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Abstract

Let E be a number fields with ring of integers R and N be a tame galois extension of E with group G.
The ring of integers S of N is an RG−module, so an ZG−module. In this thesis, we study some other
RG−modules which appear in the study of the module structure of S as RG− module. We will compute
their Hom-representatives in Frohlich Hom-description using Stickelberger’s factorisation and show their
triviliaty in the class group Cl(ZG).
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Chapter 1

Introduction

1.1 Statement of the problem

The theory of Galois modules is a usefull topic in Mathematics, especially in Number Theory. For example,
let N/E be a finite Galois extensions of number fields with group G, and let R and S be the ring of integers
of E and N , respectively.

From Galois theory, a well known result says that the EG−module N has a normal basis, that is N ' EG
as E-vector space. For a long time, people wondered whether the same result holds for the RG−module S,
namely, is RG ' S as RG−module. This is the normal integral basis problem.

In general, the answer is no. Since R is not always a principal domain, there are examples of extensions N/E
with S is not free over R. In tame case, Noether’s theorem states that S is locally free. This allows to define
a class of the ring of integers S in the class group Cl(RG), which is the quotient of the set of locally free
RGmodule by stable isomorphism. The class group Cl(RG) measures how far a module is being free over RG.

So the question becomes, let N/E be tamely ramified Galois extension. Is S ' ZG[E:Q] as ZG-module? Here
Z is principal integral domain. Again, this is about the ZG-structure of S in tamely ramified extensions.

The module structure of S in such extension has been studied. For example,if E = Q, the normal integral
basis problem was tackled by A. Fröhlich and solved by MJ Taylor.

Question: What about the other RG-modules in N?

Some of them have also been studied, among of which the inverse different, CN/E . In tame case, this module
is locally free ZG−module.

In this thesis, we will study some modules which appear in the study of the RG-structure of S which contains
of course the inverse different of N/E.

The simplest of these modules is defined by the equality

TN/E = CN/E/S.

From basic result in number theory, CN/E is isomorphic to the dual of the module S, which is HomR(S,R), so
S and CN/E are dual of each other. This duality relation accounts for comparing their ZG-module structures.
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When N/E is tamely ramified, it amounts to comparing their classes (CN/E) and (S) in Cl(ZG). A. Fröhlich
conjectured that (CN/E) = (S). M J Taylor proved this equality under some stronger hypthesis and S. Chase
proved it in general case. Chase’s proof examine the torsion module TN/E = CN/E/S.

B. Erez has considered the square root of the inverse different, AN/E . He proved for example that when
N/E is tame and of odd degree, then the class of AN/E in Cl(ZG) is trivial. In this thesis, we work with a
tame Galois extension N/E where its AN/E exists. In order to study it, we introduce the module

SN/E = AN/E/S.

The last module that we are interested in is the torsion module RN/E whose definition will be given later in
Chapter 2. This was introduced by S. Chase.

Their triviliaty in the class group Cl(ZG) can be shown directly, for example as the proof of Chase, but we
will give here an other proof by finding their precise Hom-representatives in Hom-description of Frohlich and
showing that they lie in the denominator of Cl(ZG).

We mention that all the results of this thesis are due to Luca Caputo and Stéphane Vinatier in the article
[CV].

1.2 Strategy of the work
The strategy of this thesis is as follows: In the definition of TN/E and SN/E , we see that they are of the
form S/I and I−1/S for some G-stable ideal I, so we will study the general case of modules of such form.
The study of SN/E will always be under the assumption that N/E is locally abelian. Working in this more
general situation requires no additional effort and allows us to easily recover the cases of TN/E and SN/E .
But the study of the torsion module RN/E is slightly different.

The most canonical way to study these modules is via localization, that is, by transition to local completions.
Thus, after citing basic results from number theory, modules and algebras, we prove that the torsion modules
we are interested in can be studied locally. That is, we consider the torsion modules TN/E ,RN/E and SN/E ,
then we reduce to the study for, every prime q of S, of their ZIq-module structures, where Iq is the inertia
group at q. That is way we named the second chapter to be the Reduction to inertia group.

Suppose now that K/k is a finite Galois extensions of local fields with group Γ and inertia subgroup ∆. If
we set F to be the fixed field of ∆, we show that it is sufficient to prove the triviality of TK/F , SK/F and
RK/F in Cl(Z∆). That is, we can reduce the group G to the inertia group Iq. That is nice since the inertia
group is a cyclic group hence abelian and the situation becomes much easier.
Let’s state the main theorem in the chapter 2. For the statement we introduce some terminology.

N/E is a finite tame Galois extensions of number fields with group G and ring of integers R and S, respec-
tively. For any prime ideal p of R we fix a prime ideal q of S dividing p. We denote by Dq (resp. Iq) the
decomposition group (resp. the inertia group) of q in the group G. Then, the cardinality of Iq only depends
on p and we denote it by ep.

We fix an injective character χq : Iq → Q× and an embedding ιq : Q → Qp where p is the rational number
below p such that ιq ◦ χq = χNq/Fq

where Nq is the completion of N with respect to q and Fq is the fixed
field of the inertia group Iq, i.e Fq = N

Iq
q . These choice determine a prime ideal p in the ring of integers Oep

of Q(µep) ⊂ Q satisfying ιq(p) ⊂ qSq, where Sq is the valuation ring of Nq. The injection ιq makes OFq
into

Oep−module where Ram(N/E) is the set of primes of E that ramify in N/E.

The followinig theorem is the main result of the chapter 2 which says that

10



1.2.1 Theorem. For every p ∈ Ram(N/E), choose a prime q of N above p. Then, with the notation
introduced above, there is an ismorphism of ZG−modules:

TN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZDq

T (p,ZIq)
)⊕[R/p:Fp]

.

Furthermore, for every choice of injective characters χq : Iq → Q× for every prime q as above, one can find
primes P of Oep and injections Oep/P → S/q such that there is isomorphisms of ZG−modules:

RN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZIq Rχq

(P,OepIq)
)⊕[G:Dq][S/q:Oep/P]

.

Moreover, if N/E is locally abelian, then the injections Oep/P → S/q factor through R/p :→ S/q and there
is an isomorphism of ZG−modules:

SN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZIq Sχq

(P,OepIq)
)⊕[R/p:Oep/P]

,

where T (p,ZIq), Rχq
(P,OepIq) and Sχq

(P,OepIq) are Oep/PIq-modules.

Thanks to this Theorem and the functoriality :

Cl(ZIq)→ Cl(ZG)

it is sufficient to study the new modules introduced above, which are T := T (p,ZIq),R := Rχq
(P,OepIq)

and S := Sχq
(P,OepIq), so in the next chapter we focus only on the study of these new modules. These

modules are much easier to study since they are Galois module of a cyclotomic fields in which many known
results can be used to treat the problem.

In Chapter 3, we are thus in the cyclotomic setting introduced as follows: we fix an integer e, a cyclic group
∆ of order e and an injective character χ : ∆ → µe, the group of eth roots of unity in the algebraic closure
of Q. We denote by O the ring of integers of Q(µe) and p the rational prime such that p . e. Let P be a
prime ideal of O above p. We set κ = O/P. We are now ready to state the main result of the third chapter
which is also the core of this work.

1.2.2 Theorem. The classes (T ), (R) and (S) are trivial in Cl(Z∆). More precisely, they are represented
in HomΩQ(R∆, J(Q(µe))) by the morphisms with qth−components equal to 1 if the prime q - e and to

Det(p−1ut),Det(u−1
r ),Det(u−1

s )

respectively, at prime ideals q of O if q|e, where ut, ur, us ∈ Z∆ are defined by

ut =

p−1∑
i=0

δi, ur =

e−1∑
i=0

miδ
i, us =

e−1∑
i=0

niδ
i

and satisfy ut, ur, us ∈ Zq∆× for any rational prime q|e.
Using the reduction results of Chapter 2, and Theorem 1.2.2 we deduce the following consequence:

1.2.3 Theorem. Let N/E be a Galois tamely ramified extension of number fields. Then the classes of
TN/E ,RN/E and SN/E are trivial in Cl(ZG). In particular, we have

(S) = (CN/E) and (S ⊗R S) = (S)[N :E] = 1.

If further N/E is locally abelian, then the class of SN/E is trivial in Cl(ZG). In particular we have

(S) = (AN/E),

thus S, CN/E and AN/E define the same class in Cl(ZG).
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1.3 Commutative Algebras

In this section, we recall some definitions and general results in commutative algebras. The good reference
of this is [DF04].

Modules and tensor products

Let R be a ring and let I ⊂ R. I is said to be two-sided ideal of R if it is both right ideal and left ideal. If
R is commutative ring, where left and right are equivalent, a two- sided ideal is called simply an ideal.

If M is an R−module and for some two-sided ideal I of R, we say that M is annihilated by I if am = 0 for
all a ∈ I,m ∈M . In this situation we can make M into R/I−module by defining an action of the quotient
ring R/I on M as follows: for each m ∈M and r + I ∈ R/I,

(r + I).m = r.m

This is well defined since am = 0,∀a ∈ I,m ∈M.

As a consequence of this, if M,N are R−modules annihilated by I, then any R−homomorphism from M to
N is R/I−homomorphism.

1.3.1 Definition. Tensor product Let R,S be any rings. An abelian group M is called (S,R)−bimodule
if M is a left S−module and right R−module and s(mr) = (sm)r for all s ∈ R, s ∈ S,m ∈M.

For example, if I is an ideal of a ring R, then the quotient R/I is an (R/I,R)−bimodule.

Now, suppose that N is a left R−module and M is an (S,R)−bimodule, then the tensor product M ⊗R N
is the set of finite sum of m⊗ n,m ∈M,n ∈ N . It is a left S−module by the action

s.(
∑

mi ⊗ ni) =
∑

(smi)⊗ ni,mi ∈M,ni ∈ N.

Extension fo scalars on change of base. Let f : R→ S be a homomorphism of rings. Then s.r = sf(r)
gives S the strucutre of right R−module and with respect to it, S is an (S,R)−bimodule. Then for any
left R−module N , the tensor product S⊗RN is a left S−module obtained by changing the base from R to S.

In paricular, if we have a ring homomorphism f : R→ S, then we have S ⊗R R ' S as left S− module via
the map s⊗ r 7→ sf(r).

Let R be a ring, I a two-sided ideal of R. Let N be a left R−module, then R/I is (R/I,R),bimodule, so the
tensor product R/I ⊗R N is a left R/I−module and we have an isomorphism R/I ⊗R N ' N/IN via the
map (r + I)⊗ n 7→ rn+ IN.

Let M,M ′ be (S,R)−bimodule and let N,N ′ be left R−module and φ : M → M ′, ψ : N → N ′ are
R−module homomorphisms. Then there is a unique S−module homomorphism denoted by φ⊗ ψ mapping
M ⊗R N →M ′ ⊗R N ′ defined by φ⊗ ψ(m⊗ n) = φ(m)⊗ ψ(n).

In particular, if R is commutative ring, then φ⊗ ψ is an R− module homomorphism.

(Associativity of tensor product) Suppose that M is a right (S,R)−bimodule, N an (R, T )−bimodule
and L is a left T−module. Then, there is a unqiue isomorphism of S−modules:

(M⊗R)⊗T L 'M ⊗R (N ⊗T L)
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given by (m⊗ n)⊗ l 7→ m⊗ (n⊗ l)
If R is commutative andM,N,L are left R−modules then (M⊗RN)⊗RL 'M⊗R (N⊗RL) as R−modules.

(Tensor product of direct sum) Let M,M ′ be (S,R)-bimodules, N,N ′ be left R−modules. Then we
have isomorphisms of left S−modules

(M ⊕M ′)⊗R N ' (M ⊗R N)⊕ (M ⊗R N ′)
M ⊗R (N ⊕N ′) ' (M ⊗R N)⊕ (M ⊗R N ′)

In particular, if R is a commutative ring these are also isomorphisms of R-modules as well.

As a consequence, the module obtained from the free R−module N ' Rn by extension of scalars from R to
S is the free S−module Sn, i.e S ⊗R Rn ' Sn as S-modules.

(The group HomR(D,−)) and projective module Let R be a ring and let M,N be left R-modules.
Denote by HomR(M,N) the set of all R-homomosprhism from M to N .

Let D,L,M be R−modules and let ψL :→M be an R−module homomorphism, then we have a homorphism
of group ψ′ : HomR(D,L)→ HomR(D,M) given by f 7→ ψof .

If ψ is injective then ψ′ is injective.
Let D,L,M,N be R−modules then

• HomR(D,L⊕N) ' HomR(D,L)⊕HomR(D,N)

• HomR(L⊕N,D) ' HomR(L,D)⊕HomR(N,D)

We say that M is projective if for any surjective homomorphism ψ : M → N of R−modules, the homomorp-
shim of groups ψ′ is surjective.

(Flat module) Suppose that D is a (S,R)−bimodule. For any homomorphism f : X → Y of left
R−modules, we obtain a homomorphism of left S−module 1 ⊗ f : D ⊗R X → D ⊗R Y . If f is surjec-
tive, then 1⊗ f is surjective.

We say that D is flat R−module if for any injective homomorphism f : X → Y of left R−module, the
homomorphism 1⊗ f is injective.

(Relation between HomR(D,−) and D ⊗R −) Let R and S be rings, let A be a right R−module, let B be
an (R,S)−bimodule and let C be a right S−module. Then there is an isomorphism of abelian groups

HomS(A⊗R B,C) ' HomS(B,C)

If R = S is commutitaive ring then this is an isomorphism of R−modules as well.

1.3.2 Lemma. (Snake lemma)
Let R be a commutative rings. Given the following diagram of R−modules with exact rows:

0 M N L 0

0 A B C 0

α β γ

then, there is an exact sequence:

kerα→ kerβ → ker γ → Cokerα→ Cokerβ → Coker γ

13



1.3.3 Definition. (Group ring) Let R be a commutative ring and G be a finite group. The group ring RG
consists of the free R−module on the set G, that is

RG = {
∑
g∈G

agg, ag ∈ R}

Addition is defined by componentwise and multipication is defined by extending (rg)(sh) = (rs)(gh) for all
r, s ∈ R, g, h ∈ G by distributive law. It makes RG into a ring. Note that R = R.1 is a subring of RG.

1.3.4 Definition. An G− module is an abelian group M where G acts on it and the action commutes with
the group law of M . Moreover if M is an R−module for any ring R, and the action of G commutes with the
R-module structure of M then we say that M is an RG−module.

If G is a Galois group of some extension of fields, we say that M is a Galois module.

1.3.5 Remark. An abelian group is the same as a module over Z, so an G−module M is the same as a
module over the group ring ZG.

1.3.6 Definition. Let R be a commutative ring and G be a finite group.
Let H be a subgroup of a finite group G and M is an H−module. Define the induced G−module to be
HomZH(ZG,M). More precisely, it is the set {f : G → M/f(hg) = hf(g), h ∈ H, g ∈ G}. The action of G
on HomZH(ZG,M) is given by: (g.f)(x) = f(xg).

1.3.7 Lemma. Let H be a subgroup of finite index of a group G and M an H−module. Then the module
ZG⊗ZHM obtained by extension of scalars from ZH to ZG is a G−module and we have an isomorphism of
G-modules

HomZH(ZG,M) ' ZG⊗ZH M.

Proof. Let g1, . . . , gn be a set of left coset of representatives for H in G and write G = g1H
⋃
· · ·
⋃
gnH. So

as an abelian group, we have ZG = ⊕ni=1giZH.

Also, ZG⊗ZHM = (⊕ni=1giZH)⊗ZHM = ⊕ni=1(gi⊗ZHM) by the property of tensor product and direct sum.

Consider the map ϕ : HomZH(ZG,M) → ZG ⊗ZH M defined by ϕ(f) =
∑n
i=1 gi ⊗ f(g−1

i ). We want to
show that ϕ is an G−isomorphism. Clearly, it is linear. Let g ∈ G, then ϕ(g.f) =

∑n
i=1 gi ⊗ (g.f)(g−1

i ) =∑n
i=1 gi ⊗ f(g−1

i g). Write g−1
i g = hig

−1
i′ , i = 1, . . . , n. Then we have

n∑
i=1

gi ⊗ f(g−1
i g) = sumn

i=1gi ⊗ f(hig
−1
i′ )

=

n∑
i=1

gi ⊗ hif(g−1
i′ )

=

n∑
i=1

gihi ⊗ f(g−1
i′ )

=

n∑
i=1

ghi ⊗ f(g−1
i′ )

= g

n∑
i=1

hi ⊗ f(g−1
i′ )

= gϕ(g).
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Hence ϕ is G−homomorphism. The injectivity of ϕ comes from the fact that f = 0 ∈ HomZH(ZG,M) if
and only if f(gi) = 0 for all i = 1, . . . n.

To prove surjectivity, let gi ⊗m ∈ ZG⊗ZH M. Define the function from ZG to M defined by fi,m(g) = hm
if g = hg−1

i , h ∈ H, and 0 otherwise. fi,m ∈ HomZH(ZG,M) since if g = hg−1
i ∈ G, and h′ ∈ H, then

h′g = h′hg−1
i and we have fi,m(h′g) = h′hm if x = hg−1

i and 0 otherwise. Now, it easy to see that, for any
gi ⊗m ∈ ZG⊗ZH M , we have ϕ(1⊗ fi,m) = gi ⊗m.

Galois algebras
We recall some usefull results on Galois algebras. The details can be seen in [DI71]

1.3.8 Definition. Let R be a commutative ring. An R−algebra is a ring S (not necessary commutative)
with a ring homomorphism φ from R to the center of S.

This induces an R−module structure on S by the operation

r.s = φ(r)sfor all r ∈ R, s ∈ S.

Then any R− algebra can be viewed as an R− module.

In most of the cases, we are interested in the following examples of algebras.

1.3.9 Example. Let R be a Dedekind domain and G a finite group. The group ring RG is an R-algebra.

Denote by Map(G,R) the set of all functions from G to S. It is a ring via the operations:

(f + g)(σ) = f(σ) + g(σ), (fg)(σ) = f(σ)g(σ) for all f, g Map(G,R), σ ∈ G

Consider the map φ : R → Map(G,R) defined by φ(r)(σ) = r.1, the constant map, for r ∈ R, σ ∈ G. It
makes Map(G,R) into R−algebra.

If we let G act on it by (σ.f)(g) = f(gσ) for σ, g ∈ G and f ∈ Map(G,R), it becomes an RG−module. So,
we have an isomorphism of RG−modules:

Map(G,R) ' RG

via the map f 7→
∑
g∈G f(g)g−1. In other words, Map(G,R) is the dual of the R−algebra RG.

1.3.10 Definition. Let R be a commutative ring and S an R−algebra. We say that S is an extension of
the ring R if S is commutative R−algebra and faithful as R−module.

Recall that an R−module M is faithful if 0 is the only annihilator of M .

Let H be a group and S a ring on which H acts. Set

SH := {x ∈ S/σ(x) = x, ∀σ ∈ H}.

1.3.11 Definition. Let R be a commutative ring and S a commutative R−algebra. Let G be a finite group
acting on S.

The extension S of R is said to be Galois with group G if R = SG and the map

rS,G : S ⊗R S → Map(G,S)

given by a ⊗ b 7→ (a ⊗ b)(σ) = aσ(b) is an isomorphism of left S−modules, where Map(G,S) is defined in
the Example 1.3.9.
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1.3.12 Example. We show that if S and R are fields, then this definition is the same as the usual definition
of Galois extension of fields.
Take S = N,R = E where N/E is finite Galois extension of fields with group G. Before proving the
equivalence of the definitions, we need the Dedekind’s lemma on the linearly independence of homomorphisms
of algebras.

1.3.13 Lemma. Let N/E and L/E be field extensions. The set of distinct E− algebra homomorphisms
from N to L is linearly independent over L.

Proof. Suppose that the sequence (ϕi)i∈I of E−algebra homomorphisms is linearly dependent. Then, there
exists a minimal integer n ≥ 2 such that

n∑
i=1

aiϕji = 0 where ai 6= 0 ∈ L. (1.1)

Since ϕj1 6= ϕjn , then there exists α ∈ L such that ϕj1(α) 6= ϕjn(α). For all β ∈ L, we have
n∑
i=1

aiϕji(αβ) =

n∑
i=1

aiϕji(α)ϕji(β) = 0 (1.2)

Multiplying through 1.2 by ϕin(α), we get

ϕin(α)

n∑
i=1

aiϕji(β) = 0 (1.3)

((1.2)) - (1.3) gives us
n−1∑
i=1

(aiϕj1(α)− ϕin(α))ϕji(β) = 0.

Since ϕj1(α)− ϕin(α)) 6= 0, this contradicts the minimality of n. Thus (ϕi)i∈I is linearly independent over
L.

Claim. Let N/E be a field extension and let G be a finite group of K−automorphisms of N . Suppose that
NG = E, then the extension N/E is Galois(in the sens of the Definition 1.3.11)with group G if and only if
G acts faithfully on N .

In fact, if N/E is galois, the composition rN,G ◦ (1 ⊗ idN ) allows us to embed N in Map(G,N), and this
implies that G acts faithfully on N .

Conversely, since dimN (N ⊗E N) = dimN (Map(G,N)) = |G|, it is sufficient to prove that rN,G is injective.
Let

∑
finite ai ⊗ bi ∈ ker(rN,G). Then for every σ ∈ G, we have∑

finite

aiσ(bi) = 0

If G acts faithfully on N , then by the Lemma1.3.13, the matrix (σ(bi))σ,i is invertible, then the above system
of equations in ai’s has only the trivial solution. Thus, our claim follows.

Now, suppose that R is a Dedekind domain with fractional field E and S is its integral closure in Galois
extension N of E. We have seen that N/E is Galois in the sens of Definition 1.3.11. A natural question
is, do we have Galois extension for the ring of integers S/R. In general, the answer is no. The following
proposition will tell us when the extension of ring of integers is Galois if their fractional fields is Galois
extension. In order to do this, we have to introduce some definitions in extension of rings.

For a prime p of R, we denote by R(p) the localisation of R at p and by k(p) the residue field of p, that is
R(p)/pR(p).
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1.3.14 Definition. Let S be an R−algebra such that S is finitely generated as R−module. The extension,
S/R is unramified if for every prime ideal p of R and all prime ideals q of S such that q ∩R = p we have:

1 pS = qS

2 the residue field extension k(q)/k(p) is separable.

We see that if R and S are ring of integers of extensions of fields N/E, respectively, then the extension S/R
unramified is the same as the field extension N/E is unramified in the usual sens of unramified extension.

Now, consider the map µ : S ⊗R S → S given by x⊗ y 7→ xy. Define by J(S) := ker(µ).
So we have an exact sequence of S ⊗R S-modules

0→ J(S)→ S ⊗R S → S → 0

where the S ⊗R S−module structure on S is given by (x⊗ y)s = xsy = xys for all x, y, s ∈ S.

1.3.15 Definition. The extension S/R is separable if there exists e ∈ S ⊗R S such that µ(e) = 0 and
J(S)e = 0. Such an element is called the separability idempontent.

Again, we recover the usual notion of separability for commutative finite dimensional algebras over a field.

1.3.16 Example. Let R be a commutative ring and G a finite group whose order is unit in R. The R-algebra
RG is separable by taking e = 1

n

∑
g∈G g ⊗ g−1.

1.3.17 Definition. The details of this can be seen in [I.R03]. Let K be a field and A a finite dimensional
semisimple K−algebra. We are especially interested in the case A = KG, the group ring algebra of a finite
group G over K.

Let R be a Dedekind ring with fractional field K. An R− order in A is a subring Λ of A such that R is
contained in the center of Λ, Λ is finitely generated as R−module and KΛ = A, that is, Λ contains an
K−basis of A.

For example, the integral group RG is an R−order in the K−algebra KG. Indeed, R can be identified with
R.1 in RG and it is contained in the center of RG. It is finitely generated R−module since G is finite. Of
course, KRG = KG.

1.3.18 Definition. An order in the semisimple algebra A is said to be maximal order if it is not properly
contained in any other order of A.

1.3.19 Proposition. Let R be a Dedekind ring and let E be its field of fractions. Let N/E be a Galois
extension with group G and let S be the integral closure of R in N . The following are equivalent:

a. S/R is Galois with group G.

b. S/R is unramified.

Proof. We prove the equivalence using the determinant. We know that S/R is unramified is the same as
N/E is unramified. From the basic result in number theory, for example ([FT91] p.121), we know that N/E
is unramified if and only if the dicriminant d(S/R) is R.

The integral closure of R in Map(G,N) is Map(G,S). Since Map(G,N) ' NG is separable (Example1.3.16),
and Map(G,S) is finitely generated over R so it is the maximal order in Map(G,N).

Since N/E is Galois, then
rN,G : N ⊗E N → Map(G,N)
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is an isomorphism. In particular, its restriction to S ⊗R S is injective and we have an injection

rS,G : S ⊗R S ↪→ Map(G,S).

If S/R is Galois, then rS,G is an isomorphism. The discriminant of Map(G,N) over R is R so, by the formula
for discrimininants applied to the inclusions

R ⊆ S ⊆ S ⊗R S

we deduce that the discriminant of S over R is R as well. Hence S/R is unramified. The converse will follow
immediately from the next lemma.

1.3.20 Lemma. Let S1/R, S2/R, be extensions of Dedekind rings. Let Ni be the field of fractions of
Si, i = 1, 2. If S1/R is unramified, then S1⊗S2 is the maximal order in N1⊗E N2, where E is the fractional
field of R.

Proof. Let O be the maximal order in N1 ⊗E N2. We have the following inclusions

S2 ⊆ S1 ⊗R S2 ⊆ O

and the property of discriminant see ([FT91] pages.121) gives that:

d(S1 ⊗R S2/S2) = [O : S1 ⊗R S2]2d(O/S2).

Hence, d(S1⊗R S2/S2) ⊆ d(O/S2) ⊆ S2. On the other hand, d(S1⊗R S2/S2) = d(S1/R)S2. By assumption,
d(S1/R) = R, so d(S1 ⊗R S2/S2) = S2. It follows that O = S1 ⊗R S2.
We will use later this lemma several times.

For the proof of the theorem, we apply the lemma with S1 = S2 = S. So the maximal order of N ⊗E N is
S ⊗R S and the equivalence follows.

Representation of finite group

Notes here can be seen in [Ser71].

Let V be a vector space over a field K. The general linear group GL(V ) is the set of all automorphisms of
V viewed as group under composition. If V has finite dimensional n, then GL(V ) = GLn(K), which is the
group of invertible n× n matrix with entries in K.

1.3.21 Definition. A representation of group G is a homomorphism ρ : G → GL(V ). We say that V is
faithful if ρ is injective, and we say V is trivial if ρ = 1.

Recall that an KG-module is a vector space over K together with group action, that is, ∀g ∈ G,α ∈ K,u, v ∈
V , the operation g.v is defined and satisfies:

• g.(u+ v) = g.u+ g.v

• g.(αu) = α(g.u).

We now let g.v = ρ(g)v. Sometimes, we call V the representation of G instead of ρ. So ρ gives V the
structure of FG−module.

A subrepresentation of V is a subspace W which is invariant under the action of G, that is

∀g ∈ G,w ∈W, g.w = ρ(g)w ∈W.

A representation V is said to be irreducible or simple if the only subrepresentation of V are V and {0}.
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1.3.22 Definition. Let V and W representations of G. A function φ : V → W is called G−linear map or
G−invariant if it is a linear transformation and satisfies:

φ(g.v) = g.φ(v),∀v ∈ V, g ∈ G

We say that two representations V and W are isomorphic if there axists a G−linear map φ : V → W that
is invertible.

1.3.23 Lemma. Let W,V be representations of G and φ : V → W a G−linear map. Then, ker(φ) is a
subrepresentaion of V and φ(V ) is a subrepresentaion of W .

Proof. Let g ∈ V and v ∈ kerφ. Then φ(g.v) = gφ(v) = 0, hence g.v ∈ kerφ. Take g ∈ G,w ∈ φ(V ) ⊂ W.
There exists u ∈ V such that φ(u) = w. Thus, g.w = g.φ(u) = φ(g.u) ∈ φ(V ).

1.3.24 Lemma. (Maschke’s theorem) Let V be a representation of finite group G and the order of G is a
unit in K. If there exists a subrepresentation W of V , then there must also be U subrepresentation of V
such that V = U ⊕W .

Proof. Suppose that there is a subrepresentation W of V . Choose any complementary subspace S of V such
that V = W ⊕ S. Then an element v ∈ V can be written as v = w + s where w ∈ W, s ∈ S. Consider the
projection p : V →W of V on W sending v 7→ w. Let π(v) = 1

|G|
∑
g∈G g

−1p(g.v). We need to show that π
is a G−linear map. For u, v ∈ V write u = w0 + s0, v = w1 + s1.

π(u+ v) =
1

|G|
∑
g∈G

g−1p(g.(v + w))

=
1

|G; |
∑
g∈G

g−1p(g.w0 + g.s0 + g.w1 + g.s1))

=
1

|G|
∑
g∈G

g−1(g.w0 + g.w1)

= π(u) + π(v).

Let λ ∈ K,u ∈ V, π(λu) = 1
|G|
∑
g∈G g

−1p(g.(λu)) = 1
|G|λ

∑
g∈G g

−1p(g.u) = λπ(u).

Let h ∈ G, u ∈ V .

π(h.u) =
1

|G|
∑
g∈G

g−1(g.(h.u))

=
1

|G|
∑
g∈G

g−1(gh).u))

=
1

|G|
∑
d∈G

hd−1(d.u))

= hπ(u).

Hence, π is a G−linear map. It is easy to see that π(W ) = W . By the previous lemma, kerπ is also a
subrepresentation of V . It follows the conclusion by taking U = kerπ.

1.3.25 Definition. A representation V of G is called completely reducible or semisimple if V can be written
as direct sum of irreducible subrepresentations.

1.3.26 Corollary. If the char(K) does not divide the order of the group G, then every representation of G
is completely reducible.

Proof. Just argue by induction on dimension of V .
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Character theory
1.3.27 Definition. Let V be a representation of a group G. The character associated to V is a map
χ : G→ K defined by g 7→ Tr(g.v), where Tr means the trace of the action of g on v.
Note that χ does not depend on the choice of the basis of V . We say that a character is irreducible if the
associated representation is irreducible. The trivial character of G is the character χ(g) = 1 for all g ∈ G.

If G is finite of order n, a character χ of G takes values in the nth roots of unity µn.

1.3.28 Theorem. Let U, V be two irreducible representations with characters χ1, χ2, respectively. Set W =
U ⊕W . Then the character χ associated to W is χ1 + χ2 and the character associated to U ⊗ V is χ1χ2.

Proof. Let u1, . . . , un be a basis of U and v1, . . . , vm a basis of V , then u1, . . . un, v1, . . . , vm form a basis of
W . Hence, the matrix of g.v for g ∈ G,w = u+ v ∈W with respect to this basis has the form:(

A 0
0 B

)
where the matrix A is the matrix of g.u with respect to the basis ui, and B the matrix of g.v in the basis
vi. The second assertion follows from Theorem 1.3.30 below.

Using Proposition 1.3.28, the set of charcters of a finite group G form a ring.

Induced character
Let H be a subgroup of a finite group G, K a field. Then KH is a subring of KG and the latter is an
(KG−KH−)bimodule. So, for any left KH−module M , we have a left KG−module KG⊗KHM which is
the extension of scalar from KH to KG.

1.3.29 Definition. Let H be a subgroup of the finite group G, and let M be an KH−module affording
the representation ρ of H. The KG−module KG ⊗KH M is called the induced module of M and the
representaion of G it affords is the induced representation of ρ. If χ is the character of ρ, then the character
of the induced representation is called the induced character, and we denote by IndGH(χ).

1.3.30 Theorem. Let H be a subgroup of the finite group G and let g1, . . . , gn be representatives of the
distinct left cosets of H in G. Let V be an KH−module with matrix representation ρ of H of dimension n.
Denote by W = KG⊗KH V . There is a basis of W such that the matrix of ϕ(g), g ∈ G with repesct to that
basis has of the form: 

411 . . . 41n

. . . . .

. . . . .

. . . . .
4m1 . . . 4mn


where 4ij = ρ(g−1

i ggj) is an n × n block appearing in the i, j block position of ϕ(g) and ρ(g−1
i ggj) is the

zero matrix if g−1
i ggj /∈ H.

Proof. We know that KG is free right KH−module of rank n and we have

KG = KHg1 ⊕ · · · ⊕KHgn.

Since tensor product commutes with direct sum, we have

W = KG⊗KH V ' (g1 ⊗KH V )⊕ · · · ⊕ (gn⊗KH)V

Since K is the center of KG, then KG is a vector space over K and the above isomorphism is a K−
ismorphism as well. Then if v1, . . . vm is basis of V then B = {vi ⊕ gj}i,j is a basis of W .
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Let us now compute the matrix of ρ(g), g ∈ G with respect to the basis B. Fix j and write ggj = gih, for
some index i and some h ∈ H. For every k,

g(gj ⊗ vk) = (ggj)⊗ vk = gi ⊗ hvk

=

m∑
r=1

ark(h)(gi ⊗ vr),

where ark is the r, k coefficients of the matrix h acting V with respect to the basis v1, . . . , vm, that is, the
action of g on W maps the jth block of n basis vectors of W to the ith block of basis vector, and then the
matrix of ρ(h) on that block. Since h = g−1

i ggj thus, we get the desired matrix of W .

1.3.31 Corollary. If χ is the charcter of V , then the induced character of W is given by

IndGH(χ) =
∑
x∈G

χ(x−1gx)

1.4 Completions, unramified and totally ramified extensions
If E is a field of fractions of a Dedekind domain R, then every non-zero prime ideal p is associated the
p−adic valuation vp of E defined by vp(a) = vp where (a) =

∏
p p

vp . The valuation ring of vp is the local-
ization of R at p. If S is the integral closure of R in any extension field N of E, and if pS = qe11 . . . qerr
is the prime decomposition of p in N , then the valuation wi = 1

ei
vqi , i = 1, . . . , r are precisely the exten-

sions of v = vp to N , ei are the corresponding ramification indices and fi = [S/qi : R/p] are the inertia degree.

Suppose now that N/E is Galois number fields extensions with group G. For each prime q of S and a prime
p of R, we denote by Nq the completion of N with respect to vq and Ep the completion of E at vp. We
denote by Dq (resp. Iq) the decomposition group (resp. inertia group) of q in G.

If V is a finite dimension E-vector space, we denote by Vp := Ep ⊗E V its completion with respect to vp.
In the same way, for any finitely generated R module M , we denote its completion with respect to vp by
Mp := Rp ⊗RM .

In case V = N , if pS = qe11 . . . qess is the factorisation of prime ideals of p in S, we still denote it by Np but
it is different from Nq, which is the completion of N with respect to vq where q is a prime ideal of S. The
difference will be clear because we will always use p for a prime of R and q for that of S. So, Np may not
be a field but it is only an E−algebra. The next lemma gives information on Np.

1.4.1 Lemma ([Ser79] Theorem 1, Proposition 4, Pages 31-32). We have isomorphism of E− algebras

Ep ⊗E N '
s∏
i=1

Nqi

and isomoprhism of R-modules

Rp ⊗ S '
s∏
i=1

Sqi

where Nqi , Sqi are the completions of N and S at qi, respectively.

Since G acts transitively on the set of primes of S above p [[Ser79],Prposition 19,p.20], we can define an
action of G on the E− algebra Ep ⊗E N '

∏s
i=1Nqi =

∏
q|pNq as follows: for (xq)q|p and g ∈ G, the qth0

component of g.(xq)q|p is given by g(xg−1(q0)), for any q0 prime of S above p. Precisely,(
g.(xq)q|p

)
q0

= g(xg−1(q0)).
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Using the same notation as in the example 1.3.9, consider Map(G,Nq) the set of all functions from G to N
and define the action of G to be (g.f)(σ) = f(σg), f ∈ Map(G,Nq), σ, g ∈ G. Define Map(G,Nq)Dq , the set
of all elements in Map(G,Nq) fixed by the action of H, that is:

Map(G,Nq)Dq := {f : G→ Nq, f(hg) = h(f(g)), h ∈ Dq, g ∈ G}

1.4.2 Lemma. For any prime q0 of S above p, the above S− isomorphisms induce isomorphisms of EG−
modules and RG−modules:∏

q|p

Nq ' Map(G,Nq0
)Dq0 and Rp ⊗ S '

∏
q|p

Sqi ' Map(G,Sq0
)Dq0

given by (xq)q|p 7→ (xq)q|p (g) = g
(
xg−1(q0)

)
.

Proof. We only need to show that this is well defined, that is, we have to prove that (xq)q|p(hg) =
h((xq)q|p(g)) for any h ∈ Dq, g ∈ G.

Let h ∈ Dq, g ∈ G, then (xq)q|p(hg) = hg(xg−1h−1(q0)) = hg(xg−1(q0)) = h(g(xg−1(q0))) = h((xq)q|p(g)). The
second equality follows from the fact that h−1(q0) = q0 since h ∈ Dq0

.

Note that these are still true for any finite dimensional vector space V over N on which G acts and any
finitely generated S-module M on which G acts, that means, we have also RG−isomoprhisms for M and
EG−isomorphism for V for any prime q0 of S above p.

M ⊗R Rp '
∏
q|p

Mq ' Map(G,Mq0
)Dq0 and M ⊗R Ep '

∏
q|p

Vq ' Map(G,Vq0
)Dq0

1.4.3 Lemma. [[Ser79], Corollary 4, p.31] The extension Nq/Ep is Galois with group Gal(Nq/Ep) ' Dq.
Moreover, if F = N

Iq
q is the fixed field of the inertia group of q, then Nq/F is totally ramified and F/Ep is

unramified.

1.4.4 Definition. Let p be a prime ideal of R and q a prime ideal of S above p. We say that the extension
N/E is tame (or tamely ramified) at q if the ramification index e(q/p) does not divide the characteristic of
the residue field R/p and the extension S/q of R/p is separable. We say that the extension N/E is tame if
it is tame at all primes q.

1.4.5 Lemma. [[FT91], Theorem 26,p.140] Let K/k be a finite Galois extension of local fields with valuation
ring OK and Ok, respectively. Then the following are equivalent:

• K/k is tamely ramified.

• TrK/k(OK) = Ok, where Tr is the trace map of K over k.

• CK/k = p−e+1
K , where pK is the prime ideal of OK and CK/k is the inverse different of K over k.

1.4.6 Proposition. [[FT91, ?, ?]]Let K/k be a totally ramified tame extension of a discrete complete local
field. Then there exists a primitive element πk of k such that πeK = πk where e = eK/k = [K : k]. (That is,
πeK = πk for these elements, not only (πK)e = (πk) for the ideals.)

Proof. For πk and πK we have πeK = πk η for some η ∈ O×K . Since the extension is totally ramified,
K̄ : OK/pK = k̄ := Ok/pk. So there exists θ ∈ O×k such that η ≡ θ (mod πK). Replacing πk with πk θ and
η with η, θ−1, we may assume η ≡ 1 (mod πK).

Claim. If char K̄ - m, then every α ∈ OK satisfying α ≡ 1 (mod πK) is an m-th power.
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(Indeed, we can apply Hensel to the polynomial f(X) = Xm − α and α0 = 1; by the assumption f ′(α0) =
m 6≡ 0 (mod char(K̄)).)

The claim can be applied since K/k is tame. So η is an e-th root, η = εe for some ε ∈ O×K . Replacing πK
with πK ε−1, we obtain πeK = πk.

1.4.7 Theorem. If K/k is Galois totally ramified tame extension of a discrete complete local field with
group Γ, then K/k is cyclic and k contains the eth roots of unity.

Proof. Since K/k is totally ramified, the Galois group Γ coincides with the inertia group Γ0. Consider the
map

θ : Γ → K
×

:= OK/(πK)×,

σ 7→ πK
σ(πK)

( mod πK),

where (πK) is the prime ideal of OK . Note that θ does not depend on the choice of the uniformizer πK .
In fact, if π is an other uniformizer of OK , then there exists η ∈ O×K such that πK = πη. By assumption,
K = k, so there exists µ ∈ Ok such that η ≡ µ mod πK . Hence, we have

θ(σ) = σ(π−1
K )πK mod πK = σ(π−1η−1)πη ≡ σ(π−1µ−1)πµ ≡ σ(π−1)π mod πK .

It is easy to see that θ is a homomorphism. Since the extension is tame, one can show that ker θ = Γ1 = {1},
where Γ1 is the ramification group. Hence θ is injective, so it can be identified with a subgroup of the
multiplicative group K

×
, so Γ is cyclic. Since the extension is totally ramified, we have in particular that k

contains the eth roots of unity. Since Xe − 1 is separable over k
×
, these roots of unity can be lifted to k by

Hensel’s lemma, and it completes the proof.

1.4.8 Theorem. (Chinese Remainder theorem) Let a1, . . . , an be ideals in a commutaive ring R such that
ai + aj = R, for i 6= j. Let M be an R−module. Then there is an isomorphism of R-modules

M⋂n
i=1 aiM

' ⊕ni=1

M

aiM

Proof. For each K,
⋂n
i=1 aiM ⊂ akM , so there is a map

M⋂n
i=1 aiM

→ M

akM

Therefore, there is a map
M⋂n

i=1 aiM
→ ⊕ni=1

M

aiM

Since ai + aj = R for all i 6= j, then a prime ideal p of R can contain at most one ideal ai and (aiM)p = Mp

if ai * p. Thus, if ak ⊂ p, then (
⋂n
i=1 aiM)p = (akM)p and Mp/aiMp = 0 if i 6= k. Therefore, for all prime

p, we have an isomorphism

Mp/akMp =

(
M⋂n

i=1 aiM

)
p

→
(
⊕ni=1

M

aiM

)
p

= (M/akM)p

This is for all prime p, so the result follows from the fact that f is an isomorphism of R−modules if and only
if the localised function fp is an isomorphism for all prime p of R.

1.4.9 Theorem. (Analogue of the Chinese Remainder theorem) Let a1, a2 be ideals of a Dedekind ring R
such that a1 + a2 = R. Then there is an isomorphism of R−modules:

(a1a2)
−1

R
' a−1

1

R
× a−1

2

R
.
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Proof. We claim that the inclusions a−1
1 → (a1a2)

−1 and a−2
1 → (a1a2)

−1 induce R−modules isomorphisms

f1 :
a−1

1

R
→ (a1a2)

−1

a−1
2

and f2 :
a−1

1

R
→ (a1a2)

−1

a−1
1

and the natural projections (a1a2)−1

R → (a1a2)−1

a−1
2

and (a1a2)−1

R → (a1a2)−1

a−1
1

induce an R−isomorphism.

f :
(a1a2)

−1

R
→ (a1a2)

−1

a−1
2

× (a1a1)
−1

a−1
2

• Injectivity of f1, f2, f .

Note that ker f1 = ker f2 = ker f =
a−1

1

⋂
a−1

2

R
.

To prove their injectivity, we have to prove that a−1
1

⋂
a−1

2 = R. The inclusion R ⊂ a−1
1

⋂
a−1

2 is clear
since ai, i = 1, 2 are ideals of R. To prove the converse inclusion, take x ∈ a−1

1 ∩a
−1
2 . Since a1 +a2 = R,

and 1 ∈ R, we can write 1 = a+ b for a ∈ a1, b ∈ a2. Thus x.1 = xa+ xb. Since x ∈ a−1
1

⋂
a−1

2 ⊂ a−1
1

and a ∈ a1, then xa ∈ a−1
1 a ∈ a1 = R. Similarly, xb ∈ R. Hence x = xa + xb ∈ R. Thus f1, f2, f are

injective.

• Surjectivity of f1, f2.

We only prove the surjectivity of f1 since the proof of that of f2 is similar. Let y ∈ (a1a2)
−1, then

y.1 = ya + yb. Since y ∈ (a1a2)
−1 and a ∈ a1, then ya ∈ a−1

2 , therefore y − ya and y have the same

image in
(a1a2)

−1

a−1
2

. On the other hand y − ya = yb ∈ a−1
2 , hence y = f1(yb) and this shows that f1 is

surjective.

• Surjectivity of f . Let y, z ∈ (a1a2)
−1. Set x = ya + zb where a + b = 1 as in the previous argument.

Since (a1a2)
−1 is an R-module then ya, za ∈ (a1a2)

−1 and x ∈ (a1a2)
−1. As in the above proof, we

have y − yb ≡ ya ≡ y mod a−1
1 . But x − ya ≡ zb ≡ 0 mod a−1

1 then x ≡ ya ≡ y ≡ y − yb mod a−1
1 .

Similarly, we have x ≡ zb ≡ z ≡ z − za mod a−1
2 . Then, f(x+R) = (y + a−1

1 , z + a−1
2 ). It proves that

f is surjective and our claim is proved.

Let us prove the lemma: consider the following isomorphism obtained from the above isomorphisms:

(f1× f2)−1 :
(a1a2)

−1

a−1
2

× (a1a2)
−1

a−1
1

→ a−1
1

R ×
a−1

2

R and compose it with f , we get the isomorphism of the

lemma:

(f1 × f2)−1 ◦ f :
(a1a2)

−1

R
→ a−1

1

R
× a−1

2

R

If ai, i = 1, 2 are G− invariant, then this isomorphism is an RG-isomoprhism as well.
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Chapter 2

Reduction to inertia subgroup

2.1 The torsion module RN/E

The aim of this section is to introduce the definition of the torsion module RN/E using the notes from
Chapter 1, and prove that this module can be studied locally.

2.1.1 Definition. Let K/k be a Galois extension with group G, global or local. In Definition 1.3.11 of
Galois extension of algebras, we recall the kG−isomorphism

rK,G : K ⊗k K → Map(G,K).

In the proof the Proposition 1.3.19, we had an injection

rOK ,G : OK ⊗Ok OK → Map(G,OK).

We define RK/k to be the Coker of rOK ,G. Precisely, RK/k := Map(G,OK)/rOK ,G(OK ⊗Ok OK).

Since Map(G,OK) is finitely generated and OK-modules and OK ⊗Ok OK contains a K−basis of K ⊗k K,
then RK/k is a finitely generated torsion OK-module.

Let us go back to our notations. Let N/E be finite Galois tame extensions of number fields with group G.
For each prime q of S and a prime p of R, we denote by Nq the completion of N with respect to vq and Ep

the completion of E at vp. We denote by Dq (resp. Iq) the decomposition group (resp. inertia group) of q
in G.

Denote by Ram(N/E) the set of primes of R which ramify in S. Recall that for each prime p in Ram(N/E),
we fix a prime q of S above p.

2.1.2 Lemma. See [[Cha84] Corollary 3.11] There is an isomorphism of RG−mdoules:

RN/E '
⊕

p∈Ram(N/E)

(ZG⊗ZDq
RNq/Ep

)⊕[G:Dq].

Thanks to the above lemma, we can focus on the local setting. In this section, we will concentrate in the
following situation. Fix a prime p and a tamely ramified Galois extension K/k of Qp with group Γ. Let ∆
be the inertia group of K/k. By Proposition 1.4.6, ∆ is cyclic of order e and its fixed field F = K∆ is totally
ramified extension. As usual, we denote by OK ,OF ,Ok the ring of integers of K,F and k, repectively, and
we shall denote by pK , pF and pk the corresponding maximal ideals. We denote by K̄, F̄ and k̄, the residue
fields of K,F and k, respectively.

The following proposition makes things easy because it restricts our situation into the case of totally ramified
tame local extension.
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2.1.3 Proposition. There is an isomorphism of OkΓ−modules

RK/k ' ZΓ⊗Z∆ RK/F .

Proof. The proof of this uses the fact that F/k is unramified and by Proposition 1.3.19 OF ⊗Ok OF '
Map(Γ,OK), hence RF/k = 1. The complete proof can be seen in [[Cha84],Corollary 3.8].

Recall that by Theorem 1.4.7, F contains the group of units µe,p ⊆ Qp and Proposition 1.4.6 says that there
exists a uniformizer πK of K such that πF := πeK ∈ F. In the proof of that Proposition, we have a group of
homomorphism χK/F : ∆→ µe,p (this is the inverse of θ in the proof of the Theorem 1.4.7) and it does not
depend on the choice of the uniformizer. We have seen that it is injective, hence isomorphism by comparing
cardinals: ]∆ = ]µe,p.

2.1.4 Lemma. The isomorphism χK/F is also an Γ−isomorphism if we let Γ act on ∆ by conjugation and
act by Galois action on µe,p.

Proof. It is sufficient to show that for all σ ∈ Γ, δ ∈ ∆, we have χK/F (σδσ−1) = σ(χK/F (δ)).

If πK is a uniformizer of K such that πeK ∈ F, then

χK/F (σδσ−1) =
σδσ−1(πK)

πK
= σ(

δσ−1(πK)

σ−1(πK)
= σ(χK/F (δ)).

The last equality follows from the fact that σ−1(πK) is a uniformizer of K whose eth power is in F and χK/F
does not depend on the choice of the uniformizer. It follows that χK/F is Γ−isomorphism.

2.1.5 Remark. We see that if Γ is abelian, then Γ acts trivially on ∆ and µe,p ⊂ k.

If M is an OK−module, and if we let ∆ act on M by the operation δ.m = χiK/F (δ)m, M becomes an
OK∆−module and we denote it by M(χiK/F ).
The next proposition shows that the OF∆−module RK/F can be still decomposed in smaller pieces.

2.1.6 Proposition. The action ofOF onRK/F factors through F and there is an isomorphism of F∆−modules:

RK/F '
e−1⊕
i=1

(piK/p
i+1
K )⊕i

Claim.

RK/F '
e−1⊕
i=1

(OK/piK)(χiK/F )

[Cha84], Theorem 2.8. Sketch of the proof of the claim: In fact, from Theorem 1.4.6, {1, πK , . . . , πe−1
K } is a

OF−basis of OK , thus {1⊗1, . . . , 1⊗πe−1
K } is a basis of the free OK−module OK⊗OF OK . Consider the well

known bijection rK,∆ : K ⊗F K → Map(∆,K). Define ui(σ) = χiK/F (σ), ui ∈ Map(∆,OK), then one can
show that rK,∆(1⊗ πiK) = πiKui and {u0, . . . , ue−1} form an OK−basis of Map(∆,OK). Since (πK)i = piK ,
then the claim follows.

Proof. Let us now prove the theorem. Since pFOK = peK ⊂ piK , for all i = 0, . . . , e, then OK/piK is anni-
hilated by pF so it has a structure of F−module (see notes above Definition 1.3.1). By definition, RK/F
is an OF -module, hence by the claim, it becomes an F−module and the isomorphism in claim becomes an
F∆−isomorphism.

Note that OK/piK(χiK/F ) is an F∆−module with finite filtration of sub F∆−modules:

OK/piK(χiK/F ) ⊃ pK/p
i
K(χiK/F ) ⊃ · · · ⊃ pi−1

K /piK(χiK/F ) ⊃ {0}
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and its associated graded F∆−module is given by ⊕i−1
j=0p

j
K/p

j+1
K (χiK/F ). Since e is prime to the characteristic

of F , then F∆ is semisimple, hence we get

OK/piK(χiK/F ) '
i−1⊕
j=0

pjK/p
j+1
K (χiK/F ). (2.1)

On the other hand, for each j, we have an F−isomorphism OK/pK ' pjK/p
j+1
K by sending [x] 7→ [πjKx],

where [x] denote the class of x, hence an isomorphism of F∆-modules OK/pK(χiK/F ) ' pjK/p
j+1
K (χiK/F ).

Combine this with the equation 2.1, we have:

OK/piK(χiK/F ) ' ⊕i−1
j=0OK/pK(χiK/F ) = OK/pK(χiK/F )⊕i.

Observe that the Galois action of ∆ on piK/p
i+1
K is the same as the action given by multiplication by χiK/F

since for all x ∈ piK , δ ∈ ∆, we have

δ[πiKx] = [δ(πiKx)] = [χiK/F (δ)πiKδ(x)] = [χiK/F (δ)πiKx].

The last equality follows from the fact that ∆ acts trivially on OK/pK = OF /pF . Thus piK/p
i+1
K and

OK/pK(χiK/F ) are F−vector spaces of 1 dimension on which ∆ acts by multiplication by χiK/F . Then,
OK/piK(χiK/F ) ' (piK/p

i+1
K )⊕i as F∆−modules and the proposition follows.

2.2 Torsion modules arising from ideals
In this section, we recall the definition of the torsion modules TN/E and SN/E and prove that they can be
studied locally as the case of RN/E .
Let R be a Dedekind ring and E its fractional field. Let N be a finite Galois extension of E with group G
and ring of integers S. Let I be an G−stable or G-invariant ideal of S, that is g.a ∈ I for all g ∈ G, a ∈ I.
Recall that for a fractional ideal I of S, the dual of I with respect to the trace TrN/E from N to E is the
fractional ideal

I∗ := {x ∈ N |TrN/E(xI) ⊆ R}.
This is G-isomorphic to HomR(I,R) since the TrN/E is non-degenerate map.

By definition, CN/E := S∗ and it is called the inverse different of N/E. It is a fractional ideal of S containing
S so its inverse, DN/E which is called the different of N/E is an ideal of S. Of course, DN/E is a G−stable
ideal of S.

For any fractional ideal I of S, we have
I∗ = CN/EI−1.

We denote by AN/E be the square root of CN/E . By the above formula, we have A∗N/E = AN/E .

As announced in the introduction, to study these two modules we define TN/E := CN/E/S and SN/E :=
AN/E/S.
Denote by Div(I) the set of primes of R below the primes of S dividing I such that for each prime p ∈ Div(I)
we fix a prime q of S above p.

2.2.1 Proposition. Let I be a G−stable ideal of S. For every prime p ∈ R, let np be the valuation of I at
any prime of S above p. Then there are isomorphisms of RG− modules

S/I '
⊕

p∈Div(I)

ZG⊗ZDp
(Sq/q

nqSq)

I−1/S '
⊕

p∈Div(I)

ZG⊗ZDp
(q−npSq/Sq)
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Proof. Write I =
∏

p∈Div(I)

∏
q|p q

np . For any p, p′ ∈ Div(I), p 6= p′, we have
∏

q|p q
np +

∏
q|p′ q

np′ = S.
Applying the Chinese Remainder Theorem 1.4.8 with M = S, we have an isomorphism of S−modules

S/I ' ⊕p∈Div(I)S/(
∏
q|p

qnp).

Since I is G−stable, this is also an isomorphism of RG−modules. For any q, q′ dividing p such that q 6= q′, we
have qnp +q′np = S, so applying again the Chinese Remainder theorem withM = S, we have an isomorphism
of S-modules

S/(
∏
q|p

qnp) '
∏
q|p

S/qnp

Set M = S/qnp . It is a finitely generated S−module and its completion with respect to vq is given by

Mq = Sq ⊗S M = Sq ⊗S S/qnp ' Sq/q
npSq.

The last isomorphism follows from the fact that R/I⊗RM 'M/IM for any R−moduleM and commutative
ring R and ideal I of R.

On the other hand, for every q|p, the inclusion S → Sq induces an isomorphism S/qnp ' Sq/q
npSq of RDq−

modules. By Lemma 1.4.2, for any prime q0 of S,∏
q|p

S/qnp '
∏
q|p

Mq ' Map(G,M)Dq0 ' ZG⊗ZDq
M,

where M = S/q
np

0 .
This shows the first isomorphism of the lemma. The proof of the second isomorphism is similar using the
analogue of the Chinese Remainder theorem instead of the Chinese Remainder Theorem 1.4.9.

We will apply this Proposition with I = DN/E , the different of N/E.

Local setting

The previous proposition and lemma allow us to work in local case to treat the modules TN/E , SN/E and
RN/E so let us introduce the local setting of our situation.
Let us start from the local analogue of the isomorphism, rK,Γ introduced above. Recall the isomorphism

rK,Γ : K ⊗k K → Map(Γ,K),

x⊗ y 7→ δ 7→ xδ(y),

Let (Γ × Γ) act on K ⊗k K by (δ, δ′)(x ⊗ y) = δ(x) ⊗ δ′(y) and define an action of (Γ × Γ) on Map(Γ,K)
by ((δ, δ′).f)(g) = δ(f(δ−1gδ′)) for all δ, δ′, g ∈ Γ, f ∈ Map(Γ,K). These operations make rK,∆ into
(Γ× Γ)−isomorphism.

The action of the subgroup (1×Γ) on Map(Γ,K) is the same as the action of Γ introduced in the beginning
of the section of Galois algebras when we identify (1× Γ) with Γ.

Recall the definition of Map(Γ,K)∆ which is the set of invariant maps under the action of the subgroup
(Γ× 1) of Γ× Γ. More precisely,

Map(Γ,K)∆ = {f : Γ→ K, δ(f(g)) = f(gδ) for all δ, g ∈ Γ, f ∈ Map(Γ,K)}.
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As we have seen, Map(Γ,K)∆ is an F−algebra with the pointwise operations and an Γ-module where Γ acts
as 1× Γ.

Then from Lemma 1.3.7, there is an isomorphism of both F−algebra and FΓ−modules:

Map(Γ,K)∆ → QΓ⊗Q∆ K, (2.2)

f 7→
∑
γ∈Γ

γ−1 ⊗ f(γ), (2.3)

Note that, QΓ⊗Q∆K has the structure of Γ−module via its left-hand factor and the structure of an F−algebra
via its right-hand factor.

Since F ⊗kK is an F−algebra via its left factor and as Γ−module via its right factor, then the isomorphism
rK,Γ induces both an F−algebra isomorphism and FΓ−module:

F ⊗k K ' Map(Γ,K)∆.

Composing this with the isomorphism in (2.2), then we get :

r̃K,Γ : F ⊗k K → QΓ⊗Q∆ K.

Since F/k is unramified then from Lemma 1.3.20, OF⊗OkOK is the maximal order of F⊗kK and ZΓ⊗Z∆OK
is the maximal order of QΓ⊗Q∆ K. Hence from Proposition 2.2, r̃K,Γ induces an isomorphism of rings and
of OFΓ−modules:

OF ⊗Ok OK ' ZΓ⊗Z∆ OK .

2.2.2 Proposition. For every n ∈ N, the homomorphism r̃K,Γ induces isomorphisms of OFΓ−modules

OF ⊗Ok OK/pnK ' ZΓ⊗Z∆ OK/pnK ,

OF ⊗Ok p
−n
K /OK ' ZΓ⊗Z∆ p−nK /OK .

Proof. Consider the following short exact sequence:

0→ pnK → OK → OK/pnK → 0.

Since F/k is unramified, then OF is free Ok−module hence flat Ok−module. We know also that ZΓ is free
Z∆−module, hence flat Z∆−module. Then we have the following commutative diagram of OFΓ−modules:

0 OF ⊗Ok pnK OF ⊗Ok OK OF ⊗Ok OK/pnK 0

0 ZΓ⊗Z∆ pnK ZΓ⊗Z∆ OK ZΓ⊗Z∆ OK/pnK 0

r̃K,Γ r̃K,Γ

The central vertical arrow is an isomorphism as we have just discussed above. So, the right hand vertical
arrow is surjective. Comparing the cardinals, we have

](OF ⊗Ok OK/pnK) = ](OK/pnK)[F :k] = ](OK/pnK)[Γ:∆]) = ](ZΓ⊗Z∆ OK/pnK).

Hence the right-hand vertical arrow is an isomorphism. By the Snake’s lemma in Lemma 1.3.2, the left-hand
arrow is an isomorphism and the first isomorphism follows.

The proof of the second isomorphism is similar by considering the short sequence

0→ OK → p−nK → p−nK /OK → 0
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and the following commutative diagram of OFΓ−modules with exact rows:

0 OF ⊗Ok OK OF ⊗Ok p
−n
K OF ⊗Ok p

−n
K /OK 0

0 ZΓ⊗Z∆ OK ZΓ⊗Z∆ p−nK ZΓ⊗Z∆ p−nK /OK 0

r̃K,Γ r̃K,Γ

We have seen that the left-hand arrow is an isomorphism. Comparing the cardinals as before it is enough
to prove that the central arrow is injective. To prove this, consider the following commutative diagram of
OFΓ−modules:

OF ⊗Ok p
−n
K F ⊗k K

ZΓ⊗Z∆ p−nK ZΓ⊗Z∆ K

r̃K,Γ

The right arrow is an isomorphism from the above discussions. Note that F⊗kK is the localisation of OF⊗Ok
p−nK at the multiplicative set k×. Since OF ⊗Ok p

−n
K is torsion free Ok-module, then the top row is injective.

In particular, the left-hand row is injective. This proves the second isomorphism of the proposition.

The following proposition shows that the ∆-modules p−nK /OK and OK/pnK can be decomposed as in Propo-
sition 2.1.6.

2.2.3 Proposition. For each n = 0, . . . , e, the action of OF on OK/pnK and p−nK /OK factors through an
action of OF /pF and we have isomorphisms of F∆−modules:

OK/pnK ' ⊕n−1
i=1 p

i
K/p

i+1
K and p−nK /OK ' ⊕ni=0p

e−i
K /p

e−(i−1)
K

Proof. We have seen in Proposition 2.1.6 that OK/pnK and p−nK /OK are both F∆−modules, and they
have the filtrations {piK/pnk}ni=0 and {p−iK /OK}ni=0, respectively. Using the semisimplicity of F∆, we have
F∆−isomoprhisms:

OK/pnK ' ⊕n−1
i=0 p

i
K/p

i+1
K and p−nK /OK ' ⊕n−1

i=1 p
−i
K /p−i+1

K .

On the other hand, the multiplication by the eth power of any uniformizer gives a F∆−isomoprhism between
p−iK /p−i+1

K and pe−iK /p
e−(i−1)
K , and this proves the second isomoprhism.

2.3 Switch to a global cyclotomic field
In this subsection, we will perfom a further reduction relating the modules OK/pnK , p−nK /OK and RK/F to
new torsion Galois modules, associated to the ring of integers of a certain cyclotomic fields.

Let µe denote the group of eth roots of unity in a fixed field algebraic closure Q of Q and let denote by O
the ring of integers of Q(µe).

Let χ : ∆→ µe be a character of ∆. For any O−module M , we let ∆ act on M by δ.m = χ(δ)m. It makes
M into an O∆-module and we denote it by M(χ). We will concentrate with the case M is the residue field
of a prime P of O not dividing e, that is, M = O/P.

Let’s now explain the relation between the module M introduced above and the modules OK/pnK , p−nK /OK
and RK/F . Thanks to the following lemma, we can switch the local case to a global case.
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2.3.1 Lemma. If the character χ : ∆ → µe is injective, then there exists an embedding ι : Q → Qp such
that ι ◦ χ = χK/F .

Proof. Define ι : Q(µe) → Qp by ι(χ(δ)) = χK/F (δ) for every δ ∈ ∆. Since ∆ and µe have the same cardi-
nality, thus χ is an isomorphism. Thus, i is injective since χK/F also is an isomorphism.

Then we can extend ι to an embedding Q→ Qp in infinitely many ways and each of these extensions satisfies
the conditions ι ◦ χ = χK/F .

Let’s fix now an injective character χ : ∆ → µe and an embedding ι : Q(µe) → Qp such that ι ◦ χ = χK/F
as in the Lemma. Since µe,p ⊂ F, then ι(O) ⊆ OF . Hence via the homomorphism ι, any OF−module can
be viewed as O-module.

2.3.2 Proposition. Let P be the prime ideal above p such that ι(P) ⊂ pF . Then for every, natural integer
i and every uniformizer πK of K, we have an isomorphism of OF∆−modules :

piK/p
i+1
K ' O/P(χi)⊗O/P F ,

where O/P(χi)⊗O/P F is an F−module via its right factor and ∆−module via its left factor.

Proof. Since K/F is totally ramified, we have F = K. Then we have an OF -isomorphism:

ϕ : piK/p
i+1
K → O/P(χi)⊗O/P F ,
πiKx 7→ 1⊗ x.

Recall that the Galois action of ∆ on piK/p
i+1
K is the same as the action given by multiplication by χiK/F

since for all x ∈ piK , δ ∈ ∆, we have

δ[πiKx] = [δ(πiKx)] = [χiK/F (δ)πiKδ(x)] = [χiK/F (δ)πiKx]

as we have seen in Proposition 2.1.6, hence we have ϕ(δ.[πiKx]) = [1] ⊗ [(χiK/F )(δ)x] = [1] ⊗ ιχi(δ)[x] =

χi(δ)[1]⊗ [x] = ([δ.1]) = δ.([1]⊗ [x]). This proves that ϕ is ∆-isomorphism.

2.3.3 Proposition. Let P be the prime ideal of O above a prime number p such that ι(P) ⊂ pF . Assume
that K/k is abelian, and let 0 < n ≤ e be an integer. Then ι induces an inclusion O/P → Ok/pk and there
are isomorphisms of Ok/pkΓ−modules:

OK/pnK ' Ok/pk ⊗O/P (ZΓ⊗Z∆ (⊕n−1
i=0 O/P(χi))),

p−nK /OK ' Ok/pk ⊗O/P (ZΓ⊗Z∆ (⊕ni=O/P(χe−i)))

where the right-hand sides of the above isomorphisms areOk/pk−modules via their left factors and Γ−modules
via their right factors.

Proof. Since K/k is abelian then µe,p ⊂ k and hence ι(O) ⊂ Ok. Thus ι(O/P) ⊂ Ok/pk and this makes
Ok/pk into a O/P−module. On the other hand, we have

OF ⊗Ok OK/pnK ' OF /pF ⊗Ok/pk OK/p
n
K .

By Proposition 2.2.2, we have
OF ⊗Ok OK/pnK ' ZΓ⊗Z∆ OK/pnK .

From Proposition 2.2.3, we get

ZΓ⊗Z∆ OK/pnK ' ZΓ⊗Z∆ (⊕n−1
i=0 p

i
K/p

i+1
K ).
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Using Proposition 2.3.2, we have

ZΓ⊗Z∆ (⊕n−1
i=0 p

i
K/p

i+1
K ) ' ZΓ⊗Z∆

(
(O/P(χi)⊗O/P F )

)
.

Since Ok/pk is an O/P-module, using the properties of tensor product, we can write

OF /pF ⊗Ok/pk OK/p
n
K '

(
ZΓ⊗Z∆

(
(O/P(χi)

)
⊗O/P Ok/pk

)
⊗Ok/pk OF /pF .

The isomorphism between OK/pnK and
(
ZΓ⊗Z∆

(
(O/P(χi)

)
⊗O/P Ok/pk

)
now follows from this by cancel-

lation of FΓ−modules, which is a consequence of the Krull-Schimidt Theorem:

let A be a finite dimensional algebra over the field K and let M be an A-module of finite type with two
decompositions

M = M1 ⊕ · · · ⊕Mn = N1 ⊕ · · · ⊕Nm
into indecomposable submodules, then n = m and there exists a permutatuion π of the indices 1, . . . , n such
that Mπ(i)=Ni . The proof of the second isomorphism is similar.

2.3.4 Corollary. If K/k is unramified, then OK/pK and p−1
K /OK are free Ok/pkΓ−modules.

Proof. If K/k is unramified, then it is abelian and ∆ is trivial. In particular e = 1, χ is trivial and O/P = Fp
which is the field with p elements. Then Proposition 2.3.3 says that we have the following isomorphisms of
Ok/pkΓ-modules:

OK/pK ' Ok/pk ⊗Fp
(
ZΓ⊗Fp Fp

)
' Ok/pkΓ,

pnK/OK ' Ok/pk ⊗Fp
(
ZΓ⊗Fp Fp

)
' Ok/pkΓ.

Since we are mainly interested in the modules TN/E , SN/E , and PN/E let us introduce the following notation
for any prime P of O not dividing e:

Tχ(P,O∆) =
⊕e−1

i=1 O/P(χi), (2.4)

Sχ(P,O∆) =
⊕e−1

i= e+1
2
O/P(χi), (2.5)

Rχ(P,O∆) =
⊕e−1

i=1 O/P(χi)⊕i. (2.6)

Consider the Swan module
∑

∆(p) = pZ∆ + Tr∆ . Recall that ∆ =< δ >,Tr∆ =
∑i=e−1
i=0 ∈ Z∆ and p is the

residual character of P. Using the decomposition of O/P∆ given by primitive idempontents, we have an
isomorphism O∆-modules

O/P∆ '
e−1⊕
i=0

O/P(χi).

Let e0 be the primitive idempotent attached to χ0. Since e ∈ O/P×, then 1
e Tr∆ is an idempotent and we

have

O/P∆/Tr∆ '
e−1⊕
i=0

O/P(χi)/O/P(χ0) '
e−1⊕
i=1

O/P(χi) = Tχ(P,Z∆).

This shows that Tχ(P,O∆) is independent of the chosen injective character χ.

On the other hand, we have the torsion module T (p,Z∆) := Z∆/
∑

∆(p) = Fp/(Tr∆). Since O/P is an
Fp-vector space, then we have

Tχ(P,Z∆) = T (p,Z∆)⊗Fp O/P.

Hence we can eliminate the hypothesis K/k abelian for the case TK/k = p1−e/OK (Lemma 1.4.5.)
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Choose P as in the Proposition 2.3.3 and argue as in that Proposition, we have TK/k ' Ok/pk ⊗Fp (ZΓ⊗Z∆

T (p,Z∆)).

We are now ready to prove the main result of this chapter but we recall first our notations:
N/E is a finite tame Galois extensions of number fields with group G and ring of integers R and S, respec-
tively. For any prime ideal p of R we fix a prime ideal q of S dividing p. We denote by Dq (resp. Iq) the
decomposition group (resp. the inertia group) of q in the group G. Then, the cardinality of Iq only depends
on p and we denote it by ep. By Lemma 2.3.1, we fix an injective character χq : Iq → Q× and an embedding
ιq : Q→ Qp where p is the rational number below p such that ιq ◦ χq = χNq/Fq

where Nq is the completion
of N with respect to q and Fq is the fixed field of the inertia group Iq, i.e Fq = N

Iq
q . These choices determine

a prime ideal p in the ring of integers Oep of Q(µep) ⊂ Q satisfying ιq(p) ⊂ qSq, where Sq is the valuation
ring of Nq. The injection ιq makes OFq

into Oep−module. We recall that Ram(N/E) is the set of primes
of E that ramify in N/E. In other words, if we consider the ideal I = C−1

N/E , which is the different of N/E,
then Ram(N/E) is precisely the set Div(I). We are going to prove the main result of this chapter:

2.3.5 Theorem. For every p ∈ Ram(N/E), choose a prime q of N above p. Then, with the notation
introduced above, there is an iosmorphism of ZG−modules:

TN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZDq

T (p,ZIq)
)⊕[R/p:Fp]

.

Furthermore, for every choice of injective characters χq : Iq → Q× for every prime q as above, one can find
primes P of Oep and injections Oep/P → S/q such that there is isomorphism of ZG−modules:

RN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZIq Rχq

(P,OepIq)
)⊕[G:Dq][S/q:Oep/P]

.

Moreover, if N/E is locally abelian, then the injections Oep/P → S/q factor through R/p :→ S/q and there
is an isomorphism of ZG−modules:

SN/E '
⊕

p∈Ram(N/E)

(
ZG⊗ZIq Sχq

(P,OepIq)
)⊕[R/p:Oep/P]

.

Proof. Consider the ideal I = C−1
N/E of S. By definition TN/E = CN/E/S = I−1/S.

By Proposition 2.2.1,
TN/E '

⊕
p∈Div(I)

ZG⊗ZDp
(q−ep+1Sq/Sq).

By lemma 1.4.5, q−ep+1Sq/Sq = TNq/Ep
.

By Proposition above,
TNq/Ep

'
(
ZDq ⊗ZIp T (p,ZIq)

)⊕[R/p:Fp]
.

Thus the first isomorphism of the Theorem follows using the fact that Div(I) = Ram(N/E).
We now prove the second isomorphism about RN/E with choices of χq and ιq as described above.
By Lemma 2.1.2 we have,

RN/E '
⊕

p∈Ram(N/E)

(ZG⊗ZDq
RNq/Ep

)⊕[G:Dq].

By Proposition 2.1.3 we have,
RNq/Ep

' ZDq ⊗ZIq RNq/Fq
.
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By Proposition 2.1.6 we have,

RNq/Fq
'
ep−1⊕
i=1

(
qiSq/q

i+1Sq

)
.

By Proposition 2.3.2 we have,

qiSq/q
i+1Sq ' Oep/P(χiq)⊗O/P OFq

/qfpOFq .

By definition

Rχq
(P,OepIq) =

ep−1⊕
i=1

Oep/P(χiq).

Hence using the fact that Sq/qSq = OFq
/qfpOFq ,, we have:

RNq/Fq
' Rχq

(P,OepIq)⊗Oep/P Sq/qSq.

Finally, using the property of tensor product, we have isomorphism of ZG-modules:

Rχq
(P,OepIq)⊗Oep/P Sq/qSq ' Rχq

(P,OepIq)[S/q:Oep/P],

and we have the second isomorphism of the theorem.
Suppose now that N/E is locally abelian. Then Ep contains the ethp roots of unity in Q×p and therefore ιq
induces an inclusion Oep/P → OEp

/pOEp
' R/p. Moreover, using Proposition 2.2.1 and 2.3.3, we have,

isomorphisms of ZG-modules:

SN/E '
⊕

p∈Ram(N/E)

ZG⊗ZIq SNq
/Ep,

'
⊕

p∈Ram(N/E)

(
ZG⊗ZIq Sχq

(P,OepIq)
)⊕[R/p:Oep/P]

2.4 Classes of cohomologically trivial modules
2.4.1 Definition. Let A be a G−module and let i ≥ 0. We denote by Hi(G,A) to be the ith cohomology
group of G with coefficients in A and Hi(G,A) to be the ith homology group of G with coefficients in A
If G is a finite group and A is a G-module, then there is a natural norm map N : H0(G,A) → H0(G,A)
taking a representative a to

∑
g∈G g(a). The Tate cohomology groups Ĥi(G,A) are given by

• Ĥi(G,A) := Hi(G,A) for i ≥ 1.

• Ĥ0(G,A) := kerN .

• Ĥ−1(G,A) := CokerN .

• Ĥi(G,A) := H−(i+1)(G,A) for i ≤ −2.

2.4.2 Definition. Let G be a finite group. A G-module M is said to be G-cohomologically free if, for every
i ∈ Z and every subgroup H of G, the Tate cohomology group Ĥi(H,M) is trivial.

2.4.3 Definition. Let A be the ring of integers of a number field and M an AG-module. For any prime p
of A, we denote by Mp := Ap ⊗AM the completion of M with respect to p where Ap is the completion of
A at p. We know that Mp is an Ap-module.
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• We say that M is AG-locally free module if Mp is free Ap-module for all prime p.

• The class group of Λ := AG, denoted by Cl(Λ) is the group

Cl(Λ) :=
{ locally free modules over Λ}

∼
,

where ∼ is defined as follows: for all M,N locally free modules over Λ,

M ∼ N if and only if M ⊕ Λn ' N ⊕ Λn for some positive integer n.

The following lemma will be usefull in this section. We will omit the proof but it can be seen in [CV].

2.4.4 Lemma. Let A be the ring of integers of a number field. Let M be a finitely generated AG-module.

i M is AG-projective if and only if it is AG-locally free.

ii M is G-cohomologically trivial if and only if there exists an AG-resolution

0→ P1 → P0 →M → 0

of M with Pi locally free, i = 0, 1. In this case the class (P0)−1(P1) in Cl(AG) is independent of the
chosen locally free resolution of M and will be denoted by (M)AG.

iii If H is a subgroup of a finite group G and M is H−cohomologically trivial, then the induced module
M ⊗AH AG is G−cohomologically trivial and we have

(M ⊗AH AG)AG = IndGH((M)AH)

where IndGH : Cl(AH) → Cl(AG) is the map which sends the class (P )AH ∈ Cl(AH) of locally free
AH-module P to the class (P ⊗AH AG)AG in Cl(AG).

In this section, we will use this lemma with A = Z but later we will take A to be the ring of integers of a
cyclotomic field. To simplify the notation, we write (M) for the class of M in Cl(ZG) instead of (M)ZG.

Local case
Let us start first for the local case. Let K/k be tame Galois extension of Qp with group Γ and inertia group
∆. Set F = K∆.

By [[Ull69], Theorem 2], we have that for any a, b ∈ Z, with b ≥ a the ideals paK and pbK are Γ−cohomologically
trivial. Hence the ZΓ−module paK/p

b
K is Γ−cohomologically trivial.

2.4.5 Proposition. For every natural integer m and n such that m ≡ n mod e, we have

(OK/pnK) = (OK/pmK) ∈ Cl(ZG).

Proof. Assume that n ≥ m and write n = m+ ae, for some a ∈ N. We have equality in Cl(ZΓ)

(OK/pnK) = (OK/pmK)(pmK/p
n
K) = (OK/pmK)

a∏
j=1

(p
m+(j−1)e
K /pm+je

K ).

Thus it is enough to prove that for every b ∈ N, (pbK/p
b+e
K ) = 0 in Cl(ZΓ). Arguing as in the proof of

Proposition 2.1.6, pbK/p
b+e
K is an OF /pF∆-module and since OF /pF∆ is semisimple, we have an isomorphism

of OkΓ-modules , (in particular ZΓ-modules)

pbK/p
b+e
K ' Ok/pk ⊗Fp FpΓ

On ther hand, FpΓ is a cohomologically trivial Γ-module with trivial class in Cl(ZΓ) thanks to the ZΓ-free
resolution

0→ pZΓ→ ZG→ FpΓ→ 0.

Hence we have (pbK/p
b+e
K ) = 0 and the result follows.
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Global case
We now back to the global case. We recall that N/E is tame Galois extension of number fields with
finite group G. From Proposition 1.3 of [Ull69], every G-stable is fractional ideal of N is ZG-projective,
hence locally free by Lemma 2.4.4. In particular, if I is a G-stable ideal of S, then S/I and I−1/S are
G−cohomologically trivial by Lemma 2.4.4 again. Therefore, we can consider the classes (S/I) and (I−1/S)
in Cl(ZG). Note that

(S/I) = (I)(S)−1 and (I−1/S) = (I)−1(S).

Similarly, RN/E defines a class in Cl(ZG). In fact, we know that Map(G,S) is free RG-module of rank 1
hence ZG-free of rank [N : Q]. Noether’s theorem states that S is RG-locally free module, hence S ⊗R S is
SG-locally free. Thus,

(RN/E) = (S ⊗R S) ∈ Cl(ZG).

On the other hand, for every prime p of R we fix a prime q of S. For any integer i, the Iq-module Oep(χiq)
is cohomologically trivial. In fact, for every i ∈ Z and every subgroup I of Iq, the Tate cohomology
Ĥi(I,Oep(χiq)) is annhilated by ep and p since p annihilates Oep(χiq).
Since N/E is tame, we have gcd(e, p) = 1 and hence Ĥi(I,Oep(χiq)) = 0. Thus, Oep(χiq) defines a class in
Cl(ZIq) by Lemma 2.4.4.

2.4.6 Proposition. Let I be a G−invariant ideal of S and assume that N/E is locally abelian at p ∈ Div(I).
For every prime p ∈ Div(I), we fix a prime q of S dividng p and let np be the valuation of I at q. (np
depends only on p.) For every choice of character χq : Iq → Q× for every q as above, one can find primes
P ⊂ Oep and injections Oep/P → S/q such that we have equalities in Cl(ZG)

(S/I) =
⊕

p∈Div(I)

mp−1⊕
i=0

IndGIq
(
(Oep/P(χiq))

)[R/p:Oep/P]
,

(I−1/S) =
⊕

p∈Div(I)

mp⊕
i=0

IndGIq

(
(Oep/P(χ

ep−i
q ))

)[R/p:Oep/P]

where mp is the smallest nonegative integer congruent to np modulo ep. In particular, if I is coprime to the
different of N/E, then (S/I) = (I−1/S) = 1.

Proof. We prove only the first isomorphism since the proof of the second is similar.

By Proposition 2.2.1, we get an isomorphism of RG-modules:

S/I '
⊕

p∈Div(I)

ZG⊗ZIq SNq
/qnpSq.

By Proposition 2.4.5 and 2.3.3, we have the following equality in Cl(ZDq) :

(ONq
/qnpONq

) = (ONq
/qmpONq

)

=
(
ZDq ⊗ZIq (⊕mp−1

i=0 (Oep/P(χiq)))
)R/p:Oep/P .

The results now follows from the Lemma 2.4.4. For the last assertion, we know that if I is coprime with the
different of N/E, then for every prime q dividing I we have Iq is trivial. In particular the character χq is
trivial, ep = 1 and Oep/P = Fp, by Corollary 2.3.4. Thus for every i ∈ Z, we have

IndGIq((Oep/P)(χiq)) = ((Oep/P)(χiq))⊗ZIq ZG)

= (Fp ⊗Z ZG)

= (Fp)
= 1.
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This Proposition can be used to prove the following interesting Theorem. Recall that S ⊗R S is an
ZG−module by the action for all a, b ∈ S and g ∈ G,

g.(a⊗ b) = a⊗ g(b).

Before stating the theorem, we recall the Chebotarev’s density theorem

2.4.7 Lemma. Let L be a finite Galois extension of a number field K with Galois group G. Let X be a
subset of G that is stable under conjugation. The set of primes p of K that are unramified in L and whose
associated Frobenius conjugacy class σp is contained in X has density #X

#G . In paritcular, this ratio is strictly
positive so there always exist such primes.

2.4.8 Theorem.
(S ⊗R S) = (S)[N :E] in Cl(ZG).

Proof. Write n = [N : E]. By the structure theorem for modules over Dedekind Domain, we know that S is
R-isomorphic to R⊕(n−1) ⊕ J , where J is an ideal of R. By Chebotarev’s density theorem (Lemma 2.4.7),
there exists an ideal I of R belonging to the ideal class of J and such that I is coprime with the discriminant
of N/E. Thus S is isomorphic to R⊕(n−1) ⊗ I as R−module. By the property of the tensor product, we
have RG-isomorphisms since G acts only on the right factor of S ⊗R S:

S ⊗R S ' (R⊗R S)⊕(n−1) ⊕ (I ⊗R S) ' S⊕(n−1) ⊕ IS.

In partiular,
(S ⊗R S) = (S)⊕(n−1)(IS).

IS is of course a G−stable ideal of S since I is an ideal of R, then it is locally free because N/E is tame.
Hence S/IS is G−cohomologically trivial by Lemma 2.4.4 and we have

(IS) = (S)(S/IS) in Cl(ZG).

Since IS is coprime with the different of N/E, then by Proposition 2.4.6 (IS) = (S), and the results follows.
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Chapter 3

Hom-representatives

In this chapter, we are going to prove the Theorem 1.2.2 in the introduction which is the core of this work as
we said. We apply Frohlich’s machinery to get a description of Hom-representatives of the classes involved
in its statements.

We now focus on the cyclotomic fields to study the modules T ,R and S. Let’s recall the notation in the
introduction.

We fix an integer e, a cyclic group ∆ =< δ > of order e and an injective character χ : ∆ → µe, where µe
is the group of eth roots of unity in Q. We denote by O the ring of integers of the cyclotomic field Q(µe).
Let p be a rational prime such that p . e and let p be a prime of O above p. Set κ = O/p . To simplify the
notation, we set

TZ = T (p,Z∆),R = Rχ(p,O∆),S = Sχ(p,O∆).

We fix a primitive eth root of unity ζ ∈ µe and for δ ∈ ∆ we define by χ(δ) = ζ.

3.1 Hom description of the class group
3.1.1 Definition. (The group of idele)

Let L be a number field and OL its ring of integers. Set ΩL = Gal(Q/L). The ring AL of finite adeles is
defined as the set of elements x = (xp)p in the direct product of the completions Lp of L at the finite primes
p of L, such that, except for finitely many prime p, the components xp lie in the valuation ring OL,p of Lp.
More precisely,

AL = {x = (xp)p ∈
∏
p

Lp, xp ∈ OL,p for almost all primes p}.

The group of finite ideles J(L) is the group of units of AL. An adele (xp)p is an idele if and only if its
components are all non-zero and except for finitely many p, they lie in the units of OL,p, that is

J(L) = {x = (xp)p ∈
∏
p

Lp, xp ∈ O×L,p for almost all primes p}.

For any extension F of L we have
AF = F ⊗L AL.

If F/L is Galois, we thus get an action on AF by the Galois group G = (Gal(F/L)), via its action on F and
this action induces an action J(L). The action on ideles is defined as follows. Let x = (xq)q be an idele of
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F . We know that the group G acts transitively on the primes q above a given prime p of L. For any prime
q of F , an element σ ∈ G induces an isomorphism σq : Fq → Fσ(q). So the idele σx is the idele given by

(σx)σ(q) = σq(xq).

It follows from the above that J(F )GL = J(L).

3.1.2 Definition. (The group of virtual character)
Let G be a finite group. The group of virtual character RG is the Z-linear combinations of the irreducible
characters of G. RG can also be equipped with a ring structure coming from the tensor product of represen-
tations (Theorem 1.3.28).

If G is Galois group of extension of number fields F/L, then G acts on RG by acting on the values of the
characters: that is, for any σ ∈ G and χ ∈ RG

(σ.χ)(g) = σ(χ(g)), g ∈ G.

If F is a big enough extension of L contained in Q, contains L and the values of the characters of G then
we can consider the group of all homomorphisms between the commutative groups RG and J(F ) and which
commute with the action of G i.e: the group of Galois equivariant homomorphisms

HomG(RG, J(F )).

We know that F× can be embedded diagonally in J(F ), hence we get a subgroup HomG(RG, F
×) of

HomG(RG, J(F )).

Let U(OL) denote the ring of finite integral adeles of L, that is the product over all prime ideals p in OL of
the completed localisations OL,p of OL.

We define
U(OLG) =

∏
p

OL,pG× ⊆
∏
p

LpG
×.

Recall that by Lemma 1.4.2, we have
F ⊗L Lp '

∏
q|p

Fq,

then, (F ⊗L Lp)× can be embedded in Jp(F ) :=
∏

q|p F
×
q .

Let us now define the determinant homomorphism Det:

Let x = (xp)p ∈
∏

p LpG
×. The the determinant homomorphism Det(x) = (Det(xp))p is defined componen-

twise. For each prime p of L, the component Det(xp) takes values in (F ⊗L Lp)× ⊂ Jp(F ). So we only need
to define Det(xp) for each prime p. By linearity, it is sufficient to define Det(xp) only on the irreducible char-
acters χ of G. Write xp =

∑
g∈G xp,gg, and let χ be an irreducible character of G with matrix representation

X = (aij)i,j . Then we define Det(xp(χ) to be the determinant of the matrix∑
g∈G

aij(g)⊗ xp,g


i,j

,

where
∑
g∈G aij(g)⊗ xp,g ∈ F ⊗L Lp.

We are now ready to give the Hom-description of Cl(OLG) which is the group

HomG(RG, J(F ))

HomG(RG, F×) Det(U(OLG))
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In case where G is abelian group, we know that each character is of dimension 1 so there is no determinant.
Thus using the notation as above, we have

Det(xp)(χ) =
∑
g∈G

xp,gχ(g).

In our cyclotomic setting introduced above, we shall only be concerned with the cases where L = Q,F = Q(µe)
and G = ∆. We are now in the case that ∆ is abelian even cyclic, so we have the simple formula of the
determinant map. This is why we do the reduction to the inertia group in Chapter 2.

3.2 Hom-representative of (TZ)

Let us consider the Swan module
∑

∆(p) := pZ∆+TrZ∆ and its associated torsion module TZ = Z∆/
∑

∆(p).
We have the following exact sequence of Z∆-modules:

0→
∑
∆

(p)→ Z∆→ TZ → 0.

By Swan,
∑

∆(p) is Z∆-projective so locally free by Lemma 2.4.4. Therefore, TZ is ∆-cohomologically trivial
and TZ and

∑
∆(p) define the same classes in Cl(Z∆), that is

(TZ) = (
∑
∆

(p)) in Cl(Z∆).

So we are going to find a representative of
∑

∆(p).

3.2.1 Lemma. The class of the Swan module
∑

∆(p) in Cl(Z∆) is represented by v ∈ HomΩQ(R∆, J(Q))
which is defined by for any h = 1, . . . , e and any rational prime q, the qthcomponent of v(χh) is given by 1
if q 6= p or h = e, and given by p otherwise.

Proof. Since
∑

∆(p) is locally free Z∆-module, then for any rational prime q, the Zq∆- module Zq⊗Z
∑

∆(p)
is free of rank 1. We are now going to find its generator αq.

If q 6= p, then pZq = Zq and Zq ⊗Z
∑

∆(p) = Zq∆. Thus, we can take αq = 1.

If q = p, we consider the idempotent elements ε0 := 1
e Tr∆ and ε1 := 1− ε0. Since e is coprime to p, then e

is invertible in Zq and ε0, ε1 ∈ Zq∆. By definition of
∑

∆(p), we have Zq ⊗Z
∑

∆(p) = pZp∆ + 1
eZq∆. Take

αp = ε0 + pε1. We have to show that (ε0 + pε1)Zq∆ = Zq ⊗Z
∑

∆(p). Clearly, ε0 + pε1 ∈ pZp∆ + 1
eZq∆. The

other inclusion follows by writting p = (ε0 + pε1)(pε0 + ε1) and ε0 = (ε0 + pε1)ε0 since ε0ε = 0.

On the other hand, by Frohlich’s theory, the homomorphism χh 7→ (Det(αq)(χ
h))q represents the modules∑

∆(p) in HomΩQ(R∆, J(Q)). By computation Det(αp)(χ
h) = p + (1 − p)δh,e, where δh,e is the Kronecker

Delta. Thus the lemma follows.

3.3 Hom-representatives of (R) and (S)
In this section, we will find the Hom-representatives of (R) and (S). Recall that in the previous section we
saw that (with the assumption that e is odd for the case of S.)

R =

e−1∏
i=1

κ(χi)i and S =

e−1∏
i=e+1/2

κ(χi).
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Thus we have the equalities of classes

(R) =

e−1∏
i=1

(κ(χi)) and (S) =

e−1∏
i=e+1/2

(κ(χi)).

Since the Hom-description is a group isomorphism, then we are done once we have the representatives of
κ(χi) for all i = 1, . . . , e− 1.

Let’s now compute the Hom-representative of κ(χi) for a fixed i. Recall first that ∆ =< δ > is cyclic of
order e and κ(χi) is an O∆−module with underling set κ = O/p and with ∆-action defined by

δ.x = χi(δ)x = ζix, for all x ∈ κ.

Before computing this, we have to introduce a new O∆-module Mi defined by

Mi := pO∆ + (δ − ζi)O∆.

The next lemma shows that Mi is locally free and gives us a precise local generator. The proof can be seen
in [Proposition 3.4 of [?]].

3.3.1 Lemma. For avery prime q of O, Oq ⊗O Mi = xi,qOq∆ where

xi,q =

{
1 if q 6= p.

1 + (p− 1)εi if q = p.

and εi = 1
e

∑e−1
j=0 ζ

ijδ−j ∈ Oq∆. In particular, the O∆-module Mi is locally free.

3.3.2 Proposition. The O∆-modules κ(χi) and Mi define the same classes in Cl(O∆). Furthermore, the
homomorphism vi with values in the ideles group J(Q(ζ)), defined at any prime q of O by

vi(χ
h)q =

{
p if q = p, i ≡ h( mod e).

1 otherwise.

represents the class of (κ(χi))O∆ in HomΩQ(R∆, J(Q(ζ))).

Proof. We show the first assertion. Consider the homomorphism of O∆-modules

φi : O∆→ κ(χi)

sending 1 to 1. In particular, we have φi(δ) = ζi. Clearly, φi is surjective since O → κ is surjective. By
definition of Mi we have Mi ⊂ ker(φi). On the other hand, we have ]O∆/Mi = ]O/p. Thus we have the
following exact sequence

0→Mi → O∆→ κ(χi)→ 0.

We know that O∆ is free Z∆-module, so it is ∆−cohomologically trivial. We have seen also that κ(χi) is
cohomologically trivial. By Lemma 3.3.1, Mi is locally free. So by Lemma 2.4.4, we have

(κ(χi))O∆ = (O∆)−1
O∆(Mi)O∆ = (Mi)O∆ in Cl(O∆).

This proves the first assertion.

To prove the last assertion, by Lemma 3.2.1 χh 7→ (Det(xi,q)(χh))q is a representative of (κ(χi))O∆ in
Cl(O∆). Consider the idempotent εi = 1

e

∑e−1
j=0 ζ

ij det−j as in Lemma 3.3.1.
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If q 6= p, we have xi,q = 1 and (Det(xi,q)(χh))q = 1.

If q = p, we have xi,p = 1 + (p− 1)εi and

(Det(xi,p)(χh))p = (Det(1 + (p− 1)εi)(χ
h))p

= (1 +
p− 1

e
)χh(1) +

1

e

e−1∑
j=1

ζijχh(δ−j)

= 1 +
p− 1

e

e−1∑
j=1

ζ(i−h)j)

If i − h 6= 0 mod e, then
∑e−1
j=1 ζ

(i−h)j = 0 by the well known fact saying that the sum of all nth roots of
unity is 0.

If i− h ≡ 0 mod e, thus
∑e−1
j=1 ζ

(i−h)j = e and the result follows.

By the above Proposition, we get a representative of the class (κ(χi))O∆. Now, we want to find a represen-
tative of the class ((κ(χi))Z∆). In order to find it, as usual we take the norm of vi but here we have to define
the norm of a homomorphism, denoted N (vi) = NQ(ζ)/Q(vi).

3.3.3 Definition. For each h = 0, . . . , e− 1, the qth component of N (vi)(χ
h) is defined by

N (vi)(χ
h)q = (

∏
σ∈∆

σ−1.(vi(σ.χ
h)))q.

where σ.χh is the action of σ on χh and σ−1.vi(σ.χ
h) is the action of σ−1 on the idele (vi(σ.χ

h)q).

Since ∆ is cyclic, using the following notation, we can re-write N (vi) precisely.
Let us recall some basic results from number theory.

3.3.4 Remark. Denote n̄ to be the n mod e. We have a group isomorphism,

σ : (Z/eZ)× → Gal(Q(ζ)/Q),

n̄ 7→ σn(ζ) = ζn.

This sends the subgroup generated by p̄ to the decomposition group of p dividing p. We have only one
decomposition group D since the extension is abelian.

In particular, σp(p) = p. Thus for any Λ ∈ Z/eZ)×/ < p̄ >, σΓ(p) = σλ(p).D for any lift λ ∈ Z/eZ)× of Γ.
Then we can denote by σΓ(p) the ideal σλ(p) for any lift λ of Λ. Note also that σΛ(p),Λ ∈ Z/eZ)×/ < p̄ >
are the prime ideals of O above p and for α ∈ Z/eZ)×, we have

σα(p) = σΛ(p)⇔ α ∈ Λ. (3.1)

Using this notation, we can write

N (vi)(χ
h)q =

∏
k

σ−1
k

(
(vi(χ

hk)σk(p))
)
.

where the product runs over the integers k = 0, . . . , e− 1 and coprime to e.

The following Proposition gives us an easy formula of N (vi)(χ
h)q. Set n(Λ, i, h) = ]{α ∈ Λ, αī = h̄} for any

i, h ∈ {0, e− 1}.

43



3.3.5 Proposition. For any prime q of O and for any h = 0, . . . , e− 1, we have

N (vi)(χ
h)q =

{
1 if q - p
pn(Λ,i,h) if q = σΛ(p) for some Λ ∈ Z/eZ)×/ < p̄ > .

Proof. If q - p, it is clear that N (vi)(χ
h)q = 1.

If q|p, then it is of the form q = σΛ(p) for some Λ ∈ Z/eZ)×/ < p̄ > .

For any integer k = 0, . . . , e− 1 and coprime to e, we have

σk(q) = p ⇔ σΛ(p) = σk−1(p)

⇔ k̄−1 ∈ Λ.

By Proposition 3.3.2, we have

vi(χ
hk)σk(q) =

{
p if k̄−1 ∈ Λ, i ≡ hkmod e,

1 otherwise.

3.3.6 Remark. For any divisor d of e, denote by fd the multiplicative order of pmod e, hence fe = f the
residue degree of p over p. It is not hard to prove that n(Λ, i, h) satisfies the following property
If gcd(i, e) 6= gcd(h, e) then n(Λ, i, h) = 0.

If gcd(i, e) = gcd(h, e), we can write e = de′, h = dh′ and i = di′. One has

n(Λ, i, h) =

{
f/fe′ if (h′mod e) ∈ (i′mod e′)Λ′

0 otherwise .

where Λ′ = (Λ mod e) ∈ (Z/e′Z)×/〈(pmod e′)〉.

3.3.7 Corollary. Denote by r and s the representatives of (R) and (S) in HomΩQ(R∆, J(Q(ζ))), respectively.
For any h = 0, . . . , e− 1, we have

• if q - p then r(χh)q = s(χh)q = 1,

• if q = σΛ(p) for some Λ ∈ nZ/eZ)×/ < p̄ > then

r(χh)q = p
∑e−1
i=1 in(Λ,i,h),

s(χh)q = p

∑e−1

i= e+1
2

n(Λ,i,h)
.

Proof. In fact, we know that

R =

e−1∏
i=1

κ(χi)i and S =

e−1∏
i=e+1/2

κ(χi).

Since (κ(χi))Z∆ is represented by N (vi) Hence

r =

e−1∏
i=1

N (vi)
i and s =

e−1∏
i= e+1

2

N (vi)
i.

Applying the previous Proposition, the results follows.

44



3.4 Contents of r and s
3.4.1 Definition. The content of an idele x = (xq)q is the fractional ideal cont(x) =

∏
q q

valq(xq) of O
where valq is the q-valuation and the product runs over finite prime ideals q of O.

3.4.2 Proposition. For i, h ∈ {0, . . . , e− 1}, we have

cont(N (vi)(χ
h)) = p

∑
Λ n(Λ,i,h)σΛ , (3.2)

cont(r(χh)) = p
∑

Λ

∑e−1
i=1 n(Λ,i,h)σΛ , (3.3)

cont(s(χh)) = p

∑
Λ

∑e−1

i= e+1
2

n(Λ,i,h)σΛ

, (3.4)

where Λ runs over (Z/eZ)×/ < p̄ > .

Proof. By Proposition 3.3.5,

if q - p,N (vi)(χ
h)q = 1 and valq(1) = 0,

if q = σΛ(p) for some Λ ∈ Z/eZ)×/ < p̄ >, N (vi)(χ
h)q = pn(Λ,i,h) and valq(pn(Λ,i,h)) = n(Λ, i, h) valq(p) =

n(Λ, i, h).

Thus we have the results.

3.4.3 Remark. The homomorphisms N (vi), r and s are determined by the values at χd for any d dividing
e. In fact, for any h = 0, . . . , e − 1, if d =gcd(e, h), we can write h = dh′ where h′ and e are coprime.
Therefore, χh = σh′ .χ

d. By construction, N (vi), r and s are ΩQ-equivariant, hence we have

N (vi)(χ
h) = N (vi)(σh′ .χ

d) = σh′ .N (vi).

Similarly for r and s.
In the remaining of this chapter, we are going to find the explicit values of N (vi), r and s on χd for any d|e.
That is, to give an expresion of the value p

∑
Λ n(Λ,i,h)σΛ .

Recall that if e = de′, ζe′ := ζd (Thus we have ζe = ζ) is e′th root of unity with Q(ζe′) ⊆ Q(ζe) and
[Q(ζe′ : Q] = ϕ(e′) (The Euler function of e′).

For any α′ ∈ (Z/e′Z)×, denote by σe′,α′ the automoprhism in Gal(Q(ζe′)/Q) sending ζe′ to ζα
′

e′ ( thus
σe,α′ = σα′).

Hence, σe′,α′ can be lifted in ∆ in ϕ(e)/ϕ(e′) many ways.

To simplify notation, we shall write σe′,j instead of σe′,j mod e′ if j is an integer coprime to e′.

Set Oe′ := Z[ζe′ ] the ring of integers of Q(ζe′) and pe′ = p
⋂
Oe′ . In particular we have pe = p,Oe = O.

As in Remark 3.3.4, if Λ′ ∈ (Z/e′Z)×/〈(pmod e′)〉, we denote by σΛ′(pe′) the ideal σe′,α′(pe′) for any lift α′
of Λ′ in (Z/e′Z)×.

Using these notations, we have the lemma about the content of N (vi)(χ
h).

3.4.4 Lemma. Let d|e and write e = de′. If Λ′ ∈ (Z/e′Z)×/〈(pmod e′)〉, then∑
Λ∈Λ′

σΛ(p) = σΛ′(pe′)O,

where the sum is on the elements Λ of the coset Λ′ in (Z/e′Z)×/〈(pmod e)〉.
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Proof. Let Λ ∈ Z/eZ)×/ < p̄ > and Λ′ ∈ (Z/e′Z)×/〈(pmod e′)〉. Since p|pe′O, we have

σΛ(p)|σΛ′(pe′O) =⇒ σΛ|Q(ζ
e′ )

= σΛ′ .

This implies that Λ ∈ Λ′ and σΛ′(pe′O)|
∑

Λ∈Λ′ σΛ(p).

On the other hand, p|pe′ is unramified since p - e, then the number of primes of O above pe′ is given by

ϕ(e)
ϕ(e′)

f
fe′

= ]Λ′.

Thus, the equality follows.

3.4.5 Theorem. Let d|e and write e = de′. Then we have

cont(N (vi)(χ
d)) =

{
O if gcd(i, e) 6= d

(σΛ′i
(pe′O))

f
f
e′ if gcd(i, e) = d,

where i = di′ and Λ′i ∈ (Z/e′Z)×/〈(pmod e′)〉 such that (imod e′)−1 ∈ Λ′i.

Proof. Since gcd(d, e) = d, then in the case gcd(i, e) 6= d, the result follows from Remark 3.3.6 and Proposi-
tion 3.3.5.

If gcd(i, e) = d, we can write e = de′, i = di′ such that i′ and e′ are coprime. Take Λ′i ∈ Λ′i ∈
(Z/e′Z)×/〈(pmod e′)〉 such that (imod e′)−1 ∈ Λ′i. From Remark 3.3.6,

n(Λ, i, d) =

{
f/fe′ if Λ ∈ Λ′i
0 otherwise ,

hence by Proposition 3.3.5, we have (σΛ′i
(pe′O))

f
f
e′ . Applying the Lemma 3.4.4, then we get the wanted

result.

For the contents of r and s, we need to introduce further notation. For any e′ divisor of e, we set ∆′ to be
the Galois group of Q(ζe) over Q(ζe′) and Ze′ := σ−1(∆′) where σ is defined in Remark 3.3.4.
Denote by Ne,e′ the relative norm

Ne,e′ :=
∑
α∈Ze′

σα ∈ Z∆′,

and by Θe′ the Stickelberger’s element,

Θe′ :=
1

e′

∑
j

jσ−1
e′,j ∈ Q(ζe′)

where the sum on j runs over j = 1, . . . , e′ − 1 and gcd(e′, j) = 1.
Note that Ne,1 is the absolute norm.

Thus we have the following theorem:

3.4.6 Theorem. Let d be a divisor of e and write e = de′. We have

cont(r(χd)) = (eΘe′Ne,e′(p),

cont(s(χd)) = (2− σe′,2)Θe′Ne,e′(p).
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Proof. We prove this by computing the two sides of the equality.

Since Ne,e′ is the relative norm, then we have Ne,e′(p) = p
f/fe′
e′ O. Replacing Θe′ with its value, we have

eΘe′Ne,e′(p) = px

where

x := d
f

fe′

∑
Λ′

 ∑
0≤j≤e′−1
j mod e′∈Λ′

j

σ−1
Λ′

and the first sum runs over Λ′ ∈ (Z/e′Z)×/〈(pmod e′)〉.

For the left-hand-side. Using Proposition 3.4.2 and Remark 3.3.6, since gcd(e′, d) =gcd(d, e) = d, we have
cont(r(χd)) equals py where the value of y is given by

y :=
∑
Λ

 ∑
i′∈He′

di′
f

fe′

σΛ = d
f

fe′

∑
Λ′

 ∑
i′∈H′

e′

i′

 ∑
Λ∈Λ′

σΛ,

where He′ := {i′, 0 ≤ i′ ≤ e′ − 1, 1 mod e′ ∈ (i′ mod e′)Λ}, H ′e′ := {i′, 0 ≤ i′ ≤ e′ − 1, 1 mod e′ ∈
(i′ mod e′)Λ′},Λ runs over (Z/eZ)× < p̄ > in the first sum to the left, Λ′ runs over (Z/e′Z)×/〈(pmod e′)〉 in
the first sum to the right, and seen as a coset of (Z/eZ)× < p̄ > in the last sum to the right for the reduction
modulo e′.

By Lemma 3.4.4, we have cont(r(χd)) equals (pe′O)z where the value of z is

z := d
f

fe′

∑
Λ′

 ∑
0≤i′≤e′−1

1∈(i′ mod e′)Λ′−1

i′

 ∑
Λ∈Λ′

σΛ,

and the two sides are equal.

We do similar calculation for the content of s.
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Chapter 4

Explicit unit elements

In this chapter, we are going to find explicit unit elements associated to the classes, TZ,R,and S in Cl(Z∆).
We will see that, they lie in the denominator of Cl(Z∆) so we get easily their triviality.

4.1 Cyclotomic unit to describe (TZ)

The triviliaty of TZ is a well know result of Swan. Since we have computed a representative v of TZ in the
previous chapter, what we will do next is to modify v by an equivariant function on character of ∆ with
values in Q×. This is the simplest case since we will use a well known result in cyclotomic units but for the
case of R and S, it will be slightly complicated since we will use Jacobi and Gauss sums instead of cyclotomic
units. We have the proposition

4.1.1 Proposition. The class of
∑

∆(p) is represented in HomΩQ(R∆, J(Q(ζ)) by the homomorphism with
qth-component at a prime q of O given by{

1 if q - e,
Det(p−1ut) if q|e,

where ut =
∑p−1
i=0 δ

i ∈ Z∆.

Further, if q
⋂
Z = qZ with q 6= p, then ut ∈ Zq∆×.

Consequently,
(TZ) = (

∑
∆

(p)) = 1 ∈ Cl(Z∆).

Proof. Consider the embedding

J(Q) → J(Q(ζ)),

(xq)q 7→ (xq)q

given by xq = xq if q is a prime ideal of O above the rational prime q. Thanks to this embedding, we can
look v (defined in Lemma 3.2.1) as a morphism with values in the idele group J(Q(ζ)). By Lemma 3.2.1, we
have that

cont(v(χh)) = (p1−δh,e) a principal ideal of O.
Consider the morphism cv ∈ Hom(R∆,Q×(ζ) defined by

cv(χ
h) =

1 if h = e,

1− ζh

1− ζph
p if h ∈ {1, . . . , e− 1}.
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It is easy to see that this is ΩQ equivariant, then vc−1
v is an other representative of

∑
∆(p). A well

known result on cyclotomic units says that
1− ζph

1− ζh
is a unit, thus belongs to O×. It follows that vc−1

v ∈

HomΩQ(R∆,U(Q(ζ))). By [[Fro83], P.23 I. (2.19)], vc−1
v ∈ Det(U(M)) where M is the maximal order of Q∆.

If q - e, since Mq := M⊗Z Zq = Zq∆,M∞ = R∆, then we get (vc−1
v )q ∈ Det((Zq∆)×) if q - e and q|q. The

case q|e, will follows from the following lemma.

4.1.2 Lemma. Let q be a prime ideal of O dividing a rational prime q 6= p. Then

(vc−1
v )q = Det(p−1ut),

and ut ∈ (Zq∆)×. Thus (vc−1
v )q ∈ Det((Zq∆)×).

Proof. Let h ∈ {1, . . . , e}.
If h = e, then χe = 1 and Det(ut)(χ

e) = p.

If h ∈ {1, . . . , e− 1}, then Det(ut)(χ
h) =

∑p−1
i=0 χ

h(δi) =
∑p−1
i=0 ζ

ih =
1− ζph

1− ζh
.

Since p 6= q, then q - p. Thus v(χh)q = 1 and p−1 Det(ut)(χ
h) = (vc−1

v )q = Det(p−1ut).
As in the above proof, (vc−1

v )q = Det(wq) for some wq ∈M×q .

Hence Det(wq) = Det(p−1ut). Since ∆ is abelian by Frohlich [[Fro83],II(5.2)], we have wq = p−1ut.

Since q - p, then

p−1ut ∈M×q ∩ Zq∆ = (M×q ∩ Oq∆) ∩ Zq∆ = (O∆)× ∩ Zq∆ = (Zq∆)×

thus for ut

To finish the proof of the Proposition, change vc−1
v by multiplying its qth-component whenever q - e, by

its inverse, we get the representative stated in the proposition. We have seen now that vc−1
v ∈ Det(U(Q(ζ)))

which means that
∑

∆(p) has trivial class in Cl(Z∆). So the assertion about TZ in Theorem 1.2.2 is now
achieved.

4.2 Gauss and Jacobi sums to describe (R) and (S)

The aim of this section is to compute the Gauss and Jacobi sums of R and S so let’s start from the definitions
of Gauss and Jacobi sums.
Denote by µ∞ the group of unity in Q×. Let ξ ∈ µ∞ an element of order p.

For e′ divisor of e, we denote by Oe′ := Z[ζe′ ] the ring of integers of Q(ζe′) and pe′ = p∩Oe′ the prime ideal
of Oe′ below p. Let θ denote a multiplicative character of Oe′/pe′ , that is

(Oe′/pe′)× → µ∞.

By the convention θ(0) = 0, this is extended to Oe′/pe′ .

4.2.1 Definition. The Gauss sum relative to θ is

G(θ) :=
∑

x∈Oe′/pe′

θ(x)ξTre′ (x),

where Tre′ : Oe′/pe′ → Z/pZ is the residue field trace homomorphism.
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4.2.2 Definition. For any x ∈ (Oe′/pe′)×,
(
x
pe′

)
is the e′th root of unity defined by the congruence(

x

pe′

)
≡ x

p
f
e′ −1
e′ mod pe′ .

We are interested in case θ =
(

pe′

)−1

, the inverse of the e′th power residue symbol, that is the inverse of
the above symbol.

4.2.3 Lemma. Suppose that θ is a multiplicative character of Oe′/pe′ with values in 0 ∪ µe′ , then G(θ) ∈
Oe′ [ξ] and we have

G(θ)e
′
∈ Oe′ .

Proof. There is nothing to prove for the first asseertion.

For the second assertion, let τ ∈ Gal(Q(ζe′ , ξ)/Q(ζe′) and β ∈ F×p b such that τ(ξ) = ξβ . Since β is a unit,
then the map

Oe′/pe′ → Oe′/pe′ (4.1)
x 7→ βx (4.2)

is a bijection. Hence we get

τ(G(θ)) =
∑

x∈Oe′/pe′

θ(x)τ(ξ)Tre′ (x),

=
∑

y∈Oe′/pe′

θ(β−1y)τ(ξ)Tre′ (y),

= θ(β)−1G(θ).

The second equality follows from the above bijection. Since θ(β) ∈ µe′ , then we have G(θ)e
′ ∈ Ope′ .

If we set Ge′ = G(
(

pe′

)−1

), by the above lemma we have Ge
′

e′ ∈ Oe′ .

4.2.4 Definition. Let θ, θ′ be multiplicative character of Oe′/pe′ . The Jacobi sum relative to θ and θ′ is

J(θ, θ′) :=
∑

x∈Oe′/pe′

θ(x)θ′(1− x).

The Gauss and Jacobi sums are related by the following theorem:

4.2.5 Theorem (Theorem 2.1.3,[BCW98]). If θθ′ is non trivial character, then

J(θ, θ′) =
G(θ)G(θ′)

G(θθ′)
.

Since we are interested in θ =
(

pe′

)−1

, we set

Je′ := J(

(
pe′

)−1

,

(
pe′

)−1

).

Recall that σe′,2 is an element of Gal(Q(ζe′)/Q) sending ζe′ to ζ2
e′ . We lift it in Gal(Q(ζe′ , ξ)/Q) in such a

way that σe′,2(ξ) = ξ, and we still denote it by σe′,2.
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Thus we have
Je′ = (2− σe′,2)Ge′ ∈ Oe′ .

We have the following result about the ideals of Oe′ generated by Ge′ and Je′ using the Stickelberger
element defined by Θe′ := 1

e′

∑
j jσ

−1
e′,j ∈ Q(ζe′)(defined below the Theorem 3.4.5). Recall the notation

∆e′ = Gal(Q(ζe′)/Q).

4.2.6 Theorem. We have (2− σe′,2)Θe′Z∆e′ , and

(Ge′) = e′Θe′(pe′) and (Je′) = (e′ − σe′,2)Θe′(pe′)

As a consequence of this Theorem, we get that the fractional ideals cont(r(χd)) and cont(s(χd)), where
d|e, e = de′, are principal ideal of O generated respectively by

(G
ef/fe′
e′ ) and (J

f/fe′
e′ )

As we did in the case of TZ, we define two elements cr and cs in HomΩQ(R∆,Q(ζ)×).
For any d|e, e = de′, we define

cr(χ
d) := (−1)e(−Gef/fe′e′ ) and cs(χd) := −(−Je′)f/fe′ .

We get the following result as a corollary

4.2.7 Corollary. The homomorphisms rc−1
r and sc−1

s belong to Det(U(M)), where M is the maximal order
of Q∆.

Proof. For any d|e, we have (cr(χ
d)) = (cont(r(χd))) and (cs(χ

d)) = (cont(s(χd))), thus, rc−1
r , sc−1

s ∈
HomΩQ(R∆,U(Q(ζ))). By Frohlich again, we have the desired result. Note that rc−1

r and sc−1
s are still

representatives of R and S, repesctively.

The result does not depend of the the signs in the definition of cr and cs but the choice of these signs will
be clear later in the proof of next result. We are now going to prove the Theorem 1.2.2 concerning r and s.

4.2.8 Theorem. The homomorphisms rc−1
r and sc−1

s belong to Det(U(Z∆)). In particular (R) and (S) are
trivial in Cl(Z∆.)

Proof. Using Corollary 4.2.7 and arguing as in Proposition 4.1.1, we have that if q - e but q|q , the qth-
component of rc−1

r and sc−1
s are in Det(Zq∆×).

It remains then to prove the theorem for the case q|e.

If q|e, then q - p, and the Corollary 3.3.7 gives

(rc−1
r )q = cr

−1 and (sc−1
s )q = c−1

s ,

where c−1
r , c−1

s are seen as moprhisms with values in Q(ζ), diagonally embedded in Jq(Q(ζ)) =
∏

q|q Q(ζ)q.

4.3 Unit of S
Let i ∈ {0, . . . , e− 1}. Set

Ai := {x ∈ O/p :

(
x

p

)−1(
1− x
p

)−1

= ζi},

and ni = ]Ai.
By definition of Je, we have

Je =

e−1∑
i=0

niζ
i.
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4.3.1 Lemma. Let us :=
∑e−1
i=0 niδ

i ∈ Z∆. For any prime ideal q above a rational prime q such that q|e,
we have us ∈ (Z∆)× and the qth component of sc−1

s is given by

(sc−1
s )q = Det(u−1

s ) ∈ Det((Zq∆)×)

Claim. For any d|e, (e = de′), Det(us)(χ
d) = −(−Je′)f/fe′ .

In fact, The Davenport-Hasse theorem in [[BCW98], Theorem 11 3.5] gives us that

(−1)f/fe′−1J
f/fe′
e′ =

∑
x∈O/p

(
N ′e,e′(x)

p

)−1(
N ′e,e′(1− x)

p

)−1

,

where N ′e,e : O/p :→ Oe′/pe′ is the residual relative norm.

By definition, for any x ∈ O/p, we have
(
x
p

)d
≡
(
x
pf−1
e

)d
mod p.

On the other hand, we have

f/fe′−1∑
t=0

pfe′ t.
pfe′ − 1

e′
=

1

e′
(

f/fe′−1∑
t=0

pfe′ (t+1) −
f/fe′−1∑
t=0

pfe′ t),

=
1

e′
(pf − 1),

=
pf − 1

e
d.

hence ,

(
x
∑f/f

e′−1

t=0 pfe′ t. p
f
e′−1

e′

)
=

(
x
∑f/f

e′−1

t=0 pfe′ t
) p

f
e′ −1
e′

,

≡ N ′e,e′(x)
p
f
e′ −1
e′ mod p.

Thus, (
x

p

)d
=

(
N ′e,e′(x)

pe′

)
,

and

−(−Je′)f/fe′ =
∑
x∈O/p

(
x

p

)−d(
1− x
p

)−d
,

=

e−1∑
i=0

niζ
id,

= Det(us)(χ
d).

The case q - e is already done. For q|e, we have seen that for any d|ee = de′,

(sc−1
s )q = c−1

s hence (sc−1
s )q(χd) = −(−Je′)−f/fe′ = Det(u−1

s )(χd).Corollary 4.2.7 implies the existence of
wq ∈M×q such that

(sc−1
s )q = Det(wq))
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Thus
Det(wq) = Det(us).

As in the proof of Lemma 4.1.2, we have

wq = us ∈M×q ∩ Zq∆ = (Zq∆)×.

And it completes the proof of the claim. To complete the proof of the theorem, we just argue as in the proof
of Proposition 4.1.1 to get the desired representative of S.

4.4 Unit of R
For the proof of R, we have to introduce further notation in order to get a similar proof of S. Let θ be a
multiplicative character of O/p.
Define,

Ce := {(k1, . . . , kpf ) ∈ N,
pf∑
h=1

= e},

the partition of e into sum of pf integers.
Since ](O/p) = pf their elements can be written as xh, h = 1, . . . , pf .
Denote Tr to be the trace map from O/p to Z/pZ. Since Tr is linear and θ is multiplicative, using the
Binomial formula, we have

G(θ)e =
∑
Ce

e!∏pf

h=1 kh!
θ

 pf∏
h=1

xkhh

 ξTr(
∑pf

h=1 khxh)

For j ∈ Fp, define

Ce,j := {(k1, . . . , kpf ∈ Ce,Tr(

pf∑
h=1

khxh) = j},

and

gj(θ) :=
∑
Ce,j

e!∏pf

h=1 kh!
θ

 pf∏
h=1

xkhh

.
We have a nice formula of G(θ) similar to Je:

G(θ)e =
∑
j∈Fp

gj(θ)ξ
j =

∑
j∈Fp−{1}

(gj(θ)− g1(θ))ξj .

Assume now that θ takes values in {0} ∪ µe, then G(θ)e ∈ O and we have

G(θ)e = g0(θ)− g1(θ).

For j ∈ Fp and i ∈ {0, . . . , e− 1}, we let

Ce,j,i(θ) := {(k1, . . . , kpf ∈ Ce,j , θ

 pf∏
h=1

xkhh

 = ζi},

and
mi(θ) :=

∑
Ce,0,i(θ)

e!∏pf

h=1 kh!
−

∑
Ce,1,i(θ)

e!∏pf

h=1 kh!
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such that mi(θ) ∈ Z, , i = 0, . . . , e− 1 and

G(θ)e =

e−1∑
i=0

mi(θ)ζ
i.

If θ is a multiplicative character of O/p taking values in {0} ∪ µe and d is any divisor of e, it is not hard to
check that

G(θd)e =

e−1∑
i=0

mi(θ)ζ
id.

If θ =
(

p

)−1

, we set Ge := G(θ) and mi := mi(θ) for all i = 0, . . . , e− 1.

Set also ur :=
∑e−1
i=0 miδ

i ∈ Z∆.
Using these notations we have for any prime q above a rational prime q|e , ur ∈ (Zq∆)× and

(rc−1
r )q = Det(u−1

r ) ∈ Det((Zq∆)×).

and arguing as in the proof concerning TZ and S we get the desired result.
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Chapter 5

Conclusions and counter example

To summarize what we have done, in tamely ramified Galois extension of number fields N/E with group G
and ring of integers S and R, respectively, the Galois module inverse different CN/E defines the same class
as S in Cl(ZG), it means that asking the freeness of CN/E on ZG is exactly the same as asking the freeness
of S on ZG which is nothing that the normal integral basis problem.

We proved that the torsion module RN/E is trivial in Cl(ZG). This triviality of RN/E gives a nice result
saying that S ⊗R S and S[N :E] define the same classes in Cl(ZG).

If N/E is locally abelian, then the square root AN/E and S define the same classes in Cl(ZG).
Thus it is the same case as that of CN/E .

These can be putted in one Theorem which is the Theorem 1.2.3, in the Introduction stating that

5.0.1 Theorem. Let N/E be a Galois tamely ramified extension of number fields. Then the classes of
TN/E ,RN/E and SN/E are trivial in Cl(ZG). In particular, we have

(S) = (CN/E) and (S ⊗R S) = (S)[N :E] = 1.

If further N/E is locally abelian, then the class of SN/E is trivial in Cl(ZG). In particular we have

(S) = (AN/E),

thus S, CN/E and AN/E define the same class in Cl(ZG).

This theorem is obtained easily from Lemma 2.4.4 and Theorem 1.2.2.

However the class of the square root of the inverse different, SN/E , is not trivial in general. Recall that we
always worked under the assumption that N/E is locally abelian or N/E is of odd degree in dealing with
the torsion module SN/E associated to AN/E .

Luca Caputo and Stéphan Vinatier say in [CV] that there exists a tame Galois extension N/Q of even degree
such that AN/E exists and has nontrivial class in Cl(Gal(N/Q)). Proving this needs more further notion
which can be considered as a future work.
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They give a precise example by taking N to be the splitting field of the polynomial

f(X) = X24 − 3X23 − 2X22 + 16X21 − 12X20 + 52X19 − 324X18−
436X17 + 3810X10 − 1638X15 − 8012X14 − 12988X13+

67224X12 − 76152X11 + 41175X10 − 3958X9 + 70068X8−
66440X7 + 38488X6 − 23248X5 + 16672X4 − 6976X3 + 2816X2 − 1280X + 512.

In this extension, they proved that the classes of AN/E and ON are both nontrivial in Cl(ZG) where G is
the Galois group of N/Q.
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