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Abstract

Let E be a number fields with ring of integers R and N be a tame galois extension of E with group G.
The ring of integers S of N is an RG—module, so an ZG—module. In this thesis, we study some other
RG—modules which appear in the study of the module structure of S as RG— module. We will compute
their Hom-representatives in Frohlich Hom-description using Stickelberger’s factorisation and show their
triviliaty in the class group CI(ZQ).
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Chapter 1

Introduction

1.1 Statement of the problem

The theory of Galois modules is a usefull topic in Mathematics, especially in Number Theory. For example,
let N/E be a finite Galois extensions of number fields with group G, and let R and S be the ring of integers
of F and N, respectively.

From Galois theory, a well known result says that the FG—module N has a normal basis, that is N ~ EG
as E-vector space. For a long time, people wondered whether the same result holds for the RG—module S,
namely, is RG ~ S as RG—module. This is the normal integral basis problem.

In general, the answer is no. Since R is not always a principal domain, there are examples of extensions N/FE
with S is not free over R. In tame case, Noether’s theorem states that S is locally free. This allows to define
a class of the ring of integers S in the class group CI(RG), which is the quotient of the set of locally free

RG module by stable isomorphism. The class group Cl(RG) measures how far a module is being free over RG.

So the question becomes, let N/E be tamely ramified Galois extension. Is S ~ ZG [£:Ql a5 ZG-module? Here
Z is principal integral domain. Again, this is about the ZG-structure of S in tamely ramified extensions.

The module structure of S in such extension has been studied. For example,if £ = Q, the normal integral
basis problem was tackled by A. Frohlich and solved by MJ Taylor.

Question: What about the other RG-modules in N?

Some of them have also been studied, among of which the inverse different, Cy/g. In tame case, this module
is locally free ZG—module.

In this thesis, we will study some modules which appear in the study of the RG-structure of S which contains
of course the inverse different of N/E.

The simplest of these modules is defined by the equality

Tn/g =Cn/g/S.

From basic result in number theory, Cy, g is isomorphic to the dual of the module S, which is Hompg(S, R), so
S and Cy, g are dual of each other. This duality relation accounts for comparing their ZG-module structures.



When N/E is tamely ramified, it amounts to comparing their classes (Cx/g) and (S) in CI(ZG). A. Frohlich
conjectured that (Cn/g) = (S). M J Taylor proved this equality under some stronger hypthesis and S. Chase
proved it in general case. Chase’s proof examine the torsion module T/ = Cn/g/S.

B. Erez has considered the square root of the inverse different, Ay/z. He proved for example that when
N/E is tame and of odd degree, then the class of Ay g in CI(ZG) is trivial. In this thesis, we work with a
tame Galois extension N/E where its An/g exists. In order to study it, we introduce the module

Snye = An/e/S-

The last module that we are interested in is the torsion module R y/r whose definition will be given later in
Chapter 2. This was introduced by S. Chase.

Their triviliaty in the class group CI(ZG) can be shown directly, for example as the proof of Chase, but we
will give here an other proof by finding their precise Hom-representatives in Hom-description of Frohlich and
showing that they lie in the denominator of Cl(ZG).

We mention that all the results of this thesis are due to Luca Caputo and Stéphane Vinatier in the article
[CV].

1.2 Strategy of the work

The strategy of this thesis is as follows: In the definition of Ty,r and Sy,g, we see that they are of the
form S/I and I~!/S for some G-stable ideal I, so we will study the general case of modules of such form.
The study of Sy,/g will always be under the assumption that N/E is locally abelian. Working in this more
general situation requires no additional effort and allows us to easily recover the cases of Tiy/r and Sy/E.
But the study of the torsion module Ry, g is slightly different.

The most canonical way to study these modules is via localization, that is, by transition to local completions.
Thus, after citing basic results from number theory, modules and algebras, we prove that the torsion modules
we are interested in can be studied locally. That is, we consider the torsion modules T g, Ry g and Sy/g,
then we reduce to the study for, every prime q of S, of their ZI;-module structures, where I is the inertia
group at q. That is way we named the second chapter to be the Reduction to inertia group.

Suppose now that K /k is a finite Galois extensions of local fields with group I" and inertia subgroup A. If
we set I’ to be the fixed field of A, we show that it is sufficient to prove the triviality of Tk /r, Sk/r and
Ri/r in CI(ZA). That is, we can reduce the group G to the inertia group I;. That is nice since the inertia
group is a cyclic group hence abelian and the situation becomes much easier.

Let’s state the main theorem in the chapter 2. For the statement we introduce some terminology.

N/E is a finite tame Galois extensions of number fields with group G and ring of integers R and S, respec-
tively. For any prime ideal p of R we fix a prime ideal q of S dividing p. We denote by Dy (resp. I,) the
decomposition group (resp. the inertia group) of q in the group G. Then, the cardinality of I; only depends
on p and we denote it by e,.

We fix an injective character xq : Iq — @X and an embedding ¢4 : Q- @p where p is the rational number
below p such that tq 0 xq = Xn,/F, Where Ny is the completion of N with respect to q and Fy is the fixed

field of the inertia group I, i.e Fy = qu“'. These choice determine a prime ideal p in the ring of integers O,

of Q(pe,) C Q satisfying ¢4(p) C 954, where S is the valuation ring of N,. The injection ¢4 makes OF, into
0., —module where Ram(N/E) is the set of primes of E that ramify in N/E.

The followinig theorem is the main result of the chapter 2 which says that

10



1.2.1 Theorem. For every p € Ram(N/E), choose a prime q of N above p. Then, with the notation

introduced above, there is an ismorphism of ZG—modules:
D[R/p:F,p
Tve~ @ (26 ®zp, T(p, 21,)) "7,
pERam(N/E)

Furthermore, for every choice of injective characters xq : Iq — @X for every prime q as above, one can find
primes P of Oc, and injections O, /P — S/q such that there is isomorphisms of Z.G—modules:

RN/E‘ ~ @ (ZG ®qu qu(P,OepIq
pERam(N/E)

Moreover, if N/E is locally abelian, then the injections O, /P — S/q factor through R/p :— S/q and there
is an isomorphism of ZG—modules:

}) BIC-DallS/5:0cy /7],

R/p:O., /P
Svp~ @ (ZG @z, Sy, (P, 0., 1) 0w
pERam(N/E)
where T(p, Z14), Ry, (P, Oc, 1) and Sy, (P,0Oc,1q) are O, /PIlq-modules.
Thanks to this Theorem and the functoriality :
CU(ZI,) — CUZG)

it is sufficient to study the new modules introduced above, which are 7 := T'(p,ZI;),R = Ry, (P, O, 1)
and S := S, (P, Oc,1y), so in the next chapter we focus only on the study of these new modules. These
modules are much easier to study since they are Galois module of a cyclotomic fields in which many known
results can be used to treat the problem.

In Chapter 3, we are thus in the cyclotomic setting introduced as follows: we fix an integer e, a cyclic group
A of order e and an injective character x : A — p., the group of e’ roots of unity in the algebraic closure
of Q. We denote by O the ring of integers of Q(u.) and p the rational prime such that p re. Let P be a
prime ideal of O above p. We set k = O/P. We are now ready to state the main result of the third chapter
which is also the core of this work.

1.2.2 Theorem. The classes (T),(R) and (S) are trivial in CI(ZA). More precisely, they are represented
in Homg, (Ra, J(Q(e))) by the morphisms with q'"—components equal to 1 if the prime q{ e and to

Det(pflut), Det(u;l)7 Det(u;l)

respectively, at prime ideals q of O if qle, where us, u,,us € ZA are defined by

p—1 e—1 e—1
Uy = E 0 u, = E m;0', us = E ;0"
i=0 i=0 i=0

and satisfy ug, ur, us € ZyAX for any rational prime gle.
Using the reduction results of Chapter 2, and Theorem [1.2.2] we deduce the following consequence:

1.2.3 Theorem. Let N/E be a Galois tamely ramified extension of number fields. Then the classes of
Tn/g, Ry and Sy/g are trivial in CI(ZG). In particular, we have

(S) = (Cnyg) and (S @ S) = (S)IVF = 1.
If further N/E is locally abelian, then the class of Sy is trivial in CI(ZG). In particular we have

(S) = (An/E),
thus S,Cn/p and Ay, g define the same class in CI(ZG).
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1.3 Commutative Algebras
In this section, we recall some definitions and general results in commutative algebras. The good reference

of this is [DF04].

Modules and tensor products

Let R be a ring and let I C R. I is said to be two-sided ideal of R if it is both right ideal and left ideal. If
R is commutative ring, where left and right are equivalent, a two- sided ideal is called simply an ideal.

If M is an R—module and for some two-sided ideal I of R, we say that M is annihilated by I if am = 0 for
all a € I,m € M. In this situation we can make M into R/I—module by defining an action of the quotient
ring R/I on M as follows: for each m € M and r+ I € R/I,

(r+I)m=rm
This is well defined since am = 0,Va € I,m € M.

As a consequence of this, if M, N are R—modules annihilated by I, then any R—homomorphism from M to
N is R/I—homomorphism.

1.3.1 Definition. Tensor product Let R, S be any rings. An abelian group M is called (S, R)—bimodule

if M is a left S—module and right R—module and s(mr) = (sm)r for all s € R,s € S,m € M.

For example, if I is an ideal of a ring R, then the quotient R/I is an (R/I, R)—bimodule.

Now, suppose that N is a left R—module and M is an (S, R)—bimodule, then the tensor product M ®@p N
is the set of finite sum of m ® n,m € M,n € N. It is a left S—module by the action

S(Zml ®@mn;) = Z (sm;) @ ngj,m; € M,n; € N.
Extension fo scalars on change of base. Let f : R — S be a homomorphism of rings. Then s.r = sf(r)

gives S the strucutre of right R—module and with respect to it, S is an (S, R)—bimodule. Then for any
left R—module N, the tensor product S®g N is a left S—module obtained by changing the base from R to S.

In paricular, if we have a ring homomorphism f : R — S, then we have S @z R ~ S as left S— module via
the map s @ r — sf(r).

Let R be a ring, I a two-sided ideal of R. Let N be a left R—module, then R/T is (R/I, R),bimodule, so the
tensor product R/I ®g N is a left R/T—module and we have an isomorphism R/I ® g N ~ N/IN via the
map (r+1)®@n+— rn+ IN.

Let M, M’ be (S, R)—bimodule and let N, N’ be left R—module and ¢ : M — M’ ;¢ : N — N’ are
R—module homomorphisms. Then there is a unique S—module homomorphism denoted by ¢ ® ¥ mapping
M ®r N — M’ ®r N’ defined by ¢ @ ¥(m @ n) = ¢(m) @ ¥(n).

In particular, if R is commutative ring, then ¢ ® ¥ is an R— module homomorphism.

(Associativity of tensor product) Suppose that M is a right (S, R)—bimodule, N an (R,T)—bimodule
and L is a left T—module. Then, there is a ungiue isomorphism of S—modules:

(M®g)®r L ~M ®g (N ®r L)

12



given by (m®n)@l—m® (n®l)
If R is commutative and M, N, L are left R—modules then (M @ gk N)®@r L ~ M @ (N ®g L) as R—modules.

(Tensor product of direct sum) Let M, M’ be (S, R)-bimodules, N, N’ be left R—modules. Then we
have isomorphisms of left S—modules

(Me&M')®r N~ (M®rN)® (Mg N')

M@r(N®N')~ (Mg N)& (Mo N')
In particular, if R is a commutative ring these are also isomorphisms of R-modules as well.

As a consequence, the module obtained from the free R—module N ~ R"™ by extension of scalars from R to
S is the free S—module S™, i.e S ®r R™ ~ S™ as S-modules.

(The group Hompg(D,—)) and projective module Let R be a ring and let M, N be left R-modules.
Denote by Homp(M, N) the set of all R-homomosprhism from M to N.

Let D, L, M be R—modules and let ¥ L :— M be an R—module homomorphism, then we have a homorphism
of group ¢’ : Homg(D, L) — Hompg(D, M) given by f > tof.

If 9 is injective then 1’ is injective.
Let D, L, M, N be R—modules then
e Homg(D,L & N) ~ Homg(D, L) ® Homg(D, N)
e Homg(L & N, D) ~ Homg(L, D) @ Homg(N, D)
We say that M is projective if for any surjective homomorphism 1 : M — N of R—modules, the homomorp-

shim of groups 1’ is surjective.

(Flat module) Suppose that D is a (S, R)—bimodule. For any homomorphism f : X — Y of left
R—modules, we obtain a homomorphism of left S—module 1 ® f : D ®r X — D ®RgrY. If f is surjec-
tive, then 1 ® f is surjective.

We say that D is flat R—module if for any injective homomorphism f : X — Y of left R—module, the
homomorphism 1 ® f is injective.

(Relation between Hompg(D,—) and D ® g —) Let R and S be rings, let A be a right R—module, let B be
an (R, S)—bimodule and let C' be a right S—module. Then there is an isomorphism of abelian groups

Homg(A ®pr B,C) ~ Homg(B, ()

If R =S is commutitaive ring then this is an isomorphism of R—modules as well.

1.3.2 Lemma. (Snake lemma)
Let R be a commutative rings. Given the following diagram of R—modules with exact rows:

0 M N L 0
L S|
0 A B C 0

then, there is an exact sequence:

ker a — ker § — ker v — Coker « — Coker  — Coker y

13



1.3.3 Definition. (Group ring) Let R be a commutative ring and G be a finite group. The group ring RG
consists of the free R—module on the set G, that is

RG = {Z agg,aq € R}

geG

Addition is defined by componentwise and multipication is defined by extending (rg)(sh) = (rs)(gh) for all
r,s € R,g,h € G by distributive law. It makes RG into a ring. Note that R = R.1 is a subring of RG.

1.3.4 Definition. An G— module is an abelian group M where G acts on it and the action commutes with
the group law of M. Moreover if M is an R—module for any ring R, and the action of G commutes with the
R-module structure of M then we say that M is an RG—module.

If G is a Galois group of some extension of fields, we say that M is a Galois module.

1.3.5 Remark. An abelian group is the same as a module over Z, so an G—module M is the same as a
module over the group ring ZG.

1.3.6 Definition. Let R be a commutative ring and G be a finite group.

Let H be a subgroup of a finite group G and M is an H—module. Define the induced G—module to be
Homy g (ZG, M). More precisely, it is the set {f : G — M/f(hg) = hf(g),h € H,g € G}. The action of G
on Homyzy (ZG, M) is given by: (g.f)(z) = f(zg).

1.3.7 Lemma. Let H be a subgroup of finite index of a group G and M an H—module. Then the module
Z.G ®z M obtained by extension of scalars from ZH to ZG is a G—module and we have an isomorphism of
G-modules

HOIIIZH(ZG, M) ~ 7.G QzH M.

Proof. Let g1,...,gn be a set of left coset of representatives for H in G and write G = g1 HJ---JgnH. So
as an abelian group, we have ZG = @], ¢;ZH.

Also, ZG®zug M = (&7 16:ZH) @z M = &1 (9; ®zm M) by the property of tensor product and direct sum.
Consider the map ¢ : Homzy (ZG, M) — ZG ®zg M defined by o(f) = S0, 9: ® f(g;'). We want to

show that ¢ is an G—isomorphism. Clearly, it is linear. Let g € G, then ¢(g.f) = i, g: ® (9-f)(9; ') =
Z;;l 9 ® f(gi_lg). Write gi_lg = h,;gi_,l,i =1,...,n. Then we have

Y 9@ flg;'g) = sumi_igi ® f(hig; ")
=1
=> g @hif(g;")
i=1
=Y gihi @ f(g;")
=1
Zgh ® f(g
Z )
9¢(9)-

14



Hence ¢ is G—homomorphism. The injectivity of ¢ comes from the fact that f = 0 € Homzy(ZG, M) if
and only if f(g;) =0 for alli=1,...n.

To prove surjectivity, let g; ® m € ZG @z M. Define the function from ZG to M defined by f;..(g9) = hm
if g = hgi_l,h € H, and 0 otherwise. f;,, € Homzy(ZG,M) since if g = hgi_1 € G, and W € H, then
h'g = h'hg;* and we have fi,.(h'g) = W'hm if x = hg; ' and 0 otherwise. Now, it easy to see that, for any
g ®m € ZG ®@zy M, we have p(1 ® fim) = g; @ m. O
Galois algebras

We recall some usefull results on Galois algebras. The details can be seen in [DI71]

1.3.8 Definition. Let R be a commutative ring. An R—algebra is a ring S (not necessary commutative)
with a ring homomorphism ¢ from R to the center of S.

This induces an R—module structure on .S by the operation
r.s = ¢(r)sfor all r € R,s € S.

Then any R— algebra can be viewed as an R— module.

In most of the cases, we are interested in the following examples of algebras.

1.3.9 Example. Let R be a Dedekind domain and G a finite group. The group ring RG is an R-algebra.

Denote by Map(G, R) the set of all functions from G to S. It is a ring via the operations:

(f +9)(0) = f(o) + 9(0), (f9)(0) = fo)g(o) for all f,g Map(G, R),0 € G

Consider the map ¢ : R — Map(G, R) defined by ¢(r)(c) = r.1, the constant map, for r € R0 € G. It
makes Map(G, R) into R—algebra.

If we let G act on it by (0.f)(g) = f(go) for 0,9 € G and f € Map(G, R), it becomes an RG—module. So,
we have an isomorphism of RG—modules:

Map(G, R) ~ RG
via the map f — deG f(g9)g~ 1. In other words, Map(G, R) is the dual of the R—algebra RG.

1.3.10 Definition. Let R be a commutative ring and S an R—algebra. We say that S is an extension of
the ring R if S is commutative R—algebra and faithful as R—module.

Recall that an R—module M is faithful if 0 is the only annihilator of M.

Let H be a group and S a ring on which H acts. Set
SH .= {x e S/o(x) =1, Yo c H}.

1.3.11 Definition. Let R be a commutative ring and S a commutative R—algebra. Let G be a finite group
acting on S.

The extension S of R is said to be Galois with group G if R = S¢ and the map
rs,c : S ®r S — Map(G, S)

given by a ® b — (a ® b)(c) = ao(b) is an isomorphism of left S—modules, where Map(G, S) is defined in
the Example [I.3.9]
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1.3.12 Example. We show that if S and R are fields, then this definition is the same as the usual definition
of Galois extension of fields.

Take S = N,R = E where N/FE is finite Galois extension of fields with group G. Before proving the
equivalence of the definitions, we need the Dedekind’s lemma on the linearly independence of homomorphisms
of algebras.

1.3.13 Lemma. Let N/E and L/E be field extensions. The set of distinct F— algebra homomorphisms
from N to L is linearly independent over L.

Proof. Suppose that the sequence (¢;);c; of E—algebra homomorphisms is linearly dependent. Then, there
exists a minimal integer n > 2 such that

n
Zai@ji = 0 where a; # 0 € L. (1.1)

=1

Since ¢, # ¢;,, then there exists o € L such that ¢;, () # ¢;, (). For all § € L, we have
D aips(aB) =Y aipj(@)p;(8) =0 (1.2)
=1 =1

Multiplying through [T:2] by ¢;, («), we get

pin(0) 2 a5 (F) =0 (1.3)
i=1
((L.2)) - gives us

n—1

> (aipji (@) = i, (@)ps,(8) = 0.

i=1
Since @;, (o) — @i, () # 0, this contradicts the minimality of n. Thus (¢;):er is linearly independent over
L. O

Claim. Let N/E be a field extension and let G be a finite group of K—automorphisms of N. Suppose that
NY = E, then the extension N/E is Galois(in the sens of the Definition |1.3.11)with group G if and only if
G acts faithfully on N.

In fact, if N/E is galois, the composition 7y ¢ o (1 ® idy) allows us to embed N in Map(G, N), and this
implies that G acts faithfully on N.

Conversely, since dimn (N ®g N) = dimy(Map(G, N)) = |G, it is sufficient to prove that 7y ¢ is injective.
Let D gite @i @ b € ker(ryn,). Then for every o € G, we have

Z CLz'O'(bi) = 0

finite

If G acts faithfully on N, then by the Lemmal.3.13] the matrix (o(b;))s,; is invertible, then the above system
of equations in a;’s has only the trivial solution. Thus, our claim follows.

Now, suppose that R is a Dedekind domain with fractional field F and S is its integral closure in Galois
extension N of E. We have seen that N/E is Galois in the sens of Definition A natural question
is, do we have Galois extension for the ring of integers S/R. In general, the answer is no. The following
proposition will tell us when the extension of ring of integers is Galois if their fractional fields is Galois
extension. In order to do this, we have to introduce some definitions in extension of rings.

For a prime p of R, we denote by R(,) the localisation of R at p and by k(p) the residue field of p, that is
Ry) [P Rp)-

16



1.3.14 Definition. Let S be an R—algebra such that S is finitely generated as R—module. The extension,
S/R is unramified if for every prime ideal p of R and all prime ideals q of S such that ¢ R = p we have:

1 pS=qS
2 the residue field extension k(q)/k(p) is separable.

We see that if R and S are ring of integers of extensions of fields N/E, respectively, then the extension S/R
unramified is the same as the field extension N/FE is unramified in the usual sens of unramified extension.

Now, consider the map p: S ®p S — S given by  ® y — xy. Define by J(S) := ker(u).
So we have an exact sequence of S ® g S-modules

0—-J(S) = S®rS—S5—=0

where the S ® g S—module structure on S is given by (x ® y)s = xsy = zys for all z,y,s € S.

1.3.15 Definition. The extension S/R is separable if there exists e € S ®g S such that p(e) = 0 and
J(S)e = 0. Such an element is called the separability idempontent.

Again, we recover the usual notion of separability for commutative finite dimensional algebras over a field.

1.3.16 Example. Let R be a commutative ring and G a finite group whose order is unit in R. The R-algebra
RG is separable by taking e = %L > gec9® g L.

1.3.17 Definition. The details of this can be seen in [LRO3|. Let K be a field and A a finite dimensional
semisimple K —algebra. We are especially interested in the case A = K G, the group ring algebra of a finite
group G over K.

Let R be a Dedekind ring with fractional field K. An R— order in A is a subring A of A such that R is
contained in the center of A, A is finitely generated as R—module and KA = A, that is, A contains an
K —basis of A.

For example, the integral group RG is an R—order in the K —algebra KG. Indeed, R can be identified with
R.1 in RG and it is contained in the center of RG. It is finitely generated R—module since G is finite. Of
course, KRG = KG.

1.3.18 Definition. An order in the semisimple algebra A is said to be maximal order if it is not properly
contained in any other order of A.

1.3.19 Proposition. Let R be a Dedekind ring and let F be its field of fractions. Let N/E be a Galois
extension with group G and let S be the integral closure of R in N. The following are equivalent:

a. S/R is Galois with group G.
b. S/R is unramified.

Proof. We prove the equivalence using the determinant. We know that S/R is unramified is the same as
N/E is unramified. From the basic result in number theory, for example ([FT91] p.121), we know that N/E
is unramified if and only if the dicriminant d(S/R) is R.

The integral closure of R in Map(G, N) is Map(G, S). Since Map(G, N) ~ NG is separable (Exampldl.3.16)),
and Map(G, S) is finitely generated over R so it is the maximal order in Map(G, N).

Since N/E is Galois, then
rng:N®gN — Map(G,N)
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is an isomorphism. In particular, its restriction to S ®g S is injective and we have an injection
rsc:S®rS — Map(G,S).

If S/R is Galois, then rg ¢ is an isomorphism. The discriminant of Map(G, N) over R is R so, by the formula
for discrimininants applied to the inclusions

RCSCS®RrS

we deduce that the discriminant of S over R is R as well. Hence S/R is unramified. The converse will follow
immediately from the next lemma.

1.3.20 Lemma. Let S;/R,S2/R, be extensions of Dedekind rings. Let N; be the field of fractions of
Siyi=1,2. If S1/R is unramified, then S; ® Sy is the maximal order in N7 ® g Na, where E is the fractional
field of R.

Proof. Let O be the maximal order in N1 ® g No. We have the following inclusions
Sy CS1®rS2 CO
and the property of discriminant see ([FT91] pages.121) gives that:
d(S1 ®p S2/8) = [0 : S ®r S2]?d(0/Ss).

Hence, d(S1 ®p S2/S2) C d(O/Ss) C Sa. On the other hand, d(S; ®g S2/S2) = d(S1/R)S2. By assumption,
d(S1/R) =R, so d(S1 XRnr SQ/SQ) = S5. It follows that O = 57 ®pg Ss.
We will use later this lemma several times. O

For the proof of the theorem, we apply the lemma with S; = S; = S. So the maximal order of N ®g N is
S ®r S and the equivalence follows. O

Representation of finite group

Notes here can be seen in [Ser71].

Let V' be a vector space over a field K. The general linear group GL(V) is the set of all automorphisms of
V viewed as group under composition. If V' has finite dimensional n, then GL(V) = GL,,(K), which is the
group of invertible n X n matrix with entries in K.

1.3.21 Definition. A representation of group G is a homomorphism p : G — GL(V). We say that V is
faithful if p is injective, and we say V is trivial if p = 1.

Recall that an K G-module is a vector space over K together with group action, that is, Vg € G, a € K, u,v €
V', the operation g.v is defined and satisfies:

e g(ut+v)=gu+gw

e g.(au) = afg.u).
We now let g.v = p(g)v. Sometimes, we call V' the representation of G instead of p. So p gives V the
structure of F'G—module.

A subrepresentation of V' is a subspace W which is invariant under the action of G, that is
Vg € G,w e W, g.w = p(g)w € W.

A representation V is said to be irreducible or simple if the only subrepresentation of V' are V' and {0}.
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1.3.22 Definition. Let V and W representations of G. A function ¢ : V' — W is called G—linear map or
G—invariant if it is a linear transformation and satisfies:

P(gv) = g.¢(v), Vv € V,g € G

We say that two representations V and W are isomorphic if there axists a G—linear map ¢ : V. — W that
is invertible.

1.3.23 Lemma. Let W,V be representations of G and ¢ : V. — W a G—linear map. Then, ker(¢) is a
subrepresentaion of V' and ¢(V) is a subrepresentaion of W.

Proof. Let g € V and v € ker ¢. Then ¢(g.v) = gp(v) = 0, hence g.v € ker¢. Take g € G,w € ¢p(V) C W.
There exists u € V such that ¢(u) = w. Thus, g.w = g.¢(u) = ¢(g.u) € (V). O

1.3.24 Lemma. (Maschke’s theorem) Let V' be a representation of finite group G and the order of G is a
unit in K. If there exists a subrepresentation W of V', then there must also be U subrepresentation of V'
such that V. =U e W.

Proof. Suppose that there is a subrepresentation W of V. Choose any complementary subspace S of V' such
that V =W & S. Then an element v € V can be written as v = w + s where w € W,s € S. Consider the
projection p: V.— W of V on W sending v — w. Let 7(v) = ﬁ > _gec g~ 'p(g.v). We need to show that 7
is a G—linear map. For u,v € V write u = wg + sg,v = w1 + s1.

m(u+v) |G|Zg p(g.(v + w))

geqG

> 97 plgwo + g-50 + gws + g.51))
geG

|G|Zg gw()+gw1)
geG

= m(u) + 7(v).

Let A€ K,u e V,m(Au) = %‘ dgec 9 n(g.(\u)) = ﬁ/\ > _gec g p(g.u) = A (u).
Let he GybueV.

IGI

Hence, m is a G—linear map. It is easy to see that w(W) = W. By the previous lemma, ker 7 is also a
subrepresentation of V. It follows the conclusion by taking U = ker . O

1.3.25 Definition. A representation V of G is called completely reducible or semisimple if V' can be written
as direct sum of irreducible subrepresentations.

1.3.26 Corollary. If the char(K) does not divide the order of the group G, then every representation of G
is completely reducible.

Proof. Just argue by induction on dimension of V. O
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Character theory

1.3.27 Definition. Let V be a representation of a group G. The character associated to V is a map
X : G — K defined by g — Tr(g.v), where Tr means the trace of the action of g on v.

Note that y does not depend on the choice of the basis of V. We say that a character is irreducible if the
associated representation is irreducible. The trivial character of G is the character x(g) =1 for all g € G.

If G is finite of order n, a character y of G takes values in the n'" roots of unity .

1.3.28 Theorem. Let U,V be two irreducible representations with characters x1, x2, respectively. Set W =
U @& W. Then the character x associated to W is x1 + x2 and the character associated to U @ V' is x1x2-

Proof. Let uq,...,u, be a basis of U and vy, ..., v, a basis of V, then wuq,...uy,,v1,...,v,, form a basis of
W. Hence, the matrix of g.v for g € G, w = v+ v € W with respect to this basis has the form:

A 0

0 B
where the matrix A is the matrix of g.u with respect to the basis u;, and B the matrix of g.v in the basis
v;. The second assertion follows from Theorem [1.3.30| below. O

Using Proposition [[.3.28] the set of charcters of a finite group G form a ring.

Induced character

Let H be a subgroup of a finite group G, K a field. Then K H is a subring of KG and the latter is an
(KG — KH—)bimodule. So, for any left K H—module M, we have a left KG—module KG Qg M which is
the extension of scalar from K H to KG.

1.3.29 Definition. Let H be a subgroup of the finite group G, and let M be an K H—module affording
the representation p of H. The KG—module KG @y M is called the induced module of M and the
representaion of G it affords is the induced representation of p. If x is the character of p, then the character
of the induced representation is called the induced character, and we denote by Ind%(x).

1.3.30 Theorem. Let H be a subgroup of the finite group G and let gi,...,g, be representatives of the
distinct left cosets of H in G. Let V be an K H—module with matriz representation p of H of dimension n.
Denote by W = KG ®@xpu V. There is a basis of W such that the matriz of ©(g),g € G with repesct to that
basis has of the form:

AH e Aln

N1 - - o Don
where Nij = p(gflggj) is an n x n block appearing in the i,j block position of p(g) and p(g{lggj) is the
zero matriz if g; "gg; ¢ H.

Proof. We know that KG is free right K H—module of rank n and we have
KG=KHg ®---® KHg,.
Since tensor product commutes with direct sum, we have
W=KGCrkagV ~ (1 ®xa V)D& (9.@rnu)V

Since K is the center of KG, then KG is a vector space over K and the above isomorphism is a K—
ismorphism as well. Then if vy, ... v, is basis of V then B = {v; ® g;};; is a basis of W.

20



Let us now compute the matrix of p(g),g € G with respect to the basis B. Fix j and write gg; = g¢;h, for
some index i and some h € H. For every k,

9(95 ® vi) = (99;) ® vk = gi @ huy,

- Z ark(h)(gz & Ur)v

where a. is the r, k coefficients of the matrix h acting V' with respect to the basis v, ..., v,,, that is, the
action of g on W maps the j** block of n basis vectors of W to the i*" block of basis vector, and then the
matrix of p(h) on that block. Since h = g;lggj thus, we get the desired matrix of W. O

1.3.31 Corollary. If y is the charcter of V, then the induced character of W is given by

IndG(x) = > x(a""ga)

zeG

1.4 Completions, unramified and totally ramified extensions

If F is a field of fractions of a Dedekind domain R, then every non-zero prime ideal p is associated the
p—adic valuation v, of E defined by vy(a) = v, where (a) = [], p*». The valuation ring of vy is the local-
ization of R at p. If S is the integral closure of R in any extension field N of E, and if pS = q7'...q¢"
is the prime decomposition of p in N, then the valuation w; = %vqi,i = 1,...,r are precisely the exten-

sions of v = v, to IV, e; are the corresponding ramification indices and f; = [S/q; : R/p] are the inertia degree.

Suppose now that N/FE is Galois number fields extensions with group G. For each prime q of S and a prime
p of R, we denote by Nq the completion of N with respect to vq and E}, the completion of E at v,. We
denote by Dy (resp. Iy) the decomposition group (resp. inertia group) of q in G.

If V is a finite dimension E-vector space, we denote by V, := E, ®g V its completion with respect to v,.
In the same way, for any finitely generated R module M, we denote its completion with respect to v, by
M, =R, ®r M.

In case V = N, if pS = qf' ... q¢" is the factorisation of prime ideals of p in S, we still denote it by N, but
it is different from N, which is the completion of N with respect to vq where q is a prime ideal of S. The
difference will be clear because we will always use p for a prime of R and q for that of S. So, N, may not
be a field but it is only an EF—algebra. The next lemma gives information on N,.

1.4.1 Lemma ([Ser79] Theorem 1, Proposition 4, Pages 31-32). We have isomorphism of F— algebras

By @p N ~ ] N,
i=1

and isomoprhism of R-modules

Ry ®S ~ HS‘“
i=1

where Ng,, S,, are the completions of N and S at q,, respectively.

Since G acts transitively on the set of primes of S above p [[Ser79],Prposition 19,p.20], we can define an
action of G on the E— algebra E, @ N ~ [[;_; Ny, = [, Nq as follows: for (z4)q), and g € G, the qg"
component of g.(zq)qp is given by g(z4-1(q,)), for any qo prime of S above p. Precisely,

(9'($q>qhﬂ)q0 = 9(g-1(q0))-
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Using the same notation as in the example consider Map(G, Ny) the set of all functions from G to N
and define the action of G to be (g.f)(c) = f(og), f € Map(G, Ny), 0,9 € G. Define Map(G, Nq)P4, the set
of all elements in Map(G, Ng) fixed by the action of H, that is:

Map(G, Ng)P" == {f : G — Ny, f(hg) = h(f(9)),h € Dyg, g € G}

1.4.2 Lemma. For any prime qq of S above p, the above S— isomorphisms induce isomorphisms of EG—
modules and RG—modules:

HNq o~ Map(G,NqO)DqO and R, ® S ~ HSQi ~ Map(G, Sqo)DqO
qlp alp

given by (xq)qlp — (xq)q‘p (9) = 9 (z4-1(q0)) -

Proof. We only need to show that this is well defined, that is, we have to prove that (z4)q,(hg) =
h((zq)q)p(g)) for any h € Dq,g € G.

Let h € Dg,g € G, then (2q)qp(hg) = hg(Tg-1p-1(q0)) = hg(Tg-1(q0)) = Mg(Tg-1(q0))) = M(Tg)qip(g)). The
second equality follows from the fact that h='(qo) = qo since h € Dy, . O

Note that these are still true for any finite dimensional vector space V over N on which G acts and any
finitely generated S-module M on which G acts, that means, we have also RG—isomoprhisms for M and
EG—isomorphism for V for any prime qq of S above p.

M ®gr R, ~ l_IMq ~ Map(G, My, )P and M ®p B, ~ HVq ~ Map(G, Vg, )P0
alp alp

1.4.3 Lemma. [[Ser79], Corollary 4, p.31] The extension Ng/FE, is Galois with group Gal(Nq/E,) ~ Dy.

Moreover, if F' = qu * is the fixed field of the inertia group of q, then Ny /F' is totally ramified and F/E, is
unramified.

1.4.4 Definition. Let p be a prime ideal of R and q a prime ideal of S above p. We say that the extension
N/E is tame (or tamely ramified) at q if the ramification index e(q/p) does not divide the characteristic of
the residue field R/p and the extension S/q of R/p is separable. We say that the extension N/FE is tame if
it is tame at all primes .

1.4.5 Lemma. [[FT91], Theorem 26,p.140] Let K/k be a finite Galois extension of local fields with valuation
ring Ok and Oy, respectively. Then the following are equivalent:

e K/k is tamely ramified.
o Trg/i(Ok) = Ok, where Tr is the trace map of K over k.
o Cx/p = pI}EH, where pg is the prime ideal of Ok and Ck/y, is the inverse different of K over k.

1.4.6 Proposition. [[FT91, 7, ?]|Let K/k be a totally ramified tame extension of a discrete complete local
field. Then there exists a primitive element 7, of k such that 7% = m where e = e/, = [K : k]. (That is,
m$ = m, for these elements, not only (7x )¢ = (m) for the ideals.)

Proof. For m; and mx we have 7§ = m;n for some n € Oj. Since the extension is totally ramified,
K : Og/pik =k := O /pi. So there exists § € O} such that n = 0 (mod 7). Replacing 7, with 71, 6 and
n with n,071, we may assume n =1 (mod 7).

Claim. If char K { m, then every a € Ok satisfying o = 1 (mod 7g) is an m-th power.
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(Indeed, we can apply Hensel to the polynomial f(X) = X" —a and ag = 1; by the assumption f’(ap) =
m # 0 (mod char(K)).)

The claim can be applied since K/k is tame. So 7 is an e-th root, n = €® for some € € O%. Replacing 7x
with mx €71, we obtain TS = . O

1.4.7 Theorem. If K/k is Galois totally ramified tame extension of a discrete complete local field with
group T', then K/k is cyclic and k contains the et roots of unity.

Proof. Since K/k is totally ramified, the Galois group I' coincides with the inertia group I'g. Consider the
map

0:T — K :=0g/(mx)",
TK

7 o(mK)

(mod 7g),

where (k) is the prime ideal of Ok. Note that 6 does not depend on the choice of the uniformizer mg.
In fact, if 7 is an other uniformizer of O, then there exists n € Oj such that mx = 7. By assumption,
K =k, so there exists u € Oy such that n = 4 mod 7. Hence, we have

0(c) = o(m" ) mod g = o(r ' Hmn=o(n i ap = o(7 ) m mod Tk

It is easy to see that 6 is a homomorphism. Since the extension is tame, one can show that ker§ = T'; = {1},
where I'; is the ramification group. Hence 6 is injective, so it can be identified with a subgroup of the
multiplicative group fx, so I is cyclic. Since the extension is totally ramified, we have in particular that &

contains the e’ roots of unity. Since X¢ — 1 is separable over EX, these roots of unity can be lifted to k by
Hensel’s lemma, and it completes the proof. O

1.4.8 Theorem. (Chinese Remainder theorem) Let ay,...,a, be ideals in a commutaive ring R such that
a; +a; =R, fori#j. Let M be an R—module. Then there is an isomorphism of R-modules

M @n M
m?zl a; M - sl a; M
Proof. For each K, (I, ;M C axM, so there is a map
M M
4)

ﬂ?:l aiM akM
Therefore, there is a map

= Biq

ﬂ?:l ClZ‘M CliM
Since a; + a; = R for all 4 # j, then a prime ideal p of R can contain at most one ideal a; and (a; M), = M,
if a; € p. Thus, if a, C p, then (N, a;M), = (a M), and M,/a;M, = 0 if i # k. Therefore, for all prime
p, we have an isomorphism

My Ja M, = (mMuM)p S (@y_lcj@)p — (M/aD),

i=1 "

This is for all prime p, so the result follows from the fact that f is an isomorphism of R—modules if and only
if the localised function f, is an isomorphism for all prime p of R. O

1.4.9 Theorem. (Analogue of the Chinese Remainder theorem) Let ai,as be ideals of a Dedekind ring R
such that a1 + a, = R. Then there is an isomorphism of R—modules:

1 _ _
(araz) NC‘11 o)

X —.
R

1

R 'R
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Proof. We claim that the inclusions a; ' — (ar02) " and a? — (a102) " induce R—modules isomorphisms

—1 -1

P (arag) " and f: % (ar02) "
1- R CL2_1 2 - R al—l

1 —1 -1 -1
and the natural projections (u“’g) — (alaufz and (alal_%) — (192)  induce an R—isomorphism.

2 ay

(a1a2) ™" (man) ™ (mpay) !
R ay ag

f:

e Injectivity of fy, fo, f.

—1 1
Note that ker f; = ker f, = ker f = %.

To prove their injectivity, we have to prove that a; ' (a; ' = R. The inclusion R C aj ' (a; " is clear
since a;,7 = 1,2 are ideals of R. To prove the converse inclusion, take x € afl N a;l. Since a; +a, = R,
and 1 € R, we can write 1 = a + b for a € a;,b € ag. Thus 2.1 = za + xb. Since z € a; ' (Nay ' C a;!
and a € ay, then za € al_la € a; = R. Similarly, b € R. Hence x = za + xb € R. Thus f1, fo, f are
injective.

e Surjectivity of f1, fo.

We only prove the surjectivity of f; since the proof of that of fo is similar. Let y € ((11(12)_1, then
y.1 = ya + yb. Since y € (alag)_l and a € ay, then ya € ag_l, therefore y — ya and y have the same
(arap) "

as

image in On the other hand y — ya = yb € a; ', hence y = f(yb) and this shows that f; is

surjective.

e Surjectivity of f. Let y,z € (CllClQ)_l. Set * = ya + zb where a + b = 1 as in the previous argument.
Since (ay03)” " is an R-module then ya,za € (a1a;)” " and z € (a1a2)”'. As in the above proof, we
haveyfybzyazymodal_l. But x — ya = zb = 0 mod ul_l then x = ya = y = y — yb mod al_l.
Similarly, we have = 2b = 2 = 2 — za mod a;'. Then, f(z + R) = (y +a; ",z +a;"). It proves that
f is surjective and our claim is proved.

Let us prove the lemma: consider the following isomorphism obtained from the above isomorphisms:

-1 -1
aja aja -1 -1
(fix f2)~ % ( 1a222 X ( lalzf — % X % and compose it with f, we get the isomorphism of the
lemma:
-1 -1 -1
-1 (a102) | az
X of i —— 5 —— X =
(fixfa) " of i i i

If a;,i = 1,2 are G— invariant, then this isomorphism is an RG-isomoprhism as well.
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Chapter 2

Reduction to inertia subgroup

2.1 The torsion module Ry/g

The aim of this section is to introduce the definition of the torsion module Ry, using the notes from
Chapter 1, and prove that this module can be studied locally.

2.1.1 Definition. Let K/k be a Galois extension with group G, global or local. In Definition [1.3.11] of
Galois extension of algebras, we recall the kG —isomorphism

rr.c: K ®p K — Map(G, K).
In the proof the Proposition we had an injection
rog.¢ : Ok ®o, Ox — Map(G, Ok).
We define R i, to be the Coker of 7o, . Precisely, Rg /i, := Map(G,Ok)/ro,,c(Ok ®0, Ok).

Since Map(G, Ok) is finitely generated and Ox-modules and O ®o, O contains a K —basis of K ®; K,
then Ry, is a finitely generated torsion Ox-module.

Let us go back to our notations. Let N/FE be finite Galois tame extensions of number fields with group G.
For each prime q of S and a prime p of R, we denote by IN; the completion of N with respect to vq and E,
the completion of E at v,. We denote by Dy (resp. I;) the decomposition group (resp. inertia group) of q
in G.

Denote by Ram(N/E) the set of primes of R which ramify in S. Recall that for each prime p in Ram(N/E),
we fix a prime q of S above p.

2.1.2 Lemma. See [[Cha84] Corollary 3.11] There is an isomorphism of RG—mdoules:

RN/E = @ e ®zD, RNq/EP)e)[G:Dq]'
peERam(N/E)

Thanks to the above lemma, we can focus on the local setting. In this section, we will concentrate in the
following situation. Fix a prime p and a tamely ramified Galois extension K/k of Q, with group I'. Let A
be the inertia group of K/k. By Proposition A is cyclic of order e and its fixed field F = K is totally
ramified extension. As usual, we denote by Ok, Op, Oy the ring of integers of K, F' and k, repectively, and
we shall denote by pg,pr and p; the corresponding maximal ideals. We denote by K, F' and k, the residue
fields of K, F' and k, respectively.

The following proposition makes things easy because it restricts our situation into the case of totally ramified
tame local extension.

25



2.1.3 Proposition. There is an isomorphism of OiI'—modules
Rk = ZI @za Ry F-

Proof. The proof of this uses the fact that F/k is unramified and by Proposition [1.3.19) O ®0, Op =~
Map(T', Ok ), hence Ry, = 1. The complete proof can be seen in [[Cha84],Corollary 3.8]. O

Recall that by Theorem m F' contains the group of units e, C @ and Proposition says that there
exists a uniformizer mx of K such that mp := 7% € F. In the proof of that Proposition, we have a group of
homomorphism X g /p : A — piep (this is the inverse of # in the proof of the Theorem and it does not
depend on the choice of the uniformizer. We have seen that it is injective, hence isomorphism by comparing
cardinals: A = ffie p.

2.1.4 Lemma. The isomorphism x g /r is also an I'—isomorphism if we let I" act on A by conjugation and
act by Galois action on fi. .

Proof. 1t is sufficient to show that for all o € T',§ € A, we have XK/F(Uéa_l) = o(xk/r(0)).

If 7k is a uniformizer of K such that 7§ € F| then

XK/F(U(SO'_l) = aéo’;}((ﬂ-K) = 0'(5;_7_1(5:;())

= U(XK/F(5))-

The last equality follows from the fact that o~!(7x) is a uniformizer of K whose e power is in F and x g /F
does not depend on the choice of the uniformizer. It follows that x,p is I'—isomorphism. O

2.1.5 Remark. We see that if I' is abelian, then I' acts trivially on A and g, C k.

If M is an O —module, and if we let A act on M by the operation d.m = XiK/F((S)m, M becomes an

Ok A—module and we denote it by M(X;/F).
The next proposition shows that the Op A—module Ry, can be still decomposed in smaller pieces.

2.1.6 Proposition. The action of O on R, factors through F and there is an isomorphism of FA—modules:

e—1
Ri/p ™~ @ (P /P
i=1
Claim. )

Ri/r =~ Ok /pi) (X r)
=1

7

[Cha87], Theorem 2.8. Sketch of the proof of the claim: In fact, from Theorem [1.4.6] {1, 7k, ... ,wf{l} is a
Op—basis of Ok, thus {1®1,...,1®@7% '} is a basis of the free Ox —module O ®o, O . Consider the well
known bijection rg A : K @ p K — Map(A, K). Define u;(0) = X%/F(U%Ui € Map(A, Ok), then one can

show that 7 A (1 ® %) = wiu; and {ug, ..., ue_1} form an Ok —basis of Map(A, Ok). Since (7x)" = pt,
then the claim follows. O
Proof. Let us now prove the theorem. Since prOx = p% C pi, for all i = 0,..., e, then Ok /pt is anni-

hilated by pr so it has a structure of F—module (see notes above Definition . By definition, Ry, p
is an Op-module, hence by the claim, it becomes an F—module and the isomorphism in claim becomes an
FA—isomorphism.

Note that OK/piK(X’k/F) is an FA—module with finite filtration of sub FA—modules:
Ok /P (X 1) 2 Pic /P (Xic/p) D -+ D P /Pl (X /) D {0}
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J+1(

and its associated graded FA—module is given by EB p /P X% / 7). Since e is prime to the characteristic

of F, then FA is semisimple, hence we get

Ok /9% ( XK/F @pk/pﬁ_l Xlk/F)- (2.1)
On the other hand, for each j, we have an F— 1som0rphlsm Ok /v ~ pk /p] 1 by sending [z] — [71'%‘{1:],
where [z] denote the class of x, hence an isomorphism of FA-modules OK/PK(XK/F) o~ pK/p]H(XiK/F).

Combine this with the equation we have:
OK/IJ%(X%/F) =~ @;;EOK/pK(XiK/F) = OK/pK(Xi{/F)GBi'

Observe that the Galois action of A on pi /p’l‘,}|r1 is the same as the action given by multiplication by X% /F
since for all z € p%,d € A, we have

§[ria] = [8(micw)] = X/ (075 8(2)] = X/ p(8) T ).
The last equality follows from the fact that A acts trivially on Ok /px = Op/pp. Thus pK/pl+1 nd

OK/PK(XK/F) are F—vector spaces of 1 dimension on which A acts by multiplication by XK/F Then,
OK/pK(XK/F) (i /pe )@ as FA—modules and the proposition follows. O

2.2 Torsion modules arising from ideals

In this section, we recall the definition of the torsion modules Ty, and Sy/g and prove that they can be
studied locally as the case of Ry/E-

Let R be a Dedekind ring and F its fractional field. Let N be a finite Galois extension of E with group G
and ring of integers S. Let I be an G—stable or G-invariant ideal of S, that is g.a € I for all g € G,a € I.
Recall that for a fractional ideal I of S, the dual of I with respect to the trace Try/p from N to E is the
fractional ideal

This is G-isomorphic to Hompg(Z, R) since the Try, g is non-degenerate map.

By definition, Cn/g := S* and it is called the inverse different of N/E. It is a fractional ideal of S containing
S so its inverse, Dy, which is called the different of N/E is an ideal of S. Of course, Dy, is a G—stable
ideal of S.

For any fractional ideal I of S, we have
I =Cnypl™"
We denote by Ay, be the square root of Cn/g. By the above formula, we have ATV/E = An/E-

As announced in the introduction, to study these two modules we define Ty, := Cy/g/S and Sy/p =

An/E/S.
Denote by Div(I) the set of primes of R below the primes of S dividing I such that for each prime p € Div(I)
we fix a prime q of S above p.

2.2.1 Proposition. Let I be a G—stable ideal of S. For every prime p € R, let n, be the valuation of I at
any prime of S above p. Then there are isomorphisms of RG— modules

S/I ~ @ ZG ®zp, (Sq/4"S,)
peDiv(I)

I7'/S~ @ ZG&up, (47" Sq/S)
pEDiv(I)
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Proof. Write I = [],cpiyr) g 9™ For any p,p’" € Div(I),p # p', we have J[ ,q" + [[;, 9™ = 5.
Applying the Chinese Remainder Theorem with M = S, we have an isomorphism of S—modules

S/T =~ @peDw(I)S/(H q").
qlp

Since I is G—stable, this is also an isomorphism of RG—modules. For any q, q’ dividing p such that q # ¢, we
have q"* +q™» = S, so applying again the Chinese Remainder theorem with M = S, we have an isomorphism

of S-modules
S/(JTa™) ~ ] S/a™

qlp qlp

Set M = S/q"». It is a finitely generated S—module and its completion with respect to v, is given by
My =8,®s M = 85,5 S/q"" ~ Sq/q"" S,.

The last isomorphism follows from the fact that R/I®g M ~ M/IM for any R—module M and commutative
ring R and ideal I of R.

On the other hand, for every q|p, the inclusion S — S induces an isomorphism S/q™» ~ S;/q"? Sy of RDq—
modules. By Lemma [[.4.2] for any prime qo of S,

I_IS/q"p ~ I_IMq ~ Map(G, M) ~ ZG @zp, M,
alp alp

where M = S/qy".
This shows the first isomorphism of the lemma. The proof of the second isomorphism is similar using the
analogue of the Chinese Remainder theorem instead of the Chinese Remainder Theorem [T.4.9]

O

We will apply this Proposition with I = Dy/p, the different of N/E.

Local setting

The previous proposition and lemma allow us to work in local case to treat the modules T g, Sy/p and
Rn/E so let us introduce the local setting of our situation.
Let us start from the local analogue of the isomorphism, rx r introduced above. Recall the isomorphism

TKI: Koy K — Map(I‘,K),

xRy = 00— axi(y),
Let (' xT') act on K ®; K by (4,8 )(z @ y) = §(z) ® §'(y) and define an action of (I' x T') on Map(T, K)
by ((6,8").f)(g) = 6(f(671gd")) for all 6,6',g € T, f € Map(T', K). These operations make 7x A into

(T x T')—isomorphism.

The action of the subgroup (1 x I') on Map(I', K) is the same as the action of I" introduced in the beginning
of the section of Galois algebras when we identify (1 x I') with I".

Recall the definition of Map(I', K)® which is the set of invariant maps under the action of the subgroup
(T'x 1) of T x I". More precisely,

Map(T, K)® = {f : T — K,5(f(g)) = f(g0) for all 6,g € T, f € Map(T', K)}.
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As we have seen, Map(T, K)® is an F—algebra with the pointwise operations and an I'-module where I" acts
as 1 xI'.
Then from Lemma [I.37] there is an isomorphism of both F—algebra and FT'—modules:

Map([, K)® — QI ®qa K, (2.2)
foe Y et (2.3)
~eTl’

Note that, QI'®ga K has the structure of I'=module via its left-hand factor and the structure of an F'—algebra
via its right-hand factor.

Since F' ®y K is an F'—algebra via its left factor and as I'—module via its right factor, then the isomorphism
rk,r induces both an F'—algebra isomorphism and FT'—module:

F @y K ~ Map(T, K)2.
Composing this with the isomorphism in (2.2)), then we get :

FK,FZF®]€K—>QF®QA K.

Since F'/k is unramified then from Lemma|l.3.20) O ®o, Ok is the maximal order of F®; K and ZT' ®za Ok
is the maximal order of QI' ®ga K. Hence from Proposition Tk,r induces an isomorphism of rings and
of OpI'—modules:

OF ®Ok OK ~ 7T QzA OK~
2.2.2 Proposition. For every n € N, the homomorphism 7k r induces isomorphisms of OrI'-modules
Or ®o, OK/]J?{ ~ 71 Qza OK/p?{a
Of Ro, p;(”/OK ~ 7ZI"' @z P}n/OK.

Proof. Consider the following short exact sequence:
0—pg = O = Ok /p% — 0.

Since F/k is unramified, then O is free Oy —module hence flat O —module. We know also that ZI" is free
ZA—module, hence flat ZA—module. Then we have the following commutative diagram of OpI'—modules:

0—— Op Ko, }JTIL( — Op Ko, Ok — Of Ko, OK/]J?{ — 0

] | J

0 —— ZT ®za p} — ZT ®@zA O —— ZI' @zA Ok /9 —— 0

The central vertical arrow is an isomorphism as we have just discussed above. So, the right hand vertical
arrow is surjective. Comparing the cardinals, we have

H(OF ®o, Ok /%) = §(Ok /pi) M = (0K /pi) T 2)) = §(ZT @24 Ok /Pl ).

Hence the right-hand vertical arrow is an isomorphism. By the Snake’s lemma in Lemma[I:3.2] the left-hand
arrow is an isomorphism and the first isomorphism follows.

The proof of the second isomorphism is similar by considering the short sequence

0= O0kx = p" =95 /Oxk =0
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and the following commutative diagram of OpI'—modules with exact rows:

0 —— OF ®0, Ox —— OF ®0, b — Or ®0, px"/Ox —— 0

| - |

0 —— ZI' ®za O — ZI' @za pg" —— LT @za p" /O —— 0

We have seen that the left-hand arrow is an isomorphism. Comparing the cardinals as before it is enough
to prove that the central arrow is injective. To prove this, consider the following commutative diagram of
OrI'—modules:

Or ®o, pg" —— F e K

N

ZT @z p" —— ZT @zn K

The right arrow is an isomorphism from the above discussions. Note that F'® K is the localisation of Or®0,
py " at the multiplicative set k*. Since O ®o, p)" is torsion free Op-module, then the top row is injective.
In particular, the left-hand row is injective. This proves the second isomorphism of the proposition. O

The following proposition shows that the A-modules p"/Ok and Ok /p’ can be decomposed as in Propo-

sition [2.1.6l

2.2.3 Proposition. For each n = 0,... e, the action of O on Ok /p} and pi" /O factors through an
action of Op/pr and we have isomorphisms of FFA—modules:

n n—1.1 i - n o—ij je—(i—1
O /e = @) pic /vl and py" Ok = @i opic /o Y
Proof. We have seen in Proposition that Ok /p% and py"/Ok are both FA—modulES, and they
have the filtrations {p% /p}}i_o and {p'/Ok}iy, respectively. Using the semisimplicity of FA, we have
F A—isomoprhisms:

Ok [Pl = B9 pic /P and p" /O = @751 py! o

On the other hand, the multiplication by the e power of any uniformizer gives a FA—isomoprhism between

—i+1 e—(i—1)

pl}i /P and p?i /P , and this proves the second isomoprhism. O

2.3 Switch to a global cyclotomic field

In this subsection, we will perfom a further reduction relating the modules O /p%, p"/Ok and R/ p to
new torsion Galois modules, associated to the ring of integers of a certain cyclotomic fields.

Let pi. denote the group of e roots of unity in a fixed field algebraic closure Q of Q and let denote by O
the ring of integers of Q(u.).

Let x : A — e be a character of A. For any O—module M, we let A act on M by 0.m = x(0)m. It makes
M into an OA-module and we denote it by M (). We will concentrate with the case M is the residue field
of a prime P of O not dividing e, that is, M = O/P.

Let’s now explain the relation between the module M introduced above and the modules Ok /p%, px"/Ok
and Rg,r. Thanks to the following lemma, we can switch the local case to a global case.
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2.3.1 Lemma. If the character x : A — p. is injective, then there exists an embedding ¢ : Q — @p such
that 1o x = xx/F-

Proof. Define ¢ : Q(ue) — Q, by t(x(6)) = xx,/r(0) for every § € A. Since A and i, have the same cardi-
nality, thus x is an isomorphism. Thus, i is injective since x/r also is an isomorphism.

Then we can extend ¢ to an embedding Q — @p in infinitely many ways and each of these extensions satisfies
the conditions ¢ o x = xx/F- O

Let’s fix now an injective character x : A — p. and an embedding ¢ : Q(pe) — @, such that to x = xx/r
as in the Lemma. Since p., C F, then ¢(O) C Op. Hence via the homomorphism ¢, any Op—module can
be viewed as O-module.

2.3.2 Proposition. Let P be the prime ideal above p such that +(P) C pr. Then for every, natural integer
i and every uniformizer 7 of K, we have an isomorphism of OrA—modules :

Pic/P " = O/P(X) ®osp F.
where O/P(x") ®o,p F is an F—module via its right factor and A—module via its left factor.
Proof. Since K/F is totally ramified, we have F' = K. Then we have an Op-isomorphism:
p:p /P = O/P(X) ©@op F,
mher = 1.

Recall that the Glalois action of A on pi /pi}H is the same as the action given by multiplication by X% /F
since for all z € p%,6 € A, we have

S[mica] = [8(mi)] = [ p (0)70(x)] = [Xic)p(9) 2]

as we have seen in Proposition m hence we have ¢(8.[r%x]) = [1] @ [(XiK/F)(é)x] = [1] ® ux*(8)[x] =
X (0)[1] @ [z] = ([0.1]) = 6.([1] ® [z]). This proves that ¢ is A-isomorphism. O

2.3.3 Proposition. Let P be the prime ideal of O above a prime number p such that «(P) C pp. Assume
that K/k is abelian, and let 0 < n < e be an integer. Then ¢ induces an inclusion O/P — Oy /pi and there
are isomorphisms of O /prI'—modules:

Ok /v ~ Or/pr ®0yp (ZT ®@za (B]2) O/P(x"))),
p"/OK = O /pr @o/p (ZT ®za (S7_O/P (X))

where the right-hand sides of the above isomorphisms are Oy, /pr, —modules via their left factors and I'—modules
via their right factors.

Proof. Since K/k is abelian then p., C k and hence t(O) C O. Thus ¢«(O/P) C Oy /pi and this makes
Oy /pr into a O/P—module. On the other hand, we have

Or ®o,, Ok [Pk = Or/pr @0, /p. Ok /Vi-

By Proposition 2:2.2] we have
Or ®o, Ok [Pk ~ LI @24 Ok [Pk -

From Proposition we get
2T @za Ok /9% ~ ZT Qza (@;!olp%/pﬁ_l)-
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Using Proposition we have

2T @2 (9720 Pic /P ) = 2T @z ((O/P(X') ©osp F)) -

Since Oy /py is an O/P-module, using the properties of tensor product, we can write

Or/pr ®0, /o, Ok /Pl = (ZI @za ((O/P(X")) ®osp Ok/Pk) @0y /o OF /PF-

The isomorphism between O /p% and (ZI' @za ((O/P(x")) ®o/p Ok/pi) now follows from this by cancel-
lation of FT'—modules, which is a consequence of the Krull-Schimidt Theorem:

let A be a finite dimensional algebra over the field K and let M be an A-module of finite type with two
decompositions
M=M®& - -- &M, =N, D---®N,,

into indecomposable submodules, then n = m and there exists a permutatuion 7 of the indices 1,...,n such
that M (;)—n,. The proof of the second isomorphism is similar. O

2.3.4 Corollary. If K/k is unramified, then Ok /px and pi'/Of are free Oy /prl'—modules.

Proof. If K/k is unramified, then it is abelian and A is trivial. In particular e = 1, y is trivial and O/P =T,
which is the field with p elements. Then Proposition [2:3.3] says that we have the following isomorphisms of
Ok /piT-modules:

Ok /v ~ Ok/pi @5, (ZI @5, Fp) ~ Op/piT,
pi/Ok ~ O /p @, (ZI ®p, Fp) ~ Oy /piI.
O

Since we are mainly interested in the modules T/ g, Sn/g, and Py, g let us introduce the following notation
for any prime P of O not dividing e:

Ty (P,0A) 269671(9/7’( ok
S.(P,OA) =@ L. O/P(),

R\(P,OA) =@ O/P()?" (2.6)

Consider the Swan module Y\ (p) = pZA + Tra . Recall that A =< § >, Tra = Zzzgfl € ZA and p is the
residual character of P. Using the decomposition of O/PA given by primitive idempontents, we have an

isomorphism OA-modules
e—1

O/PA ~ @O/P(X )

Let ey be the primitive idempotent attached to x°. Since e € O/P*, then %TrA is an idempotent and we

have
e—1

O/PA/Tra ~ P O/P(x')/O/P(x @O/P =T, (P,ZA).

=0

This shows that T} (P, OA) is independent of the chosen injective character x.

On the other hand, we have the torsion module T (p,ZA) := ZA/ Y A (p) = Fp/(Tra). Since O/P is an
[F,-vector space, then we have

TX(P7 ZA) = T(p7 ZA) ®]Fp O/P
Hence we can eliminate the hypothesis K/k abelian for the case Tk /), = p!=¢/OK (Lemma m)
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Choose P as in the Proposition and argue as in that Proposition, we have Tx/, ~ Ok /pr ®F, (ZI' @z
T(p,ZA)).

We are now ready to prove the main result of this chapter but we recall first our notations:

N/E is a finite tame Galois extensions of number fields with group G and ring of integers R and S, respec-
tively. For any prime ideal p of R we fix a prime ideal q of S dividing p. We denote by Dq (resp. I) the
decomposition group (resp. the inertia group) of q in the group G. Then, the cardinality of I; only depends

on p and we denote it by ey. By Lemma we fix an injective character x4 : Iy — @X and an embedding
tq : Q = Q, where p is the rational number below p such that ¢q 0 xq = xn,/F, Where Ny is the completion

of N with respect to q and Fj is the fixed field of the inertia group I, i.e Fy = NC{ 9. These choices determine
a prime ideal p in the ring of integers O, of Q(uc,) C Q satisfying ¢q(p) C g5, where S; is the valuation
ring of Ng. The injection ¢y makes O, into O, —module. We recall that Ram(IN/E) is the set of primes
of F that ramify in N/E. In other words, if we consider the ideal I = C;]} > Which is the different of N/E,
then Ram(N/E) is precisely the set Div(I). We are going to prove the main result of this chapter:

2.3.5 Theorem. For every p € Ram(N/E), choose a prime q of N above p. Then, with the notation
introduced above, there is an iosmorphism of ZG—modules:

R/p:F,
Tvp~ @B (ZG®up, T(p,Z1,)) P,
pERam(N/E)

Furthermore, for every choice of injective characters xq : Iy — @X for every prime q as above, one can find
primes P of Oc, and injections O, /P — S/q such that there is isomorphism of ZG—modules:

G: S/q:0.
Rye> @ (ZG @z, Ryy(P,0,, 1)) P00 /71,

pERam(N/E)

Moreover, if N/E is locally abelian, then the injections O, /P — S/q factor through R/p :— S/q and there
is an isomorphism of ZG—modules:

R/p:Oc, /P
Svp~ @B (ZG®a, Sy, (PO, 1)) /07,
pERam(N/E)
Proof. Consider the ideal I = C;[}E of S. By definition T g = Cn/g/S = I-1/8S.
By Proposition [2:2.1]
Tnp~ D ZG@up, (a7T8,/S,).
peDiv(I)

By lemma q S, /Sq =Tn, /5,

By Proposition above,
R/p:F
TNq/Ep = (Z‘Dq ®le T(p7 ZIQ))EB[ o] :

Thus the first isomorphism of the Theorem follows using the fact that Div(I) = Ram(N/E).
We now prove the second isomorphism about Ry, g with choices of x4 and ¢4 as described above.

By Lemma we have,

Rye~ B (ZG @z, Ry,sp,) "0
pERam(N/E)

By Proposition [2.1.3] we have,
RNq/EP ~ZDq Oz1, RNq/Fq'
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By Proposition we have,

ep—1

RNq/Fq = @ (quq/quSq)

i=1

By Proposition [2:3.2] we have,
q0'Sq/a"1 S ~ Oc, /P(X}) ®0,p OF, /477 Ta.

By definition

ep—1

Ry, (P,0c,Iq) = @ Oc, /P(x).
=1

Hence using the fact that Sq/qSq = OF, /q/*9Fa | we have:
RN, Fy = By, (P, O, 1) ®o., /P Sq/95-
Finally, using the property of tensor product, we have isomorphism of ZG-modules:
Ry, (P, 0, 14) ®o., /P Sq/a8q ~ Ry, (P, O%Iq)[s/q:oc”/m7

and we have the second isomorphism of the theorem.

Suppose now that N/E is locally abelian. Then E, contains the ezh roots of unity in @; and therefore ¢4

induces an inclusion O., /P — Og, /pOg, ~ R/p. Moreover, using Proposition and we have,
isomorphisms of ZG-modules:

Sn/E =~ @ 7G ®z1, SN, /By,
pERam(N/E)

R/p:O., /P
= @ (ZG ®ZI<1 SXq (P’Oep Iq))@[ & P/ ]
peERam(N/E)

2.4 Classes of cohomologically trivial modules

2.4.1 Definition. Let A be a G—module and let i > 0. We denote by H*(G, A) to be the i*" cohomology
group of G with coefficients in A and H,(G, A) to be the i*" homology group of G with coefficients in A

If G is a finite group and A is a G-module, then there is a natural norm map N: Ho(G, A) — H°(G, A)
taking a representative a to EgeG g(a). The Tate cohomology groups fli(G, A) are given by

e H(G,A) = H(G,A) for i > 1.

o H°(G,A) :=kerN.

e H (G, A) := Coker N.

o H(G,A):=H_(;11)(G,A) for i < -2.

2.4.2 Definition. Let G be a finite group. A G-module M is said to be G-cohomologically free if, for every
i € Z and every subgroup H of G, the Tate cohomology group H*(H, M) is trivial.

2.4.3 Definition. Let A be the ring of integers of a number field and M an AG-module. For any prime p
of A, we denote by M, := A, ®4 M the completion of M with respect to p where A, is the completion of
A at p. We know that M, is an A,-module.
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e We say that M is AG-locally free module if M, is free Ay,-module for all prime p.
e The class group of A := AG, denoted by CI(A) is the group

_ { locally free modules over A}

)

CIl(A) :

~

where ~ is defined as follows: for all M, N locally free modules over A,

M ~ N if and only if M @& A™ ~ N @ A™ for some positive integer n.

The following lemma will be usefull in this section. We will omit the proof but it can be seen in [CV].
2.4.4 Lemma. Let A be the ring of integers of a number field. Let M be a finitely generated AG-module.
i M is AG-projective if and only if it is AG-locally free.

ii M is G-cohomologically trivial if and only if there exists an AG-resolution
0P —>FP—M-—=0

of M with P; locally free, i = 0, 1. In this case the class (Py)~(P;) in CI(AG) is independent of the
chosen locally free resolution of M and will be denoted by (M) a¢.

iii If H is a subgroup of a finite group G and M is H —cohomologically trivial, then the induced module
M @4 AG is G—cohomologically trivial and we have

(M @ap AG) ac = Ind% (M) arr)

where Ind$ : CI(AH) — CI(AG) is the map which sends the class (P)ag € CI(AH) of locally free
AH-module P to the class (P ®ag AG)a¢ in CI(AG).

In this section, we will use this lemma with A = Z but later we will take A to be the ring of integers of a
cyclotomic field. To simplify the notation, we write (M) for the class of M in CI(ZG) instead of (M)z¢.

Local case

Let us start first for the local case. Let K/k be tame Galois extension of Q, with group I' and inertia group
A. Set F = K2,

By [[UII69], Theorem 2], we have that for any a,b € Z, with b > a the ideals p% and pY are I'—cohomologically
trivial. Hence the ZI'-module p% /pY- is I'—cohomologically trivial.

2.4.5 Proposition. For every natural integer m and n such that m = n mod e, we have
(O /rk) = (Ok /pE) € CUZG).
Proof. Assume that n > m and write n = m + ae, for some a € N. We have equality in C1(ZI")

a

(Orc/Pi) = (Oxc /) P /P) = (e /o) TT 070 /o).

j=1
Thus it is enough to prove that for every b € N, (p% /p4¢) = 0 in CI(ZI). Arguing as in the proof of

Proposition p}}(/p?‘e is an Op /ppA-module and since Op /prA is semisimple, we have an isomorphism
of OpT-modules , (in particular ZI'-modules)

P /p%C ~ O /pr @5, FpT

On ther hand, F,I" is a cohomologically trivial I-module with trivial class in CI(ZT") thanks to the ZI'-free
resolution
0 — pZI' = ZG — F,I' = 0.

Hence we have (p4 /p5®) = 0 and the result follows. O
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Global case

We now back to the global case. We recall that N/E is tame Galois extension of number fields with
finite group G. From Proposition 1.3 of [UIl69], every G-stable is fractional ideal of N is ZG-projective,
hence locally free by Lemma In particular, if I is a G-stable ideal of S, then S/I and I~'/S are
G —cohomologically trivial by Lemma again. Therefore, we can consider the classes (S/I) and (I71/9)

in CI(ZG). Note that

(/1) = (1)(S)™" and (I71/8) = (I)"'(S).
Similarly, Ry/g defines a class in CI(ZG). In fact, we know that Map(G, S) is free RG-module of rank 1
hence ZG-free of rank [N : Q]. Noether’s theorem states that S is RG-locally free module, hence S ®p S is
SG-locally free. Thus,
On the other hand, for every prime p of R we fix a prime g of S. For any integer 7, the I;-module O, (qu)
is cohomologically trivial. In fact, for every ¢ € Z and every subgroup I of I;, the Tate cohomology
Hi(I,0., (x4)) is annhilated by e, and p since p annihilates O, (x})-
Since N/E is tame, we have ged(e,p) = 1 and hence H'(I, Oc, (x4)) = 0. Thus, O, (x}) defines a class in
Cl(Z1,) by Lemma

2.4.6 Proposition. Let I be a G—invariant ideal of S and assume that N/E is locally abelian at p € Div(I).
For every prime p € Div(I), we fix a prime g of S dividng p and let n, be the valuation of I at q. (n,

depends only on p.) For every choice of character xq : Iq — @X for every q as above, one can find primes
P C O, and injections O, /P — S/q such that we have equalities in CI(ZG)

myp—1

(S/D= @ P mdf (0, /P(xi) "7,

peDiv(I) i=0

s = @ @de(Oep/P( eﬁ)))

peDiv(I) i=0

[R/p:Oe, /P]

where my, is the smallest nonegative integer congruent to n, modulo ey,. In particular, if I is coprime to the
different of N/E, then (S/I) = (I"1/S) = 1.

Proof. We prove only the first isomorphism since the proof of the second is similar.

By Proposition [2.2.1] we get an isomorphism of RG-modules:
S/I~ P ZGou, Sn,/1" Sy
peDiv(I)
By Proposition and we have the following equality in CI(ZDy) :
(On,/a"On,) = (On,/a™* On,)
= (ZDq Sz, (&% (0o, /PO 17

The results now follows from the Lemma[2.4.4] For the last assertion, we know that if I is coprime with the

different of N/E, then for every prime g dividing I we have I, is trivial. In particular the character yq is
trivial, e, = 1 and O, /P = F,, by Corollary Thus for every ¢ € Z, we have

Indf (O, /P)(xy)) = (e, /P)(xy)) ®z1, ZG)
= (F, ®z ZG)
= (Fp)
=1
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This Proposition can be used to prove the following interesting Theorem. Recall that S ®g S is an
ZG—module by the action for all a,b € S and g € G,

g.(a®b)=a® g(b).
Before stating the theorem, we recall the Chebotarev’s density theorem

2.4.7 Lemma. Let L be a finite Galois extension of a number field K with Galois group G. Let X be a
subset of G that is stable under conjugation. The set of primes p of K that are unramified in L and whose
associated Frobenius conjugacy class o, is contained in X has density i—g In paritcular, this ratio is strictly
positive so there always exist such primes.

2.4.8 Theorem.
(S®@gr S) = ($)V:El in CL(ZE).

Proof. Write n = [N : E]. By the structure theorem for modules over Dedekind Domain, we know that S is
R-isomorphic to R®(™=Y @ J, where J is an ideal of R. By Chebotarev’s density theorem (Lemma ,
there exists an ideal I of R belonging to the ideal class of J and such that I is coprime with the discriminant
of N/E. Thus S is isomorphic to R®(™~Y ® I as R—module. By the property of the tensor product, we
have RG-isomorphisms since G acts only on the right factor of S ®g S:

S®pS~(RorS)E™ D g (Iwgs)~s®gIs.

In partiular,
(S®@r S) = (5)2=1(19).

IS is of course a G—stable ideal of S since I is an ideal of R, then it is locally free because N/E is tame.
Hence S/IS is G—cohomologically trivial by Lemma and we have

(IS) = (S)(S/IS) in CU(ZG).

Since IS is coprime with the different of N/FE, then by Proposition (IS) = (S), and the results follows.
O
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Chapter 3

Hom-representatives

In this chapter, we are going to prove the Theorem in the introduction which is the core of this work as
we said. We apply Frohlich’s machinery to get a description of Hom-representatives of the classes involved
in its statements.

We now focus on the cyclotomic fields to study the modules 7, R and S. Let’s recall the notation in the
introduction.

We fix an integer e, a cyclic group A =< § > of order e and an injective character xy : A — ., where pi,
is the group of €' roots of unity in Q. We denote by O the ring of integers of the cyclotomic field Q(p).
Let p be a rational prime such that pr e and let p be a prime of O above p. Set k = O/p . To simplify the
notation, we set

Tz = T(p, ZA)7R = RX(]J, OA),S = Sx(pv OA)
We fix a primitive e root of unity ¢ € u. and for § € A we define by x(6) = ¢.

3.1 Hom description of the class group

3.1.1 Definition. (The group of idele)

Let L be a number field and O its ring of integers. Set Q7 = Gal(Q/L). The ring Az, of finite adeles is
defined as the set of elements = (z,,), in the direct product of the completions L, of L at the finite primes
p of L, such that, except for finitely many prime p, the components z; lie in the valuation ring Op, , of L,.
More precisely,

Ap ={z = (xp)p € HLp,xp € O, for almost all primes p}.
P

The group of finite ideles J(L) is the group of units of A;. An adele (z,), is an idele if and only if its
components are all non-zero and except for finitely many p, they lie in the units of Oy, ;, that is

J(L) = {z = (zp) € HLp,xp € ijp for almost all primes p}.
p

For any extension F' of L we have
AF =F XL AL-

If F/L is Galois, we thus get an action on A by the Galois group G = (Gal(F/L)), via its action on F' and
this action induces an action J(L). The action on ideles is defined as follows. Let x = (z4)q be an idele of
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F. We know that the group G acts transitively on the primes q above a given prime p of L. For any prime
q of F, an element o € GG induces an isomorphism o : Fy — Fy(q). So the idele oz is the idele given by

(0)g(q) = 0q(2q)-

It follows from the above that J(F)%t = J(L).

3.1.2 Definition. (The group of virtual character)

Let G be a finite group. The group of virtual character Rg is the Z-linear combinations of the irreducible
characters of G. R can also be equipped with a ring structure coming from the tensor product of represen-
tations (Theorem [1.3.28)).

If G is Galois group of extension of number fields F/L, then G acts on Rg by acting on the values of the
characters: that is, for any o € G and x € Rg

(e.x)(9) = a(x(9)),9 € G.

If F is a big enough extension of L contained in Q, contains L and the values of the characters of G then
we can consider the group of all homomorphisms between the commutative groups R and J(F') and which
commute with the action of G i.e: the group of Galois equivariant homomorphisms

HomG(RG7 J(F))

We know that F'* can be embedded diagonally in J(F'), hence we get a subgroup Homg(Rg, F*) of
HOHIG(RG, J(F))

Let U(Op) denote the ring of finite integral adeles of L, that is the product over all prime ideals p in Of, of
the completed localisations Oy, , of Of..

We define
UOLG) =[] OLpG* C [ LpG™.
P P

Recall that by Lemma [T.4.2] we have
Feor Ly~ [] F,
alp

then, (F'® Ly)* can be embedded in J, (F) == ][, Fy"
Let us now define the determinant homomorphism Det:

Let © = (zp)p € [, LpG™. The the determinant homomorphism Det(z) = (Det(xy))y is defined componen-
twise. For each prime p of L, the component Det(z,) takes values in (F ®;, Ly)* C J,(F'). So we only need
to define Det(z,) for each prime p. By linearity, it is sufficient to define Det(z,) only on the irreducible char-
acters x of G. Write z, = ) geG Tp,g9, and let x be an irreducible character of G with matrix representation
X = (aij)i,j. Then we define Det(z,(x) to be the determinant of the matrix

Z aij(9) ® Tp g ,
9e¢ irj
where > aij(9) ® xp 4 € F @ Ly.

We are now ready to give the Hom-description of CI(Of,G) which is the group

Homg (Rg, J(F))
HOII1G<RG7 FX> Det(U(OLG))
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In case where G is abelian group, we know that each character is of dimension 1 so there is no determinant.
Thus using the notation as above, we have

Det(zy)(x) = Z zp X (9)-

geG

In our cyclotomic setting introduced above, we shall only be concerned with the cases where L = Q,F = Q(1.)
and G = A. We are now in the case that A is abelian even cyclic, so we have the simple formula of the
determinant map. This is why we do the reduction to the inertia group in Chapter 2.

3.2 Hom-representative of (77)

Let us consider the Swan module ) » (p) := pZA+Tr ZA and its associated torsion module 7z = ZA/ > 1 (p).
We have the following exact sequence of ZA-modules:

0— Z(p)—>ZA—>7'Z—>O.
A

By Swan, > 1 (p) is ZA-projective so locally free by Lemma Therefore, Tz is A-cohomologically trivial
and 7z and ), (p) define the same classes in CI(ZA), that is

(T2) = ( 3 (p) in CUZA).

A
So we are going to find a representative of > 1 (p).

3.2.1 Lemma. The class of the Swan module ) (p) in CI(ZA) is represented by v € Homg,(Ra, J(Q))
which is defined by for any h = 1,...,e and any rational prime ¢, the ¢'"component of v(x") is given by 1
if ¢ # p or h = e, and given by p otherwise.

Proof. Since )", (p) is locally free ZA-module, then for any rational prime ¢, the Z;A- module Z, ®z ) A (p)
is free of rank 1. We are now going to find its generator o.

If ¢ # p, then pZy = Zq and Zg @7 Y A (p) = ZgA. Thus, we can take oy = 1.

If ¢ = p, we consider the idempotent elements ¢y := éTrA and € := 1 — ¢g. Since e is coprime to p, then e
is invertible in Z, and €y, €1 € ZyA. By definition of 3 (p), we have Zg ®z 35 (p) = pZpA + 1Z,A. Take
o, = €9 + per. We have to show that (e +pe1)ZqA = Zg @7y A (p). Clearly, g + pey € pZ, A+ %ZqA. The
other inclusion follows by writting p = (e + pe1)(peo + €1) and €y = (€g + peq)ep since ege = 0.

On the other hand, by Frohlich’s theory, the homomorphism x" ~— (Det(c,)(x")), represents the modules

> a(p) in Homg, (Ra, J(Q)). By computation Det(ay,)(x") = p + (1 — p)dp,c, where . is the Kronecker
Delta. Thus the lemma follows. O

3.3 Hom-representatives of (R) and (S)

In this section, we will find the Hom-representatives of (R) and (S). Recall that in the previous section we
saw that (with the assumption that e is odd for the case of S.)

e—1 e—1
R = H k(x")" and S = H r(x).
i=1 i=e+1/2
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Thus we have the equalities of classes

e—1 e—1
(R) = () and (8)= ] (x())-
i=1 i=et1/2

Since the Hom-description is a group isomorphism, then we are done once we have the representatives of
k(x*) foralli=1,...;e—1.

Let’s now compute the Hom-representative of x(x?) for a fixed i. Recall first that A =< § > is cyclic of
order e and £(x?) is an OA—module with underling set x = O/p and with A-action defined by

b.x = x'(8)z = ', for all x € k.
Before computing this, we have to introduce a new OA-module M; defined by
M; == pOA + (5§ — (HOA.

The next lemma shows that M; is locally free and gives us a precise local generator. The proof can be seen
in [Proposition 3.4 of [?]].

3.3.1 Lemma. For avery prime q of O, Oy 0o M; = x;,;0qA where

1 if q #£p.
Tijq = .
1+(p—1)¢ ifgq=p.
and €; = %Zj;é (679 € OgA. In particular, the OA-module M; is locally free.

3.3.2 Proposition. The OA-modules x(x*) and M; define the same classes in CI(OA). Furthermore, the
homomorphism v; with values in the ideles group J(Q(()), defined at any prime q of O by

ony )P if g =p,i = h(mod e).
vilxa = {1 otherwise.

represents the class of (k(x"))oa in Homg, (Ra, J(Q(C)))-

Proof. We show the first assertion. Consider the homomorphism of OA-modules

bi : OA = k(X"

sending 1 to 1. In particular, we have ¢;(§) = (*. Clearly, ¢; is surjective since O — k is surjective. By
definition of M; we have M; C ker(¢;). On the other hand, we have {OA/M; = §O/p. Thus we have the
following exact sequence

0 — M; = OA — r(x") — 0.

We know that OA is free ZA-module, so it is A—cohomologically trivial. We have seen also that (x?) is
cohomologically trivial. By Lemma [3.3.1] M; is locally free. So by Lemma [2.4.4] we have

(k(x"))oa = (OA)pa(Mi)oa = (Mi)oa in CI(OA).
This proves the first assertion.

To prove the last assertion, by Lemma m X" — (Det(z;,4)(x"))q is a representative of (k(x*))oa in
Cl(OA). Consider the idempotent ¢; = < Zj;é (Y det™ as in Lemma
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If g # p, we have z; 4 = 1 and (Det(z; 4)(x"))q = 1.
If g=p, we have x;, =1 + (p — 1)¢; and

(Det(ip)(x"))p = (Det(1+ (p — ) (x™))p

e—1

= 0+ 22 () + 1 3 )
j=1
D 16—1 ’
=1 (i=h)j
+— Z¥ )

If i — h # 0 mod e, then Z;;} ¢(=Mi = 0 by the well known fact saying that the sum of all n** roots of
unity is 0.

If i — h = 0 mod e, thus Z:;i ¢(i=MJi = ¢ and the result follows.
' O

By the above Proposition, we get a representative of the class (k(x"))oa. Now, we want to find a represen-
tative of the class ((k(x*))za). In order to find it, as usual we take the norm of v; but here we have to define
the norm of a homomorphism, denoted N (v;) = Ng(c)/q(vi)-

3.3.3 Definition. For each h = 0,...,e — 1, the q*"* component of NV'(v;)(x") is defined by

= (] o7 - (wi(e:x")))q-

gEA
where o.x" is the action of o on x" and o~1.v;(0.x") is the action of o' on the idele (v;(c.x")4).

Since A is cyclic, using the following notation, we can re-write A/ (v;) precisely.
Let us recall some basic results from number theory.

3.3.4 Remark. Denote 1o to be the n mod e. We have a group isomorphism,

o: (Z/eZ)* — Gal(Q(¢)/Q),

n o= o,(0)=¢".

This sends the subgroup generated by p to the decomposition group of p dividing p. We have only one
decomposition group D since the extension is abelian.

In particular, o,(p) = p. Thus for any A € Z/eZ)*/ < p >, or(p) = or(p).D for any lift A € Z/eZ)* of T.
Then we can denote by or(p) the ideal oy (p) for any lift A of A. Note also that oa(p),A € Z/eZ)*/ < p >
are the prime ideals of O above p and for « € Z/eZ)*, we have

Ta(p) = oa(p) & a € A. (3.1)

Using this notation, we can write
N (i) (X")q —HU vi(X" )i (1))

where the product runs over the integers £k = 0,...,e — 1 and coprime to e.

The following Proposition gives us an easy formula of N'(v;)(x")q. Set n(A, i, h) = #{a € A, ai = h} for any
i,h € {0,e—1}.
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3.3.5 Proposition. For any prime q of O and for any h =0,...,e — 1, we have

1 ifqtp
N(@w)(x")q = ,
@) s {p”(A’“h) if q=o0a(p) for some A € Z/eZ)*/ <p>.

Proof. 1f q 1 p, it is clear that NV'(v;)(x")q = 1.

If q|p, then it is of the form q = oa(p) for some A € Z/eZ)*/ <p > .

For any integer k =0,...,e — 1 and coprime to e, we have
k(@) =p & oalp) =ok1(p)
& kel

By Proposition [3.3.2] we have

5oy =7 L k7€ Ai = hkmode,
K 1  otherwise.

O

3.3.6 Remark. For any divisor d of e, denote by f; the multiplicative order of pmode, hence f. = f the
residue degree of p over p. It is not hard to prove that n(A,, h) satisfies the following property
If ged (i, e) # ged(h, e) then n(A,i,h) = 0.

If ged(i, e) = ged(h, €), we can write e = de’, h = dh/ and i = di’. One has

f/fer it (W mode) € (¥ mode’)A
0 otherwise .

n(A,i,h) = {
where A’ = (Amode) € (Z/e'Z)* /{(pmode')).

3.3.7 Corollary. Denote by r and s the representatives of (R) and (S) in Homg, (Ra, J(Q(¢))), respectively.
For any h =0,...,e — 1, we have

o if qfp then r(x")q = s(x")q = 1,
o if g =0,(p) for some A € nZ/eZ)*/ < p > then

e—1 .
T(Xh)q — pzi=1 m(A,z,h)7
¢ esn n(Asish)
S(Xh)q =P =g .
Proof. In fact, we know that
e—1 e—1
R= H k(x")" and § = H K(X")-
i=1 i=e+1/2
Since (k(x*))za is represented by N (v;) Hence
e—1 e—1
r:H./\/(vi)l and s = H N(v;)".
i=1 =l
Applying the previous Proposition, the results follows. O
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3.4 Contents of r and s

3.4.1 Definition. The content of an idele z = (z4)q is the fractional ideal cont(z) = [], q'#la(z4) of O
where valg is the g-valuation and the product runs over finite prime ideals q of O.

3.4.2 Proposition. For i,h € {0,...,e — 1}, we have

cont(N(w)(x")) = pxanhimo, (3:2)
cont(r(x")) = p¥aizin(hihn, (3:3)
cont(s(y")) = e (3.0

where A runs over (Z/eZ)*/ <p > .
Proof. By Proposition [3.3.5]
if 9 4 p, N (vi)(x")q = 1 and valy(1) = 0,

if ¢ = oa(p) for some A € Z/eZ)* | < p >, N(v;)(x")q = p"™4M) and valy(pn5M) = n(A, 4, k) valy(p) =
n(A,i, h).
Thus we have the results. O

3.4.3 Remark. The homomorphisms N(v;),r and s are determined by the values at x¢ for any d dividing
e. In fact, for any h = 0,...,e — 1, if d =ged(e,h), we can write h = dh’ where b’/ and e are coprime.
Therefore, X" = oj,,.x?. By construction, N (v;),r and s are Qg-equivariant, hence we have

N@)(X") = N (i) (on X)) = on N(v;).

Similarly for » and s.
In the remaining of this chapter, we are going to find the explicit values of N'(v;),7 and s on x¢ for any d|e.
That is, to give an expresion of the value p2oa ™(Anh)oa

Recall that if e = de’, (o := ¢¢ (Thus we have (. = () is €’*" root of unity with Q(¢./) € Q(¢.) and
[Q(¢er : Q] = ¢(€¢’) (The Euler function of ¢’).

For any o' € (Z/e'Z)*, denote by o o the automoprhism in Gal(Q(¢er)/Q) sending (s to ¢% ( thus
Oc,a/ = Uoz’)-

Hence, ge/ o can be lifted in A in ¢p(e)/¢(e’) many ways.
To simplify notation, we shall write o/ ; instead of o¢/ j mod ¢ if j is an integer coprime to e’.
Set O, := Z[(./] the ring of integers of Q((./) and ps = p[) O . In particular we have p, =p, 0, = O.

As in Remark [3.3.4] if A’ € (Z/e'Z)* /((pmod e’)), we denote by oas(per) the ideal o, o (per) for any lift o
of Nin (Z/e'Z)*.

Using these notations, we have the lemma about the content of A (v;)(x").

3.4.4 Lemma. Let d|e and write e = de’. If A’ € (Z/e'Z)* /{(pmod )}, then

> oalp) = on(pe)O,

AN’
where the sum is on the elements A of the coset A’ in (Z/e'Z)* /{(pmode)).
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Proof. Let A€ Z/eZ)* ] < p > and A’ € (Z/e'Z)* /{(pmode’)). Since p|p., O, we have

on(p)lon (pe O) = T,y — TN

This implies that A € A’ and oar (perO)| Dy cnr oA (D).

On the other hand, p|pes is unramified since p 1 e, then the number of primes of O above p./ is given by

—

ple
‘P(Jf/) _ ﬁAI
Jer

Thus, the equality follows. O

3.4.5 Theorem. Let dle and write e = de’. Then we have

O Zf ng(ia 6) 7é d
cont(N(v;)(x")) = ;
tN (0:)(X9)) {(UA; (perO)) 7 if ged(i,e) = d,

where i = di’ and N, € (Z/e'Z)* /{(pmod e’)) such that (imode’)~t € AL

Proof. Since ged(d, e) = d, then in the case ged(i, e) # d, the result follows from Remark and Proposi-
tion

If ged(i,e) = d, we can write e = de/,i = di’ such that ¢ and e’ are coprime. Take A, € Al €
(Z)e'Z)* /{(pmod e’)) such that (imode’)~! € A}. From Remark

f/fe HAEA,
0 otherwise ,

n(A,i,d) = {

a
hence by Proposition [3.3.5, we have (o4:(perO))7e . Applying the Lemma |3.4.4 then we get the wanted
result. O

For the contents of r and s, we need to introduce further notation. For any e’ divisor of e, we set A’ to be
the Galois group of Q(.) over Q({/) and Z := o~ (A’) where o is defined in Remark
Denote by N, the relative norm

Ne,e/ = Z Oq € ZA/,
aEZ

and by ©. the Stickelberger’s element,

1 .
O, = i Z]O’e/}j € Q(¢er)
J
where the sum on j runs over j =1,...,¢/ — 1 and ged(¢’,j) = 1.

Note that N, is the absolute norm.

Thus we have the following theorem:

3.4.6 Theorem. Let d be a divisor of e and write e = de’. We have

cont(r(x?)) = (€Q¢ Ne o (p),
cont(s(x)) = (2 — 01 2)Oc Ne o (p).
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Proof. We prove this by computing the two sides of the equality.

f/fer

Since N e is the relative norm, then we have N, ./ (p) = p./’<’O. Replacing O, with its value, we have

€Oc Ne e (p) = p*

where

T = dff/ Z Z J UX,l

A 0<j<e’—1
j mod e’€eA’

and the first sum runs over A’ € (Z/e'Z)* /{(pmod ¢e’)).

For the left-hand-side. Using Proposition and Remark since ged(e’, d) =ged(d, e) = d, we have
cont(r(x?)) equals p¥ where the value of y is given by

, f f y
y::Z Zdzg UA:dEZ Zz ZJA,

A \i'eH, A \ieH!, Aen’

where Ho := {i/,0 < ¢ < ¢ —1,1mode € (i mod ')A}, H,, := {i'/,0 < i < ¢ —1,1mode €
(¢ mod €')A’}, A runs over (Z/eZ)* < p > in the first sum to the left, A’ runs over (Z/e'Z)* /{(pmod €’)) in
the first sum to the right, and seen as a coset of (Z/eZ)* < p > in the last sum to the right for the reduction
modulo €'.

By Lemma we have cont(r(x?)) equals (p.rO)* where the value of z is

z = dff E E i’ E oA,
¢ N 0<i'<e'—1 AEA’
1€(i mod e')A'~?

and the two sides are equal. O

We do similar calculation for the content of s.
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Chapter 4

Explicit unit elements

In this chapter, we are going to find explicit unit elements associated to the classes, 7z, R,and S in CI(ZA).
We will see that, they lie in the denominator of CI(ZA) so we get easily their triviality.

4.1 Cyclotomic unit to describe (77)

The triviliaty of 77 is a well know result of Swan. Since we have computed a representative v of Tz in the
previous chapter, what we will do next is to modify v by an equivariant function on character of A with
values in Q*. This is the simplest case since we will use a well known result in cyclotomic units but for the
case of R and S, it will be slightly complicated since we will use Jacobi and Gauss sums instead of cyclotomic
units. We have the proposition

4.1.1 Proposition. The class of ) . (p) is represented in Homg, (Ra, J(Q(()) by the homomorphism with
q*"-component at a prime q of O given by

1 ifqfe,
Det(p~tuy) if qle,
where u, = Y070 6 € ZA.

Further, if q(Z = ¢Z with ¢ # p, then u;, € Z;A*.
Consequently,

(T2) = (3_(p) = 1 € CI(ZA).

A
Proof. Consider the embedding

J@Q = J(Q©),

(zq)g = (q)q
given by x4 = x4 if q is a prime ideal of O above the rational prime g. Thanks to this embedding, we can
look v (defined in Lemma (3.2.1) as a morphism with values in the idele group J(Q(¢)). By Lemma we
have that
1*5;7,,6)

cont(v(x")) = (p a principal ideal of O.

Consider the morphism ¢, € Hom(Ra,Q*(¢) defined by
1 if h =e,

Cv(Xh) = 1- Ch
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It is easy to see that this is Qg equivariant, then wvc,!

1—¢ph
1-¢h
Homg, (Ra,U(Q(€))). By [[Fro83], P.23 1. (2.19)], ve, ' € Det(U(9M)) where M is the maximal order of QA.

is an other representative of > \(p). A well

known result on cyclotomic units says that is a unit, thus belongs to O*. It follows that ve, ! €

If g t e, since My := M ®z Zq = ZyA, Mo = RA, then we get (ve,!)q € Det((Z,A)*) if qf e and g|g. The
case (le, will follows from the following lemma.

4.1.2 Lemma. Let q be a prime ideal of O dividing a rational prime ¢ # p. Then
(vey g = Det(p™ue),
and u; € (ZgA)*. Thus (veyt)q € Det((ZgA)*).

Proof. Let h € {1,...,e}.

If h = e, then x® =1 and Det(ut)(x¢) = p.

1—¢ph

1—ch-

Since p # g, then q{p. Thus v(x")q =1 and p~! Det(u:)(x") = (veyt)q = Det(p~uy).
As in the above proof, (ve, '), = Det(w,) for some w, € M.

If he{l,...,e—1}, then Det(u;)(x") = 32020 x"(6") = S2P—) ¢h =

Hence Det(w,) = Det(p~'u;). Since A is abelian by Frohlich [[Ero83],11(5.2)], we have wq = p~uy.

Since q 1 p, then
pluy € MI N ZGA = (M NOGA) N ZgA = (OA)* N ZgA = (ZgA)*
thus for u; O

To finish the proof of the Proposition, change vc, ! by multiplying its q*"-component whenever q 1 ¢, by
its inverse, we get the representative stated in the proposition. We have seen now that ve, ! € Det(U(Q(()))
which means that >, (p) has trivial class in CI(ZA). So the assertion about 7z in Theorem is now
achieved. O

4.2 Gauss and Jacobi sums to describe (R) and (.5)

The aim of this section is to compute the Gauss and Jacobi sums of R and S so let’s start from the definitions
of Gauss and Jacobi sums. .
Denote by oo the group of unity in Q" . Let £ € uo an element of order p.

For ¢’ divisor of e, we denote by O, := Z[(./] the ring of integers of Q({./) and p. = p N O, the prime ideal
of O, below p. Let 6 denote a multiplicative character of O, /p./, that is

(Oe’/pe’)x — Hoo-
By the convention (0) = 0, this is extended to O,/ /pr.

4.2.1 Definition. The Gauss sum relative to 6 is

GO):= >, 0@,

€O 1 [P

where Trer : Op /per — Z/pZ is the residue field trace homomorphism.
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4.2.2 Definition. For any z € (O /per) ™, (f/) is the e/*" root of unity defined by the congruence

X pf'f' -1
=z < modpe.
Per

—1
We are interested in case 6 = (W) , the inverse of the e/*" power residue symbol, that is the inverse of

the above symbol.

4.2.3 Lemma. Suppose that 6 is a multiplicative character of O, /p. with values in 0 U p.r, then G(6) €
O €] and we have
G(0)° € O,

Proof. There is nothing to prove for the first asseertion.

For the second assertion, let 7 € Gal(Q(Cer,€)/Q(¢r) and 8 € F) b such that 7(€) = £°. Since § is a unit,
then the map

Oe’ /pe’ — Oe’/pe’ (41)
x = P (4.2)

is a bijection. Hence we get

T(GO) = Y O™,

IEOC//[JC/
= > 0BT W,
yeO, 1 /por
=0(8)7'G(0).
The second equality follows from the above bijection. Since 6(8) € e, then we have G(0)¢ Oy, O

—1 ,
If we set Ger = G((;) ), by the above lemma we have G¢, € O,.

4.2.4 Definition. Let 0,6 be multiplicative character of O /p.,. The Jacobi sum relative to 6 and ¢’ is

J0,0):= > 0x)f(1—x)
QSEOE//}JE/
The Gauss and Jacobi sums are related by the following theorem:

4.2.5 Theorem (Theorem 2.1.3,[BCWYS|). If 06’ is non trivial character, then

GO)G©)

J10,0) = G(00")

-1
Since we are interested in 6 = (ﬁ) , we set

= J(<pe/ ) R (pef ) 5

Recall that o, 2 is an element of Gal(Q((./)/Q) sending (s to ¢%. We lift it in Gal(Q({r,£)/Q) in such a
way that o/ 2(§) = &, and we still denote it by o¢/ 2.
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Thus we have
Joo = (2= 00 2)Ger € Opr.

We have the following result about the ideals of O, generated by G, and J. using the Stickelberger
element defined by O, = & > joot. € Q(Ce)(defined below the Theorem . Recall the notation

J
Ao = Gal(Q(¢er)/Q).
4.2.6 Theorem. We have (2 — 0/ 2)Oc ZA.r, and
(Ge’) =0y (pe’) and (Je’) = (6/ - Ue’,2)®e’ (pe’)
As a consequence of this Theorem, we get that the fractional ideals cont(r(x?)) and cont(s(x?)), where
dle,e = de’, are principal ideal of O generated respectively by
(Gl ) and (J/7)
As we did in the case of 7z, we define two elements ¢, and ¢, in Homgq, (Ra,Q(¢)™).
For any d|e,e = de’, we define
er(x!) = (“)° (=G ) and () = —(= )
We get the following result as a corollary

4.2.7 Corollary. The homomorphisms rc,; ! and sc; ! belong to Det (U (9)), where O is the maximal order
of QA.

Proof. For any d|e, we have (c,.(x%)) = (cont(r(x?))) and (cs(x?)) = (cont(s(x?))), thus, re;t sc;t €
Homg, (Ra,U(Q(¢))). By Frohlich again, we have the desired result. Note that rc;! and sc;! are still
representatives of R and S, repesctively. O

The result does not depend of the the signs in the definition of ¢, and ¢; but the choice of these signs will
be clear later in the proof of next result. We are now going to prove the Theorem [1.2.2| concerning r and s.

4.2.8 Theorem. The homomorphisms re; ! and sc;! belong to Det(U(ZA)). In particular (R) and (S) are
trivial in CI(ZA.)

Proof. Using Corollary and arguing as in Proposition we have that if q { e but qlg , the g'h-
component of r¢; b and sc; ! are in Det(Z,A%).

It remains then to prove the theorem for the case qle.

If gle, then q { p, and the Corollary gives

(7"0,‘1)UI =¢, 1 and (scs_l)q =7t

s

S

where ¢, !, c;! are seen as moprhisms with values in Q(¢), diagonally embedded in J,(Q(¢)) = T4 Qg
O

4.3 Unit of S

Let i € {0,...,e — 1}. Set

A ={ze€0fp: (i)l <1px)1 = (',

e—1
Je = ancl

1=0

and n; = ﬁAIL
By definition of J., we have
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4.3.1 Lemma. Let ug := Zf;& n;0" € ZA. For any prime ideal q above a rational prime ¢ such that gle,

we have u, € (ZA)* and the q*" component of sc;! is given by
(s¢1)q = Det(ur) € Det(Z,A)7)

Claim. For any dle, (e = de’), Det(us)(x?) = —(—Ju )7/ 1.
In fact, The Davenport-Hasse theorem in [[BCWO9g|, Theorem 11 3.5] gives us that

-1

N (@)\ ' /N (1—x)
_) =1 gt e (H) (ee) ,
(=1) e > ; ;

zeO/p

where N, . : O/p :—= O/ /per is the residual relative norm.

d of 1 d
By definition, for any = € O/p, we have (%) = (sc e ) mod p.

On the other hand, we have

f/fer—1 pfe _1 1 f/fer—1 f/fer—1
Z P e/t g( Z pfe/(t-‘rl) _ Z pfe/t)7
t=0 t=0
1
f—1
)
e
hence ,
L pfe//_l
(:E tf/g/ 1pf/tpe/, ):([L‘ {/S’ lpf/t> € ,
fe/7
= N. (x)"7 modp.
Thus,
) =57
p Per ’
and

S ONCON

z€0/p
e—1 .
= Z niCZdv
i=0
= Det(us)(x?).
The case q1 e is already done. For gle, we have seen that for any d|ee = de’,
(scs1)q = c5! hence (sc;1)q(x?) = —(=Je)~T/f = Det(u;!)(x?).Corollary implies the existence of
wq € M such that

(56;1)q = Det(wyq))

53



Thus
Det(wq) = Det(us).

As in the proof of Lemma we have
wq = us € M NZGA = (ZgA)*.

And it completes the proof of the claim. To complete the proof of the theorem, we just argue as in the proof
of Proposition [f.I.1] to get the desired representative of S.

4.4 Unit of R

For the proof of R, we have to introduce further notation in order to get a similar proof of S. Let 6 be a
multiplicative character of O/p.
Define,

Ce:={(k1,... kpr) EN,Z = e},

the partition of e into sum of p/ integers.
Since #(O/p) = p/ their elements can be written as x5, h = 1,...,p7.
Denote Tr to be the trace map from O/p to Z/pZ. Since Tr is linear and € is multiplicative, using the
Binomial formula, we have
o

! f
G(@)e — Z €. 9 H xl}ih fTr(Zﬁ=1 knzn)

I
Ce Hh:l k! h=1

For j € IF, define
s

P
Ceoji={(k1,..., kps € Ce, Tr(D_ knwn) = j},
h=1

and

p!

9;(0) == Z _ 0 H xih

i
Ce,j Hh:l k! h=1

We have a nice formula of G(6) similar to Je:

GO => g0 = > (9:00) - (0)¢.

J€eFp jeF,—{1}

Assume now that 0 takes values in {0} U p, then G(0)¢ € O and we have
G(0)° = 90(0) — 92(0).

For j € F, and i € {0,...,e — 1}, we let
p’ '
Ce,j,i(e) = {(kl,...,kpf S Ceyj,e Hitih = Cl},
h=1
and

mi(0) = Z ‘e! B Z el

ot . ol 5
p | p |
Ce,O,z‘(G) Hh:l kh' Cﬂwlyi(g) Hh:l kh'
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such that m;(0) € Z,,i=0,...,e — 1 and
e—1 )
G(0)° =2 mi(6)".
i=0

If 0 is a multiplicative character of O/p taking values in {0} U p. and d is any divisor of e, it is not hard to
check that

e—1
G0 = mi(9)¢*.
i=0
-1
Ifo=|(- , we set G, := G(0) and m; :=m;(f) for all i =0,...,e — 1.
P

Set also u, := Y7, m;d" € ZA.
Using these notations we have for any prime g above a rational prime gle , u, € (Z;A)* and

(re;t)q = Det(u; ) € Det((Z,A)%).

and arguing as in the proof concerning 77 and S we get the desired result.
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Chapter 5

Conclusions and counter example

To summarize what we have done, in tamely ramified Galois extension of number fields N/E with group G
and ring of integers S and R, respectively, the Galois module inverse different Cy/p defines the same class
as S in CI(ZG), it means that asking the freeness of Ciy/p on ZG is exactly the same as asking the freeness
of S on ZG which is nothing that the normal integral basis problem.

We proved that the torsion module Ry, g is trivial in CI(ZG). This triviality of Ry/g gives a nice result
saying that S ®x S and SIVFl define the same classes in CI(ZG).

If N/E is locally abelian, then the square root Ay,p and S define the same classes in CI(ZG).
Thus it is the same case as that of Cn/p -

These can be putted in one Theorem which is the Theorem [[.2.3] in the Introduction stating that

5.0.1 Theorem. Let N/E be a Galois tamely ramified extension of number fields. Then the classes of
Tn/gs Ry and Sy/g are trivial in CI(ZG). In particular, we have

(S) = (Cn/p) and (S @g §) = (§)NF =1,

If further N/E is locally abelian, then the class of Sn/g is trivial in CI(ZG). In particular we have

(5) = (An/E),
thus S,Cn/p and An/g define the same class in CI(ZG).
This theorem is obtained easily from Lemma [2.4.4 and Theorem [I.2.2]
However the class of the square root of the inverse different, Sy, is not trivial in general. Recall that we
always worked under the assumption that N/E is locally abelian or N/E is of odd degree in dealing with
the torsion module Sy, associated to An/g-
Luca Caputo and Stéphan Vinatier say in [CV] that there exists a tame Galois extension N/Q of even degree

such that Ay/p exists and has nontrivial class in CI(Gal(N/Q)). Proving this needs more further notion
which can be considered as a future work.
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They give a precise example by taking N to be the splitting field of the polynomial

f(X) =X —3X% —2X22 1 16X%1 — 12X £ 52X19 — 324X 18
436X 17 4+ 3810X 10 — 1638X 15 — 8012 X1 — 12988 X 13+
67224X 12 — 76152X 1 + 41175X 10 — 3958 X% + 70068 X~
66440X 7 + 38488X° — 23248 X° + 16672X* — 6976X3 + 2816 X2 — 1280X + 512.

In this extension, they proved that the classes of Ay,p and Oy are both nontrivial in CI(ZG) where G is
the Galois group of N/Q.
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