimes \mathcal{O}_L \). Let \(R' = R^{NR} \otimes \mathcal{O}_L, R^i = X_s(R \otimes_K L) \otimes \mathbb{Z} \otimes \mathbb{G}_{m/\mathcal{O}_L}, T^i = X_s(T \otimes_K L) \otimes \mathbb{Z} \otimes \mathbb{G}_{m/\mathcal{O}_L} \). There are canonical morphisms \(T^i \rightarrow R^i \), and \(\varphi : R' \rightarrow R^i \). Let \(T^i = T^i \times_{R^i} R' \). Since \(T^i \rightarrow R^i \) is a closed immersion, hence \(T^i \rightarrow R^i \) is also a closed immersion by base change. Since \(T^i \) has generic fibre \(T \otimes L \), \(T^i_L \) is equal to the subscheme closure of \(T \otimes L \) in \(T^i \). By the lemma 4.5, we have \(\delta(e, T^0) \leq \delta(e, T^i) \). So it is enough to control \(\delta(e, T^i) \).
Suppose that \(B \) is a noetherian regular local ring and \(B/J \) is a complete intersection ring. Then \(B/J \) is an ideal of \(B \) if and only if \(J \) is a regular ideal in \(B \).

Proof. All following objects are determined only by \((B/J, \pi, \Gamma, \Lambda)\):

\[
R^t \otimes B/J, \quad T^t \otimes B/J, \quad R^t \otimes B/J^t, \quad T^t \otimes B/J^t,
\]

and the matrix \(e^t(M \mod \pi^N) \). And if \(Ne(L/K) > \delta(e, T') \), and by Lemma 4.3, \(\delta(e; T') \) is also determined by \((O/\pi^N, O_{L^t}/\pi^N, \Gamma, \Lambda)\). So the lemma is true.

\(\square \)

6 Singularities of commutative group schemes

Definition 6.1. Suppose \(A \) is a noetherian local ring. We say that \(A \) is a complete intersection ring if \(\hat{A} \) is isomorphic to a quotient of a complete local regular ring \(B \) by a regular ideal \(J \). We say that a locally noetherian scheme \(X \) is complete intersection at a point \(x \in X \), if \(O_{X,x} \) is a complete intersection ring.

Definition 6.2. Suppose \(f : X \rightarrow S \) is a flat, locally of finite presentation morphism. We say that \(X \) is relative complete intersection (r.c.i.) over \(S \) at the point \(x \) if the fibre \(f^{-1}(f(x)) \) is complete intersection at \(x \). We say that \(f \) is an r.c.i. morphism if \(X \) is r.c.i. over \(S \) at all its points.

Proposition 6.3. Suppose \(B \) is a noetherian regular local ring, \(J \) is an ideal of \(B \). Then \(A = B/J \) is a complete intersection ring if and only if \(J \) is a regular ideal of \(B \).

Proof. If \(J \) is a regular ideal, then \(\hat{J} \hat{B} \) is also a regular ideal in \(\hat{B} \), hence \(A \) is a complete intersection ring.

Conversely, suppose that \(A \) is a complete intersection ring, we need to show \(J \) is a regular ideal. We can assume \(A \) and \(B \) are both complete since \(\hat{A} = \hat{B}/\hat{J} \hat{B} \).

Choose a presentation \(A = B'/J' \), where \(B' \) is a noetherian, complete, regular local ring and \(J' \) is its regular ideal. Denote \(\pi_1 : B \rightarrow A, \pi_2 : B' \rightarrow A \) be the canonical projections. Consider \(B'' = B \times_A B' \), where \(B'' = \{(b, b') \in \)}
$B \times B' | \pi_1(b) = \pi_2(b')$, a subring of $B \times B'$. We claim that B'' is complete local noetherian ring. It is easy to seen that B'' is a local ring with unique maximal deal $m = \{(b, b') : \pi_1(b) = \pi_2(b') \in m_A\}$. And $(b, b') \in m$ if and only if $b \in m_B$ and $b' \in m_{B'}$, so B'' is complete. Let a be an ideal of B'', and let b be the kernel of $B'' \to B$. Then we have

$$0 \longrightarrow a \cap b \longrightarrow a \longrightarrow a/a \cap b \longrightarrow 0$$

and $a/a \cap b \simeq (a + b)/b$. Since $(a + b)/b$ is corresponding to an ideal of B, and $a \cap b$ is corresponding to an ideal of B'; they are both of finite type. Hence a is also finitely generated.

By Cohen’s theorem, there exits a noetherian, complete, regular local ring C such that B'' is a quotient of C with regular ideal. Let $I = \text{Ker}(C \to A)$, then I is the preimage of the regular ideal J', hence I is regular. And J is image of I in a regular ring, hence regular.

Proposition 6.4. Let $k \subset k'$ be a filed extension. Suppose X is a locally of finite type k-scheme and $X' = X \times_k k'$. Suppose $x' \in X'$ and x is its projection on X. Then X is complete intersection at x if and only if X' is complete intersection at x'.

Proof. The problem is local, so we can assume $X = \text{Spec} A$, where A is a quotient of polynomial ring $k[X_1, \ldots, X_n]$ with ideal I. ”only if” part is trivial. Assume $\{f_1, \ldots, f_n\}$ be a minimal generators of I at x, then they also generate $I' = I \otimes k'$ at x'. If they are not regular sequence in $I'_{x'}$, then some f_i is generated by others in $I'_{x'}$. Hence f_i is also generated by others in I_{x} by the faithfully flatness of k' over k. This is contradiction with the choice of f_i's. \qed

Proposition 6.5. (1). Suppose $f : X \to S$ is an r.c.i morphism. Let $f' = f_{S'} : X \times S' \to S'$ be the base change compatible with $g : S' \to S$. Then f' is also a r.c.i morphism. If g is fpqc (ie. faithfully flat, quasi compact), then vice versa.

(2). If $f : X \to Y, g : Y \to Z$ are both r.c.i morphism. Then so is $g \circ f : X \to Z$.

Proof. Clearly from Proposition 6.4. \qed

Lemma 6.6. Let G be a commutative group scheme, flat and of finite type over a noetherain base scheme S. Then $G \to S$ is an r.c.i morphism.

Proof. We can assume $S = \text{Spec} k$, where k is algebraically closed. Suppose that $0 \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow 0$ is an exact sequence of commutative
group scheme over \(k \). Assume that \(G' \) and \(G'' \) are r.c.i over \(\text{Spec} \, k \), we claim that \(G \to G'' \) is also an r.c.i morphism, hence \(G \to G'' \to \text{Spec} \, k \) is an r.c.i morphism. By proposition 6.5, it is enough to check after a fpqc base change \(G \to G'' \), that is, look at \(G \times_{\text{Spec} \, k} G'' \to G \). This morphism is canonically isomorphic to \(G \times_{\text{Spec} \, k} G'' \to G \), which is projection to the first factor, and it is an r.c.i morphism since \(G' \to \text{Spec} \, k \) is.

For any \(G \) over \(k \), \(G \) admit a composition series in which the factor are smooth, isomorphic to \(\mu_p \), or \(\alpha_p \). And these factors are clearly r.c.i over \(k \), hence by induction, \(G \to S \) is an r.c.i morphism.

\[\square \]

Lemma 6.7. Suppose that \(X \) is a noetherian scheme and \(X \to \text{Spec} \, \mathcal{O} \) is a flat r.c.i morphism. Then for any \(N \geq 1 \), the collection of points:

\[\bigcup \{ x \mod \pi^N \in X(C/\pi^NC) : x \in X(C) \}, \]

as \(C \) ranges over local \(\hat{\mathcal{O}} \)-algebra which are flat, and r.c.i over \(\hat{\mathcal{O}} \), is schematic-ally dense in \(X \otimes \mathcal{O}/\pi^N \).

Proof. Since \(\mathcal{O} \to \hat{\mathcal{O}} \) is faithfully flat and \(\text{Spec} \, \hat{\mathcal{O}} \to \text{Spec} \, \mathcal{O} \) is surjective, we can assume \(X = \text{Spec} \, A \), and \(A \) is a complete noetherian local ring such that \(\pi \in m_A \).

Choose a presentation \(A = B/I \), where \(B = \langle [X_1,...X_b] \rangle \). Since \(X \) is r.c.i over \(\mathcal{O} \), then \(I \) is generated by a regular sequence \((t_1,...,t_a) \). Hence, \((t_1,...,t_a) \otimes \kappa \) is a regular sequence on \(B \otimes \kappa \). Extend \((t_1,...,t_a) \otimes \kappa \) to a system of regular parameters, and lift the sequence to a sequence \((t_1,...,t_b) \) in \(B \). Put \(J_n = (t_1^n, ..., t_a^n) \). Then \(\cap_n J_n \subset \cap_n m^n = 0 \). Let \(C_n = B/(I + J_n) \) and \(\text{Spec} \, C_n \to X \) is induced by \(B/I \to B/(I + J_n) \). Then \(\text{Spec} \, C_n \to X; n \geq 1 \) is schematically closed in \(X \). \(I + J_n = (t_1,...,t_a, t_{a+1}^n,...,t_b^n) \) and \((t_1,...,t_a, t_{a+1}^n,...,t_b^n) \) is also a regular system in \(B \), hence \(C_n \) is r.c.i of relative dimension 0, and then finite over \(\hat{\mathcal{O}} \). Clearly, \(\pi^k \) is not in \(I + J_n \) for any integers \(k \), so \(C_n \) is also flat.

From above, the points \(\text{Spec} \, C_n \otimes \mathcal{O}/\pi^N \to X(\mathcal{O}/\pi^N) : n \geq 1 \) is schematic-

\[\square \]

Proposition 6.8. Let \(G \) be a commutative noetherian group scheme over \(\mathcal{O} \), not necessarily flat. Let \(\hat{G} \) be the schematic closure of \(G \otimes K \) in \(G \). Then \(\hat{G} \otimes \mathcal{O}/\pi^N \) is the schematic closure in \(G \otimes \mathcal{O}/\pi^N \) of the following collection of points

\[\bigcup \{ x \mod \pi^N \in G(C/\pi^NC) : x \in G(C) \} \]

as \(C \) ranges over local \(\hat{\mathcal{O}} \)-algebras which are flat, finite, and r.c.i over \(\hat{\mathcal{O}} \).
Proof. \(\overline{G}(C) = G(C) \) for any flat \(\mathcal{O} \)-algebra. Then it is clear from the two lemmas before.

Lemma 6.9. The collection of \(\mathcal{O}/\pi^N \)-algebras \(\{ C/\pi^N : C \text{ is a local, flat, finite, r.c.i } \hat{O} \text{-algebra} \} \) is just the collection of all local \(\mathcal{O}/\pi^N \)-algebras which are flat, finite, and r.c.i over \(\mathcal{O}/\pi^N \).

Proof. Since the property of being r.c.i is stable under any base change. So we only need to show that any local flat, finite, r.c.i \(\hat{O} \)-algebra is of the form \(C/\pi^N \) for some C.

Choose a presentation \(A = B/I, B = \mathcal{O}[X_1, ..., X_n], m = (\pi, X_1, ..., X_n), \pi^N \in I \). Since \(B \) is regular and \(A \) is r.c.i, then \(I \) is generated by a regular sequence \((\pi^N, f_1, ..., f_m) \). Since \(A \) is of dimension 0, we have \(m = n \).

Lift \(f_i \) to \(\tilde{f}_i \in \hat{O}[X_1, ..., X_n]_{\tilde{m}} \), where \(\tilde{m} = (\pi, X_1, ..., X_n) \). Then \(C = \hat{O}[X_1, ..., X_n]_{\tilde{m}}/(\tilde{f}_1, ..., \tilde{f}_n) \) is flat, finite, and r.c.i \(\hat{O} \)-algebra and \(A = C/\pi^N \).

\[\square \]

7 Elkik’s theory

In this section, let R be a noetherian \(\mathcal{O} \)-algebra, complete with respect to the \(\pi \)-adic topology. Consider \(R[X] = R[X_1, ..., X_n] \), the polynomial ring in \(N \) variables. Let \(I \) be an ideal of \(R[X] \) and put \(B = R[X]/I, Y = \text{Spec } B \).

We assume that \(Y \otimes_{\mathcal{O}} K \to \text{Spec } (R \otimes_{\mathcal{O}} K) \) is smooth of relative dimension \(s \). The Jacobian ideal of \(I \) is defined to be the ideal of \(R[X] \) generated by the \((N - s)\)-minors of \(\left(\frac{\partial f_i}{\partial X_j} \right)_{s \times N} \) for all \(f_1, ..., f_s \) in a generating set of \(I \). By smoothness assumption and Jaccobi Criterion, \(J + I \supset \pi^h R[X] \) for some \(h \geq 0 \). Fix such an \(h \) in the following.

Lemma 7.1 (Elkik). Suppose that \(I \) can be generated by \(N - s \) elements. Then for any \(n > 2h \), the image of \(Y(R) \to Y(R/I^{n-h}) \) is the same as the image of \(Y(R/I^n) \to Y(R/I^{n-h}) \).

Proof. We restate the lemma as following: If \(a = (a_1, ..., a_N) \in R^N \) such that \(I(a) = 0 \mod \pi^n \), where \(I(a) = \{ f(a) : \forall f \in I \} \), then there exists \(a' \in R^N \) such that \(a \equiv a' \mod \pi^{n-h} \) and \(I(a) = 0 \).

Since \(R \) is complete and by approximation, it is enough to find \(y = (y_1, ..., y_N) \in R^N \) such that \(y_i \equiv 0 \mod \pi^{n-h}, \forall i \) and \(I(a - y) \subset (\pi^{2n-2h}) \).

Let \(M \) be the Jacobian matrix of \(I \), and by Taylor’s expansion,

\[
\begin{pmatrix}
 f_1(a - y) \\
 \vdots \\
 f_{N-s}(a - y)
\end{pmatrix} = \begin{pmatrix}
 f_1(a) \\
 \vdots \\
 f_{N-s}(a)
\end{pmatrix} - M(a) \begin{pmatrix}
 y_1 \\
 \vdots \\
 y_N
\end{pmatrix} + \sum y_i y_j Q_{ij}(a - y),
\]

15
Where Q_{ij} is an $(N - s)$-column vector whose components are the polynomial in a and y. Hence we just need to find a $y = (y_1, ..., y_n)$, such that $y_i \equiv 0 \mod \pi^{n-h}$ and
\[
\begin{pmatrix}
 f_1(a - y) \\
 \vdots \\
 f_{N-s}(a - y)
\end{pmatrix} = M(a) \begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix} \mod \pi^{2n-2h}
\]

Let δ be a nonzero $(N - s)$-minor of M, then exits $N \times (N - s)$ matrix M_δ such that $MM_\delta = \delta Id$, where Id means the identity matrix. By assumption, we have $\sum \delta P + Q = \pi^h$ in $R[X]$ for some $Q \in I$.

\[
\pi^h \begin{pmatrix}
 f_1(a) \\
 \vdots \\
 f_{N-s}(a)
\end{pmatrix} = (\sum \delta P + Q)(a) \begin{pmatrix}
 f_1(a) \\
 \vdots \\
 f_{N-s}(a)
\end{pmatrix}
\]

\[
= \sum \delta P_\delta(a) \begin{pmatrix}
 f_1(a) \\
 \vdots \\
 f_{N-s}(a)
\end{pmatrix} \mod \pi^{2n}
\]

\[
= \sum P_\delta M(a)M_\delta(a) \begin{pmatrix}
 f_1(a) \\
 \vdots \\
 f_{N-s}(a)
\end{pmatrix} \mod \pi^{2n}
\]

\[
= M(a)[\sum P_\delta M_\delta(a)] \mod \pi^{2n}
\]

Let $y = (\sum P_\delta M_\delta(a) / \pi^h$, then y is what we need. \qed

Lemma 7.2. Suppose that R is a local ring, and $Y \to \text{Spec } R$ is a flat r.c.i morphism. Then for any $n \geq 2h$, the image of $Y(R) \to Y(R/\pi^{n-h}R)$ is the same as the image of $Y(R/\pi^nR) \to Y(R/\pi^{n-h}R)$.

Proof. Let $y : \text{Spec } R/\pi^n \to Y$ be a closed point of $Y(R/\pi^n)$. Let m be the unique maximal ideal in R/π^n, $q = y(m)$.

Since $Y \to \text{Spec } R$ is r.c.i, and $\text{Spec } R[X] \to \text{Spec } R$ has regular fibre. Then there exists $f \in R[x]$, such that $q \in Y_f$ and Y_f is cut out by $(N - s)$ equations in $\text{Spec } R[X]_f$, and regard $\text{Spec } R[X]_f$ as a closed subscheme of $\text{Spec } R[X][Z]$ cut out by $Zf - 1$. Then Y_f is cut out by $(N + 1 - s)$ equations in A^{N+1}. By Elkik’s lemma, there exists $y' \in Y_f(R) \subset Y(R)$ such that $y \equiv y'$ mod π^{n-h}. \qed
8 Congruences of Néron models

In this section, assume K is complete for simplicity. Notations are the same as Section 5.

Since R^{NR} is the Néron model of an induced torus, we can realize R^{NR} as a closed subscheme of $\mathbb{A}^{d(n+1)}_{\hat{O}}$, defined by n explicit equations. Recall that the closed subscheme T' of R' is cut out by $(\dim R^{NR} - \dim T)$ equations, and $R' = R^{NR} \otimes O_L$. Hence, T' can be realized as a closed subscheme of $\mathbb{A}^{d(n+1)}_{\hat{O}_L}$ defined by an ideal I' generated by $(d(n + 1) - \dim T)$ equations.

Let J' be the Jacobian ideal for I'. Since the generic fibre of T' is smooth, $I' + J'$ contains π^h for some $h > 0$. Let $h = h \left(O, O_L, \Gamma, \Lambda \right)$ be the smallest integer with this property.

Lemma 8.1. Suppose $(O, O_L, \Gamma, \Lambda) \equiv (O_0, O_{L_0}, \Gamma_0, \Lambda_0)(\text{level}N)$. Form the Jacobian ideals J' and J'_0 and define the integer h and h_0 for both data. If $h < N$ or $h_0 < N$, then $h = h_0$.

Proof. Suppose $h < N$. Since T' just depends on $(O, O_L, \Gamma, \Lambda)$, hence I' and J' just depends on $(O, O_L, \Gamma, \Lambda)$. Then $J' \otimes O/\pi^N$ just depends on $(O/\pi^N, O_L/\pi^N, \Gamma, \Lambda)$. So $I'_0 + J'_0 \supset \pi^h_0 O_{L_0}[X_1, \ldots, X_{d(n+1)}]$ contains π^h_0. Then by Nakayama’s Lemma, we have $I'_0 + J'_0 \supset \pi^h_0 O_{L_0}[X_1, \ldots, X_{d(n+1)}]$ Therefore $h_0 \leq h \leq N$. Similarly, $h \leq h_0$, hence $h = h_0$.

Definition 8.2. If $h < n$, define $h \left(O, O_L, \Gamma, \Lambda \right)$ to be h; otherwise define $h \left(O, O_L, \Gamma, \Lambda \right) = N$. This is justified by the lemma.

Proposition 8.3. The group scheme $T^0_0 \otimes O_L/\pi^{N-h}$ is determined by $(O/\pi^N, O_L/\pi^N, \Gamma, \Lambda)$ if $N > 2h$.

Proof. By lemma 6.8, it is enough to show that the collection of points

$$\bigcup_C \text{image } (T'(C) \rightarrow T'(C/\pi^{N-h})), $$

where C ranges over all local finite flat \hat{O}-algebra, is determined by $(O/\pi^N, O_L/\pi^N, \Gamma, \Lambda)$. Since T' is complete intersection and by Lemma 7.2, this collection is the same as the union of the image $T'(C/\pi^N) \rightarrow T'(C/\pi^{N-h})$ over all local, flat, r.c.i over O/π^N and this is clearly determined by $(O/\pi^N, O_L/\pi^N, \Gamma, \Lambda)$.

Corollary 8.4. The group scheme $T^0 \otimes O/\pi^{N-h}$ is determined by $(O/\pi^N, O_L/\pi^N, \Gamma, \Lambda)$ for $N > 2h$.

17
Proof. We have $T^0_L = T^0 \otimes \mathcal{O}_L$, and by Proposition 8.3, the corollary is clearly derived from the following easy lemma: Suppose X, X' are closed S-subschemas of an S-scheme Y such that $X \times_S S' = X' \times_S S'$ in $Y \times_S S'$ for some $S' \to S$ faithfully flat. Then $X = X'$.

In the following, we use the notations and procedure in Section 4 and Section 5. T^0 is a closed subscheme of $\mathbb{A}^{d(n+1)}$, defined by an ideal I and let $J \subset \mathcal{O}[X_1, ..., X_{d(n+1)}]$ be the Jacobian ideal of I. Since $I' \subset I$, we have $J' \subset J$ and $\pi^h \in (J' + I')$.

Proposition 8.5. 1), $T^0 \otimes \mathcal{O}/\pi^N$ is determined by $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ for all $N \geq 1, m \geq \max(N + h, 2h + 1)$.

2), $R^i \otimes \mathcal{O}/\pi^{m-i}$ depends only on $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ for all $m \geq \max(2h + i, 3h + 1)$.

3), W^i depends only on $fourm$, for $m \geq \max(2h + i + 1, 3h + 1)$.

Proof. 1). $T^0 \otimes \mathcal{O}/\pi^N$ is determined by $T^0 \otimes \mathcal{O}/\pi^{\max(n, h+1)}$, and then the proposition follows immediately from Corollary 8.4.

2), By Lemma 5.3 and by induction, $R^i \otimes \mathcal{O}/\pi^{m-i}$ is determined by $R^0 \otimes \mathcal{O}^m$, and $R^0 = \Lambda_\times(T) \otimes \text{Res}_{\mathcal{O}_L/\mathcal{O}_k}(\mathbb{G}_m)$, then the statement is clear.

3), For $i=0$. From definition of W^0, W^0 is determined by the image of $T^0(\mathcal{O}^h) \to T^0(\mathcal{O}^h/\pi^N)$ for any $N \geq 1$, in particular $N = h + 1$. Moreover, W^0 is group scheme, hence is r.c.i. By lemma 8.2, this image is determined by $T^0(\mathcal{O}^h/\pi^{2h+1})$, and the latter is determined by $T^0 \otimes \mathcal{O}^{sh}/\pi^{2h+1}$, which is determined by $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ for $m \geq 3h + 1$, according to Corollary 8.4.

In general, let B^i be the affine ring of R^i, and recall the notations in Section 3,

$$B^i = B^{i-1}[Y_1, ..., Y_n]/(\pi Y_1 - g_1, ..., \pi Y_n - g_n) \mod \pi - \text{torsion},$$

where write the image of Y_i as \overline{y}_i, suggestively. A point y in R^i is determined by the projection of y on R^{i-1}, together with the additional ”coordinates” $(\pi^{-1}g_1(y), ..., \pi^{-1}g_n(y))$.

For $x \in T^0(\mathcal{O}^h)$, by the universal property of dilatations, x is also in $R^i(\mathcal{O}^h)$, denoted by x_i. Then $x_i \mod \pi$ is determined by $x_{i-1} \mod \pi^2$. Inductively, the image of $T^0(\mathcal{O}^h) \to T^0((\mathcal{O}^h)/\pi^{i+1})$ determined W^i. As in the case $i=0$, this image is determined by $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ whenever $m \geq \max(2h + i + 1, 3h + 1)$.

Let $\delta = \lfloor \delta(e, T) \rfloor$, we have $\delta \leq h$ from Section 4. If $\delta < N$, we define $\delta(\mathcal{O}/\pi^N, \mathcal{O}_L/\pi^N, \Gamma, \Lambda)$ to be δ; otherwise, we define $\delta(\mathcal{O}/\pi^N, \mathcal{O}_L/\pi^N, \Gamma, \Lambda) = N$. The definition is justified by lemma 5.5.
Lemma 8.6. Let X be a smooth group scheme over \mathcal{O}. Then the schematic closure of the points $\{x : x \in X(\mathcal{O}^{sh}/\pi^N)\} = \{x \mod \pi^N : x \in X(\mathcal{O}^{sh})\}$ in $X \otimes \mathcal{O}/\pi^N$ is the whole $X \otimes \mathcal{O}/\pi^N$.

Proof. We first show $\{x : x \in X(\mathcal{O}^{sh}/\pi^N)\} = \{x \mod \pi^N : x \in X(\mathcal{O}^{sh})\}$. The notations are the same as Section 7. By lemma 4.2, we have $h = 0$, then the equality is clear by lemma 7.2.

The statement is local, we can assume $X = \text{Spec} A$ is smooth over \mathcal{O}. Suppose $f \in A$ satisfies $\pi^h f = 0$, $\forall x$. Then $f \mod \pi$ is zero on every closed points of $X \otimes \kappa^{sep}$, hence $f \in \pi A$. And by induction, we have $f = 0$. □

Theorem 8.7 (Main Theorem). Suppose that $N \geq 1, m \geq \max(N + \delta + 2h, 3h + 1)$, where $h = h(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ as defined at the beginning of this section, $\delta = \delta(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ as defined above. Then, $T^{NR} \otimes \mathcal{O}/\pi^N$ is determined by $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$.

Proof. By lemma 3.3 and remark in Section 5, T^{NR} is the schematic closure of T in R^δ.

Let Y be the image of $T^{NR}(\mathcal{O}^{sh}/\pi^N)$ in $R^\delta(\mathcal{O}^{sh}/\pi^N)$, then the schematic closure of Y in $R^\delta \otimes \mathcal{O}/\pi^N$ is simply $T^{NR} \otimes \mathcal{O}/\pi^N$ by the precious lemma. So we just need to show $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$ determine Y.

As explained in the proof of Proposition 8.5(3), Y is determined by the image of $T^0(\mathcal{O}^{sh}) \to T^0(\mathcal{O}^{sh}/\pi^{\delta+N})$, which is determined by the image of $T^0(\mathcal{O}^{sh}) \to T^0(\mathcal{O}^{sh}/\pi^{\max(\delta+N,h+1)})$, which is the same as the image of $T^0(\mathcal{O}^{sh}/\pi^{\max(N+\delta,h+1)+h}) \to T^0(\mathcal{O}^{sh}/\pi^{\max(N,h+1)})$ by lemma 7.2. By Corollary 8.4, $T^0(\mathcal{O}^{sh}/\pi^{\max(N+\delta+2h+1)})$ is determined by $(\mathcal{O}/\pi^m, \mathcal{O}_L/\pi^m, \Gamma, \Lambda)$. Hence, the proof is over. □

9 The invariant $c(T)$ and Artin conductor

Let K be a complete discrete valuation field. We define an invariant of a torus T over K as following: by the universal property of the Néron model, there is a canonical morphism $T \otimes \mathcal{O}_L$ to the (usual) Néron model of $T \otimes L$ extending the identity morphism on the generic fibres. This morphism induces a morphism

$$\Phi_{T,L} : T^{NR} \otimes \mathcal{O}_L \to (T \otimes L)^{NR},$$

Definition 9.1. Let L be a splitting field of T, and let $e(L/K)$ be the ramification index of L/K. Define

$$c(T) = \frac{1}{e(L/K)} \text{length}_{\mathcal{O}_L} \frac{\omega(T^{NR}) \otimes \mathcal{O}_L}{\Phi_{T,L}^*(\omega((T \otimes L)^{NR}))}.$$
where $\omega(T^{NR})$ (resp. $\omega((T \otimes L)^{NR})$) denotes the module of the translation invariant top differential forms on T^{NR} (resp. $(T \otimes L)^{NR}$). It can easily be seen that this rational number does not depend on the choice of a splitting extension L/K.

Note that $\omega(G)$ is the dual of $\bigwedge^{\text{top}} \text{Lie}(G)$ for any smooth group scheme G over \mathcal{O}_L.

Artin conductors of representations

Let L/K be a finite Galois extension with Galois group G. Let v_L be the normalized valuation of L and π_L be a prime element of \mathcal{O}_L. Let f be the residue degree of L/K. Let $\sigma \in G$ and set

$$a_G(\sigma) = -f \cdot v_L(\sigma(\pi_L) - \pi_L) \quad \text{if } \sigma \neq 1$$

$$a_G(1) = f \sum_{\sigma \neq 1} v_L(\sigma(\pi_L) - \pi_L)$$

Then the function a_G is the character of a linear representation $\rho : G \to GL(V)$ by [Serre1, VI.2 Thm 1].

Definition 9.2. The **Artin conductor** $a(V)$ of the presentation $\rho : G \to GL(V)$ is defined to be the number

$$\frac{1}{\text{Card}(G)} \sum_{\sigma \in G} a_G(\sigma) \chi(\sigma^{-1}),$$

where χ is the character of the presentation.

Let G_i be the i-th ramification group of L/K, of cardinality g_i. Then

$$a(V) = \sum_{i \geq 0} \frac{g_i}{g_0} \dim(V/V^{G_i}).$$

Example 9.3. Let $T = \text{Res}_{L/K}(\mathbb{G}_m)$, then

$$c(T) = \frac{1}{2} a(X_*(T) \otimes \mathbb{Q}) = \frac{1}{2} v_K(\Delta)$$

where $a(-)$ is the Artin conductor of a module over $\mathbb{Q}[[\text{Gal}(K^{\text{sep}}/K)]]$, Δ is the discriminant of L/K, and v_K is the normalized valuation of K.

Proof. In Section 2, we saw that $X_*(T) = \mathbb{Z}[G]$, where $G = \text{Gal}(L/K)$. Hence $a(\mathbb{Q}[G]) = f v_L(\mathfrak{D}) = v_K(\Delta)$, where \mathfrak{D} is the different of L/K. The first equality is attained by [Serre1, IV. Prop 4] and the second one follows from $N_{L/K}(\mathfrak{D}) = \Delta$, where $N_{L/K}$ is the norm of L/K.

20
Let \(n = [L : K] \). Assume \(G = \{\sigma_1, \ldots, \sigma_n\} \) and \(\{\alpha_i, i = 1, \ldots, n\} \) is a base of \(\mathcal{O}_L/\mathcal{O}_K \), then the norm \(N \) of \(\sum (x_i; \alpha_i) \) is a polynomial on the \(x_i \)'s. Let \(A = \mathcal{O}_K[X_1, \ldots, X_n, 1/N] \) and let \(R \) be any \(\mathcal{O}_K \)-algebra. If \(f \in \text{Hom}(A, R) \), then \(\sum f(X_i) \otimes \alpha_i \) is a unit in \(R \otimes \mathcal{O}_L \), and vice versa. Hence \(\text{Hom}(A, R) \simeq (R \otimes \mathcal{O}_L)^\times \) for any \(\mathcal{O}_K \)-algebra \(R \), and \(\text{Res}_{\mathcal{O}_L/\mathcal{O}_K}(\mathbb{G}_m) = \text{Spec} \ A \). Similarly, \(\text{Res}_{L/K}(\mathbb{G}_m_L) = \text{Spec} \ K[X_1, \ldots, X_n, 1/N] \) with the same polynomial \(N \). And the identity map \(A \to A \) induce a unit \(\sum_j (X_j \alpha_j) \) in \(A \otimes \mathcal{O}_L \). Fix the isomorphism \(\Psi : T \otimes L \to \mathbb{G}_m^m \) which is associated to the ring homomorphism \(\Psi^\#: L[X_{\sigma_1}, X_{\sigma_1}^{-1}] \to L[X_1, \ldots, X_n, 1/N] \) given by \(X_{\sigma_i} \to \sum_j \sigma_i(\alpha_j)X_j \).

The map \(\Psi \) induces an isomorphism \((T \otimes L)^{NR} \to \mathbb{G}_m^m \) and we define the composition \(\Theta \) of \(T^{NR} \otimes \mathcal{O}_L \to (T \otimes L)^{NR} \to \mathbb{G}_m^m \) as following. Let \(\Theta^\# \) be the ring homomorphism associated to \(\Theta \). The map \(\Theta^\# \) is defined as following:

\[
\Theta^\#: \mathcal{O}_L[X_{\sigma_1}, X_{\sigma_1}^{-1}] \to A \otimes \mathcal{O}_L, \quad X_{\sigma_i} \to \sum_j \sigma_i(\alpha_j)X_j.
\]

Now, it is clear that \(c(T) = v_K(\det(\sigma_i(\alpha_j))) = \frac{1}{2}v_K(\Delta) \).

Proposition 9.4. The following two statements are equivalent:

1. \(c(T_1) = c(T_2) \) for any tori \(T_1, T_2 \) over \(K \) such that \(T_1 \) is isogenous to \(T_2 \) over \(K \).

2. \(c(T) = \frac{1}{2}a(X_*(T) \otimes \mathbb{Q}) \) for any torus \(T \) over \(K \), where \(a(-) \) is the Artin conductor of a module over \(\mathbb{Q}[\text{Gal}(K^{sep}/K)] \).

Proof. Clearly (2) implies (1) by the Proposition 2.7.

Assume (1). We have seen (2) is true when \(T \) is an induced torus. Since \(c(-) \) and \(a(-) \) are both additive with respect to fibre product. And by Proposition 2.8, we have (2). \(\square \)

Let \(\alpha : T_1 \to T_2 \) be an isogeny over \(K \). Let \(L \) be a common splitting field of \(T_1 \) and \(T_2 \), then \(T_1 \otimes L \simeq X_*(T_1) \otimes \mathbb{G}_m^m \) and \(\Omega_{T_1/K}^1 = X^*(T_1) \otimes \Omega_{\mathbb{G}_m^m/K}^1 \).

We have the commutative diagram

\[
\omega((T_2 \otimes L)^{NR})^{(\alpha \otimes L)^*} \xrightarrow{\Phi_{T_2}} \omega((T_1 \otimes L)^{NR})^{\Phi_{T_1}^{-1}}
\]

with injective vertical maps. When \(\text{char}(K) = 0 \), then the horizontal maps are also injective.
For any homomorphism \(g : M \rightarrow N \) of \(\mathbb{Z} \)-modules with finite cokernel, we define
\[
c(g) = \text{length}(N/g(M)).
\]
Clearly
\[
c(g \circ h) = c(g) + c(h).
\]
Hence \(c(\Phi T_2^*) = c(\Phi T_1^*) \) if and only if \(c((\alpha \otimes L)^*) = c(\alpha^* \otimes \mathcal{O}_L) \). We have \(c(\Phi T_1) = e(L/K)c(T_1) \), and \(c((\alpha \otimes L)^*) = v_L(\deg \alpha) \), where \(v_L \) is the normalized valuation of \(L \). Hence,

Proposition 9.5. \(c(T_1) = c(T_2) \) if and only if \(c(\alpha^*) = v_K(\deg \alpha) \), where \(v_K \) is the discrete valuation of \(K \) with \(v_K(\pi) = 1 \), and \(\alpha^* : \omega(T_1) \rightarrow \omega(T_2) \).

Corollary 9.6. If the residue field \(\kappa \) of \(\mathcal{O} \) has characteristic 0, then \(c(T_1) = c(T_2) \) for any two isogenous tori \(T_1 \) and \(T_2 \).

Proof. Let \(\alpha : T_1 \rightarrow T_2 \) be an isogeny. By Proposition 2.6, there exists an isogeny \(\beta : T_2 \rightarrow T_1 \), such that \(\beta \circ \alpha = [\deg \alpha]_{T_1} \), and \(\alpha \circ \beta = [\deg \alpha]_{T_2} \). Since \(\text{char}(\kappa) = 0 \), \(\deg \alpha \) is invertible in \(\mathcal{O}_K \), hence \((\alpha \otimes L)^* \) and \(\alpha^* \otimes \mathcal{O}_L \) are both isomorphisms. Then \(c(\alpha^*) = c((\alpha \otimes L)^*) = c(\alpha^* \otimes \mathcal{O}_L) = 0 \), thus \(c(T_1) = c(T_2) \). \(\square \)

10 Isogeny invariance in characteristic 0

In this section, we will prove that \(c(T) \) is invariant by isogeny when \(K \) has characteristic 0. As we have already proved this when the residue field \(\kappa \) of \(\mathcal{O}_K \) has characteristic 0, we can assume that \(\text{char} \kappa = p > 0 \).

Lemma 10.1. Let \(K \) be a field equipped with a discrete valuation and let \(T \) be a torus over \(K \). Let \(T_s \) be the maximal split subtorus of \(T \), and let \(T_a \) be the quotient torus \(T/T_s \). Then the canonical sequence
\[
1 \rightarrow T_s^{NR} \rightarrow T^{NR} \rightarrow T_a^{NR} \rightarrow 1
\]
is exact.

Proof. By [SGA 7 VIII. Cor. 6.6], we can extend the sequence
\[
1 \rightarrow T_s \rightarrow T \rightarrow T_a \rightarrow 1
\]
to an exact sequence of smooth group schemes
\[
1 \rightarrow T_s^{NR} \rightarrow T^{NR} \rightarrow T_a^{NR} \rightarrow 1.
\]
Hence we have the commutative diagram
\[
\begin{array}{cccc}
1 & \rightarrow & T^s(\mathcal{O}^sh) & \rightarrow T^s(\mathcal{O}^sh) \\
& & \simeq & \\
1 & \rightarrow & T_a(\mathcal{O}^sh) & \rightarrow T_a(\mathcal{O}^sh)
\end{array}
\]
\[
\begin{array}{cccc}
1 & \rightarrow & T^s(K^sh) & \rightarrow T(K^sh) \\
& & \simeq & \\
1 & \rightarrow & T_a(K^sh) & \rightarrow T_a(K^sh)
\end{array}
\]
Since $T^* \rightarrow T_a$ is smooth, and by [BLR. 2.2 Prop 14], the first low is exact. Thus $T^*(\mathcal{O}^sh) = T(K^sh)$, and by [BLR. 7.1 Thm 1], we have $T^* = T^{NR}$. □

Theorem 10.2. Let K be a complete discrete valuation field with mixed characteristic $(0, p)$ and perfect residue field. Let T_1, T_2 be two tori over K, and let $\alpha : T_1 \rightarrow T_2$ be a K-isogeny. Then two tori have the same invariant:
\[c(T_1) = c(T_2) = \frac{1}{2} a(X_*(T_1) \otimes \mathbb{Q}).\]

Remark. I will restrict myself to the case when K is a finite extension of \mathbb{Q}_p. For the general case, see the original paper of Ching-Li Chai and Jiu-Kang Yu.

Proposition 10.3. Consider the pull-back map $\alpha^*: \omega(T_2^{NR}) \rightarrow \omega(T_1^{NR})$. There exists an element $a \in \mathcal{O}_K$, unique up to \mathcal{O}_K^\times, such that $\alpha^*(\omega(T_2^{NR})) = a \cdot \omega(T_1^{NR})$. Denote the rational number $p^{\text{ord}_p(a)}$ by $\deg_{\text{diff}}(\alpha)$. Then
\[\deg_{\text{diff}}(\alpha) \leq p^{\text{ord}_p(\deg_{\alpha})}.
\]
In the above, ord_p denotes the valuation on K with $\text{ord}_p(p) = 1$.

Proof. Suppose K is a finite extension of \mathbb{Q}_p.

By lemma 10.1, we may assume that T_1 and T_2 are anisotropic over the maximal unramified extension of K (replacing K by a finite unramified extension L/K if necessary). Then $T_i^{NR}(\mathcal{O}_L) = T_i(L)$ for any unramified extension L/K, $i = 1, 2$.

Let T_i^{NR} be the neutral component of the Néron model T_i^{NR}, $i = 1, 2$. Let ω_i be an \mathcal{O}_K-generator of $\omega(T_i)^{NR}$, $i = 1, 2$. Let ord_K be the valuation of K with $\text{ord}_K(\pi) = 1$. Let $M = \text{Ker}(\alpha)$, the kernel of isogeny α. Consider finite unramified extension L/K, and let q_L be the cardinality of the residue field κ_L of \mathcal{O}_L. Let $|\omega_i|$ be the Haar measure on T_i^{NR} attached to ω_i, $i = 1, 2$.

Hence we have
\[|\alpha^* \omega_2|(T_1^{NR}(\mathcal{O}_L)) = \text{Card}(M(L) \cap T_1^{NR}(\mathcal{O}_L)) \cdot |\omega_2|(\alpha(T_1^{NR}))\]
By definition, for $i = 1, 2$, $|\omega_i|(T_i^{NR}(\mathcal{O}_L))$ is equal to the number of κ_L-rational points of the closed fibre of T_i^{NR}, divided by $q_L^{\dim T_i}$. Since T_i
is anisotropic, its closed fibre is a unipotent group over \(\kappa_L \), and has the same number of \(\kappa_L \)-rational points as \(\mathbb{A}^{\dim(T_i)} \). Hence \(|\omega_1|(T_1^{NR}(\mathcal{O}_L)) = |\omega_2|(T_2^{NR}(\mathcal{O}_L))\), and

\[[T_2^{NR}(\mathcal{O}_L) : \alpha(T_1^{NR})] = \text{Card}(M(L) \cap T_1^{NR}(\mathcal{O}_L)) \cdot q_L^{\text{ord}_K(\alpha)} \]

Let \(C_{T_i} \) be the group of geometric connected components of the closed fibre of \(T_i^{NR}, i = 1, 2 \). For sufficiently large finite unramified extension \(L \) of \(K \), we have

\[[T_2^{NR}(\mathcal{O}_L) : \alpha(T_1^{NR}(\mathcal{O}_L))] = \frac{\text{Card}(C_{T_i})}{\text{Card}(C_{T_2})}[T_2^{NR}(\mathcal{O}_L) : \alpha(T_1^{NR}(\mathcal{O}_L))]. \]

On the other hand, by Tate’s formula for the Euler-Poincaré characteristic for the Galois cohomologies of local fields, we have

\[\text{Card}(H^1(L, M)) = q_L^{\text{ord}_K(\deg \alpha)} \cdot \text{Card}(M(L)) \cdot \text{Card}(H^2(L, M)). \]

By the local duality for Galois cohomology of local fields ([Milne, I, Cor. 2.3]), \(H^2(L, M) \) is the dual of \(M_D(L) \), where \(M_D \) is the Cartier dual of the finite group scheme \(M \) over \(K \).

From the long exact sequence of Galois cohomologies attached to the isogeny \(\alpha \), we get an injection from \(T_2(L)/\alpha(T_1(L)) \) to \(H^1(L, M) \). Thus we have

\[\frac{\text{Card}(C_{T_2})}{\text{Card}(C_{T_1})} \text{Card}(M(L) \cap T_1^{NR}(\mathcal{O}_L)) \cdot q_L^{\text{ord}_K(\alpha)} \leq q_L^{\text{ord}_K(\deg(\alpha))} \cdot \text{Card}(M(L)) \cdot \text{Card}(H^2(L, M)). \]

As \(L \) tends to \(K^{sh} \), we have \(q_L \to +\infty \). Hence, we get \(\text{ord}_K(\alpha) \leq \text{ord}_K(\deg \alpha) \).

Since \(\text{ord}_K = \text{ord}_K(\rho) \cdot \text{ord}_p \), we have

\[\text{deg}_{diff}(\alpha) \leq p^{\text{ord}_p(\deg(\alpha))}. \]

\[\square \]

Proof of Theorem 10.2. Choose an isogeny \(\beta : T_2 \to T_1 \) such that \(\beta \circ \alpha = [n]_{T_1} \). Let \(d = \dim T_1 = \dim T_2 \). Write \(n = p^m u \), where \(m = \text{ord}_p(n) \). We have

\[p^{md} = \text{deg}_{diff}(\beta \circ \alpha) = \text{deg}_{diff}(\beta) \text{deg}_{diff}(\alpha) \leq p^{\text{ord}_p(\deg(\alpha))}p^{\text{ord}_p(\deg(\beta))} = p^{md}. \]

So the equality holds throughout the above inequality. Hence by Proposition 9.5, we have \(c(T_1) = c(T_2) \).

\[\square \]
11 Isogeny invariance in characteristic p
——Application of Deligne’s theory

Deligne’s theory
Let K be a complete local field with a perfect residue field κ. Let \mathcal{O} be the ring of integers of K, and let $e \geq 1$. A Galois extension L/K is at most e-ramified if $\text{Gal}(L/K)^e = 1$, where e refers to the upper numbering filtration of the ramifications groups. In other words, $\text{Gal}(L/K)$ is a quotient of $\text{Gal}(K_{\text{sep}}/K)/\text{Gal}(K_{\text{sep}}/K)^e$.

Deligne [Deligne] shows that $\text{Gal}(K_{\text{sep}}/K)/\text{Gal}(K_{\text{sep}}/K)^e$ is canonically determined by $\text{Tr}_eK = (\mathcal{O}/\mathfrak{p}^e, \mathfrak{p}/\mathfrak{p}^{e+1}, \epsilon)$, where \mathfrak{p} is the prime ideal of \mathcal{O}, and ϵ is the canonical map from $\mathfrak{p}/\mathfrak{p}^{e+1}$ to $\mathcal{O}/\mathfrak{p}^e$. Denote $\text{Gal}(K_{\text{sep}}/K)/\text{Gal}(K_{\text{sep}}/K)^e$ by $\Gamma(\text{Tr}_eK)$.

Suppose Tr_eK is isomorphic to Tr_eK_0 and L/K is at most e-ramified. Then there exits a corresponding L_0/K_0 and $(\mathcal{O}, \mathcal{O}_L) \equiv (\mathcal{O}_0, \mathcal{O}_{L_0})$ (level e). We can construct L_0 as following:

Suppose $\phi: \mathcal{O}/\pi^e \to \mathcal{O}/\pi_0^e$ and $\eta: \mathfrak{p}/\mathfrak{p}^{e+1} \to \mathfrak{p}_0/\mathfrak{p}_0^{e+1}$ define the isomorphism $\text{Tr}_eK \to \text{Tr}_eK_0$. Let π_L be a prime element of \mathcal{O}_L satisfying the Eisenstein equation

$$X^n + \sum_{i=0}^{n-1} a^{(i)} X^i = 0, \quad a^{(i)} \in \mathfrak{p}.$$

Let $a^{(i)}_0 \in \mathcal{O}_0$ be the lifting of $\eta(a^{(i)} \mod \mathfrak{p}^{e+1})$. Then the equation $X^n + \sum_{i=0}^{n-1} a^{(i)}_0 X^i = 0$ defines the extension L_0/K_0.

Proposition 11.1. Let T be a torus over K, then the invariant $c(T)$ is determined by Tr_eK for $e \gg 0$.

Proof. Let $e \gg N \gg 0$ and $\Lambda = X_*(T)$. Since $(\text{Tr}_e(K), \Gamma = \Gamma(\text{Tr}_eK), \Lambda)$ determines $(\mathcal{O}/\pi^e, \mathcal{O}_L/\pi^e, \Gamma, \Lambda)$, hence determines the following morphisms by Section 8: $T^n_L \otimes \mathcal{O}_L/\pi^N \to (T \otimes L)^{NR} \otimes \mathcal{O}_L$, $R^{i+1} \otimes \mathcal{O}/\pi^N \to R^i$; $T^{NR} \otimes \mathcal{O}/\pi^N \to R^i \otimes \mathcal{O}/\pi^N$. The last morphism factors through the closed immersion $T^{NR} \otimes \mathcal{O}/\pi^N \to T^0 \otimes \mathcal{O}/\pi^N$, hence the morphism $T^{NR} \otimes \mathcal{O}/\pi^N \to T^0 \otimes \mathcal{O}/\pi^N$ is determined by (Tr_e, Λ). Finally, we conclude that the morphism $T^{NR} \otimes \mathcal{O}_L/\pi^N \to (T \otimes L)^{NR} \otimes \mathcal{O}_L/\pi^N$ is determined by $(\text{Tr}_e(K), \Lambda)$ for $e \gg N$. Hence $c(T)$ is determined by $(\text{Tr}_e(K), \Lambda)$ for $e \gg N \gg 0$. \hfill \Box

Theorem 11.2. Assume that K is of equal-characteristic p and the residue field of \mathcal{O}_K is perfect. Let T be a torus over K. Then $c(T) = \frac{1}{2} a(X_*(T) \otimes \mathbb{Q})$. In particular, it is invariant under isogeny.
Proof. Since $T^{NR} \otimes \hat{O} \simeq (T \otimes \hat{K})^{NR}$, we can assume K is complete.

By Deligne’s theory, choose a local field K_0 of characteristic 0 such that $Tr_e K_0 \simeq Tr_e K$, then $c(T) = c(T_0) = \frac{1}{2} a(X_*(T_0) \otimes \mathbb{Q})$. Since $X_*(T_0)$ is isomorphic to $X_*(T)$ as $\Gamma(Tr_e K) \simeq \Gamma(Tr_e K_0)$-module, we have $a(X_*(T_0) \otimes \mathbb{Q}) = a(X_*(T) \otimes \mathbb{Q})$. Hence $c(T) = \frac{1}{2} a(X_*(T) \otimes \mathbb{Q})$. \qed

References

