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1. Introduction

First appeared in a letter of Grothendieck in Serre-Grothendieck cor-
respondence (letter of 16/8/64), the Grothendieck ring of varieties is
an interesting object lying at the heart of the theory of motivic inte-
gration.

A class of variety in this ring contains a lot of geometric information
about the variety. For example, the topological euler characteristic,
Hodge polynomials, Stably-birational properties, number of points if
the variety is de�ned on a �nite �eld etc. Besides, the question of
equality of these classes has given some important new results in bira-
tional geometry (for example, Batyrev-Kontsevich's theorem).

The Grothendieck Ring K0(V ark) is the quotient of the free abelian
group generated by isomorphism classes of k-varieties, by the relation
[X\Y ] = [X]− [Y ], where Y is a closed subscheme of X; the �ber prod-
uct over k induces a ring structure de�ned by [X]·[X ′] = [(X×kX ′)red].
Many geometric objects verify this kind of relations. It gives many re-
alization maps, called additive invariants, containing some geometric
information about the varieties.

The main aim of this thesis is to study one of these additive invariants
introduced by Larsen and Lunts [LL03] in order to study the behaviour
of some generating power series. This map has many applications and
allows to obtain some important results on the Grothendieck ring, for
example, the fact that the Grothendieck ring is not a domain.

After Larsen and Lunts published this paper, Franziska Bittner came
up with another very powerful presentation, in terms of generators and
relations, of the Grothendieck ring of varieties. We will recall this new
presentation given by Bittner and give a sketch of its proof.

The aim of this thesis is to reprove the result of the existence of the
additive invariant of Larsen and Lunts by using Bittner's presentation.
This result is known by the specialists of the subject but has never been
written in the literature. This theorem leads to some interesting results
in birational geometry. Further in this thesis we give some applications
of this map and other applications of Bittner's presentation and an
introduction to the idea of motives and Grothendieck Ring of Chow
Motives.

In section 2, we give the classical as well as Bittner's de�niton of
Grothendieck Ring of varieties along with some important properties.
We also give some other results that demonstrate the importance of
A1
k, which we denote by L, in birational geometry.



In section 3, we prove the the theorem of Larsen-Lunts [LL03] and
also some important results associated with the Grothendieck ring of
varieties and stable birational geometry.

At the end, there is an appendix which recalls the some important
theory on blowing up and some other classical results and a glossary
for the terms and de�nitions used in the text.



2. Grothendieck Ring of Varieties

2.1. Classical de�nition. Let k be a �eld. We denote by V ark the
category of k-varieties over k. If S ∈ V ark we denote by V arS the
category of S-varieties.

2.1.1. The relative case.

De�nition 2.1. Let S be a (not necessarily irreducible) variety over k.
Let K0(V arS) be the free abelian group on isomorphism classes [X]S of
varieties X over S where we impose the relations [X]S = [(X −Y )]S −
[Y ]S for Y ⊂ X a closed subvariety. We call it the Grothendieck group
of S-varieties.

The product of varieties makes K0(V arS) a K0(V ark)-module. We
set L = [A1

k]. Let Mk denote K0(V ark)[L−1], let MS denote the
localisation K0(V arS)[L−1].

There are following two important operations on the Grothendieck
group:

(1) Taking products yield a K0(V ark)-bilinear associative exterior
product

� : K0(V arS)×K0(V arT ) −→ K0(V arS×T )

and hence anMk-bilinear associative map

� :MS ×MT −→MS×T

(2) If f : S −→ S ′ is a morphism of k-varieties, composition
with f yields a K0(V ark)-linear mapping f! : K0(V arS) −→
K0(V arS

′), hence we get an Mk-linear mapping f! : MS −→
MS′ . Pulling back along f yields a K0(V ark)-linear mapping
f ∗ : K0(V arS′) −→ K0(V arS) and hence an Mk-linear map-
pingMS′ −→MS

For morphisms f : S −→ S ′ and g : T −→ T ′ of varieties we get
the identities (f × g)!(A�B) = f!(A)� g!(B) and (f × g)∗(C �D) =
f ∗(C)� g∗(D).

[Bit04]



2.1.2. The absolute case.

De�nition 2.2. The Grothendieck Ring K0(V ark) is the quotient of
the free abelian group generated by isomorphism classes of k-varieties
by the relation [X\Y ] = [X]− [Y ], where Y is a closed subscheme of X;
the �bre product over k induces a ring structure de�ned by [X] · [X ′] =
[(X ×k X ′)red].

Remark 2.1. It corresponds to the de�nition 2.1 above when S =
Spec(k).

Remark 2.2. In general, the �ber product of reduced varieties is not
reduced.

Lemma 2.1. Let k be a �eld. Then in the Grothendieck ring of vari-
eties, we have:

(1) [∅] = 0;
(2) [Spec(k)] = 1;
(3) [Pnk ] = 1 + L+ . . .+ Ln, where L := [A1

k].

Proof. Let [X] ∈ K0(V ark), Then for (1), considering X ⊆ X as a
closed subvariety we get:

[X\X] = [X]− [X]

i.e., [∅] = 0

For (2), note that Spec(k)×kY = Y ×kSpec(k) = Y for all Y ∈ V ark.
Hence, Spec(k) = 1

For proving (3), we use induction. Note that, A1
k ⊂ P1

k is an open
subvariety with ∞ as its compliment , so by de�nition we get

[P1
k\A1

k] = [P1
k]− [A1

k]

[P1
k] = 1 + [A1

k] = 1 + L.
We conclude by induction as Pn+1

k \An+1
k ' Pnk , for all n ≥ 1. �

2.2. Classical properties. We now give few important properties
about the Grothendieck Ring of Varieties:

Lemma 2.2. (1) If X is a variety and U and V are two locally
closed subvarieties in X then,

[U ∪ V ] + [U ∩ V ] = [U ] + [V ];

(2) If a variety X is a disjoint union of locally closed subvarieties
X1, X2, . . .Xn for some n ∈ N, then

[X] = Σn
i=1[Xi];



(3) Let C be a constructible subset of a variety X, then C has a
class in K0(V ark).

Proof. (1) Note that V − U ∩ V = U ∪ V − U .
If U and V are both open or closed then from the de�nition we
get that

[V ]− [U ∩ V ] = [V − U ∩ V ] = [U ∪ V − U ] = [U ∪ V ]− [U ]

Thus,

[U ∪ V ] + [U ∩ V ] = [U ] + [V ] . . . (1)

if both U and V are either open or closed.
Now, in general, since U and V are locally closed, we can write
them as intersection of an open and a closed set.
Let U = U1 ∩ F1 and V = U2 ∩ F2, where U1, U2 are open in X
and F1 and F2 are closed in X.
Then, by (1),

[U1 ∪ U2] + [U1 ∩ U2] = [U1] + [U2] . . . (i)

Since U1 ∪ F1 ⊂ U1 is a closed subset (similarly, U2 ∪ F2 ⊂ U2

is closed), we have,

[U1] = [U1 ∩ F1] + [U1\U1 ∩ F1]

or
[U1] = [U ] + [U1\U1 ∩ F1] . . . (ii)

and
[U2] = [U2 ∩ F2] + [U2\U2 ∩ F2]

or
[U2] = [V ] + [U2\U2 ∩ F2] . . . (iii)

Adding (i), (ii) and (iii) we get

[U1∪U2]+[U1∩U2] = [U ]+[V ]+[U1\U1∩F1]+[U2\U2∩F2] . . . (iv)

Again, note that since U1 ∩ F1 is closed in U1 (resp. U2 ∩ F2

is closed in U2), therefore, U1\U1 ∩ F1 ⊂ U1 is an open subset
(resp. U2\U2 ∩ F2 ⊂ U2 is open subest).

Now, since U1 (resp. U2) is open inX, therefore, U1\U1∩F1 ⊂
U1 (resp. U2\U2 ∩ F2 ⊂ U2) is open in X as well.

Then, from (1) and (iv), we get

[U1∪U2]+[U1∩U2] = [U ]+[V ]+[(U1\U1∩F1)∪(U2\U2∩F2)]+[(U1\U1∩F1)∩(U2\U2∩F2)]



or

[U ]+[V ] = ([U1∪U2]−[(U1\U1∩F1)∪(U2\U2∩F2)])+([U1∩U2]−[(U1\U1∩F1)∩(U2\U2∩F2)])

or

[U ] + [V ] = [U1 ∩ F1 ∪ U2 ∩ F2] + [U1 ∩ F1 ∩ U2 ∩ F2]

i.e.,
[U ] + [V ] = [U ∪ V ] + [U ∩ V ]

Hence proved.

(2) By induction, it is su�cient to prove that ifX is a disjoint union
of two locally closed subvarieties X1 and X2 i.e., X = X1

⊔
X2

then [X] = [X1] + [X2]. Now, using (1), we get

[X1 ∪X2] + [X1 ∩X2] = [X1] + [X2]

but X = X1

⊔
X2 implies [X1 ∩ X2] = [∅] = 0 hence, [X] =

[X1] + [X2].

(3) C is a constructible set inX. We know that a set is constructible
if and only if it is a disjoint union of �nitely many locally closed
sets. So, we can write C =

⊔n
i=1Ci and this construction is

independent of choices.
�

Proposition 2.1. Let k be a �eld of characteristic zero. The Grothendieck
ring of varieties is generated by:

(1) the smooth varieties;
(2) the projective smooth varieties;
(3) the projective smooth connected varieties.

Proof. (1) Let d = dim(X). X can be embedded as an open dense
subset of X ′, where X ′ is complete using Nagata's theorem.
So [X] = [X ′] − [Z] with dim(Z) ≤ d − 1. Then using the
Hironaka's theorem we resolve the singularities X ′ −→ X ′. We
get an expression of the form: [X ′] = [X ′] − ([C] − [E]) where
the center C is smooth and both dim(C), dim(E) ≤ d−1. Thus
we get that X can be written as �nite union of smooth varieties,
using induction on the dimension.

(2) This is also proved by using essentially the same argument of
induction over the the dimension d of X. The variety X can
be embedded into a complete variety which is birational to a
projective variety using Nagata's theorem and Chow's lemma
respectively. Then resolving the singularities and following the
same proof as above, we get the required result.



(3) Using (2), X can be written as a �nite union of smooth pro-
jective varieties. Let X = ∪ni=1Xi where Xi are smooth and
projective. Since, in this case, connected components and ir-
reducible components are the same, we can write each Xi as a
�nite union of its connected components. Thus X can be writ-
ten as a �nite union of smooth projective connected varieties.

�

Proposition 2.2. Let X, Y be k-varieties. Let F be a k-variety and
let π : Y −→ X be a k morphism of varieties. Assume that for all
x ∈ X, π−1(x) is κ(x)-isomorphic to F ×k Specκ(x). Then

[Y ] = [F ] · [X]

in K0(V ark).

See [Seb04]

Corollary 2.0.1. (1) If f : E −→ X is a �bration of �ber F which
is locally trivial for the Zariski topology of X, then

[E] = [F ] · [X];

(2) Let f : X −→ Y be a proper morphism of smooth varieties,
which is a blow-up with the smooth center Z ⊂ Y of codimension
d. Then [f−1(Z)] = [Z][Pd−1] in the ring K0(V ark).

Proof. It is the direct consequence of proposition 2.2 above. �

2.3. Bittner's de�nition.

De�nition 2.3 (Bittner's de�nition). The Grothendieck ring of k-
varieties has the following alternative presentations:

(1) (sm)As the abelian group generated by the isomorphism classes
of smooth varieties over k subject to the relations [X] = [X −
Y ] + [Y ], where X is smooth and Y ⊂ X is a smooth closed
subvariety.

(2) (bl) As the abelian group generated by the isomorphism classes
of smooth complete k-varieties subject to the relation [φ] = 0
and [BlYX] = [X]− [Y ]+[E], where X is smooth and complete,
Y ⊂ X is a closed smooth subvariety, BlYX is the blow-up of
X along Y and E is the exceptional divisor of this blow-up.

Remark 2.3. We get the same group if in case (sm) we restrict to
quasi-projective varieties or if in case (bl) we restrict to projective vari-
eties. We can also restrict to connected varieties in both presentations.



Proof of Bittner's de�nition. Let us call the group de�ned in (1) of def-
inition 2.3 above as Ksm

0 (V ark). We show that the ring homomorphism

Ksm
0 (V ark) −→ K0(V ark)

de�ned on the generators by

[X]sm 7−→ [X]

is an isomorphism.
We construct an inverse of the above map. Let [X] ∈ K0(V ark).

Stratify X = ∪N∈NN where N smooth and equidimensional and N a
union of strata for all N ∈ N . Consider the expression ΣN∈N [N ]sm in
Ksm

0 (V ark). If X is smooth, ΣN∈N [N ]sm = [X]sm as can be seen by
induction on the number of elements of N :

Let N ∈ N be an element of minimal dimension, then [X]sm = [X −
N ]sm+[N ]sm, and by the induction hypothesis [X−N ]sm = ΣN ′∈N−{N}[N

′]sm.

For two starti�cations N and N ′ of X we can always �nd a com-
mon re�nement L. The above argument shows that for N ∈ N we get
ΣN⊃L∈L[L]sm. Hence ΣL∈L[L]sm is equal to ΣN∈N [N ]sm and analogously
it equals ΣN∈N ′ [N ]sm, therefore ΣN∈N [N ]sm is independent of choice of
strati�cation. Thus we can set e(X) := ΣN∈N [N ]sm.

If Y ⊂ X is a closed subvariety we can �nd a strati�cation for which
Y is a union of strata which yields e(X) = e(X − Y ) + e(Y ). The
induced map on Ksm

0 (V ark) is obviously an inverse for Ksm
0 (V ark) −→

K0(V ark).

We call the group de�ned in (2) of de�nition 1.4 as Kbl
0 (V ark). That

means it is the free abelian group of isomorphism classes [X]bl of smooth
complete varietiesX over k modulo the relations for blow-ups of smooth
complete varieties X along smooth closed subvarieties Y and the re-
lation [∅]bl = 0 (then [X ∪ Y ]bl = [X]bl + [Y ]bl, which can be seen by
blowing up along Y ).

Decomposing into connected components and noting that the blow-
up along a disjoint union is the successive blow-up along the connected
components one sees that this can also be described as the free abelian
group on isomorphism classes [X]bl of connected smooth complete vari-
eties with imposed relations [∅]bl = 0 and [BlYX]bl−[E]bl = [X]bl−[Y ]bl,
where Y ⊂ X is a connected closed smooth subvariety.
Also Kbl

0 (V ark) carries a commutative ring structure induced by the
product of varieties.
We show that the ring homomorphism

Kbl
0 (V ark) −→ K0(V ark)



de�ned on the generators by

[X]bl 7−→ [X]

is an isomorphism.
We again proceed to construct an inverse of the above map.
Let X be a smooth connected variety, let X ⊂ X̄ be a smooth

completion(using Chow's lemma and Nagata's theorem, See Appendix)
with D = X̄ −X a simple normal crossings divisor. As in (1), we need
to set e(X) such that e(X − Y ) = e(X) − e(Y ) and it induces the
required inverse map.
We de�ne e(X) = Σ(−1)l[D(l)]bl where D

(l) is the normalization of
the l-fold intersections of D (where D(0) is understood to be X̄). So
D(l) is the disjoint union of the l-fold intersections of the irreducible
components of D.
The fact that the above expression for e(X) is independent of the

completion of X uses weak factorization theorem (See Appendix) and
e(X) = e(X − Y ) + e(Y ) is proved by choosing X̄ ⊃ X, smooth and
complete, such that D = X̄ − X is a simple normal crossing divisor
and the closure Ȳ of Y in X̄ is also smooth and has normal crossings
with D. In particular D ∩ Y is a simple normal crossings divisor in Y .

�

For the entire proof in detail, see [Bit04]

Proposition 2.3. We have a ring involution Dk of Mk that sends L
to L−1 and is characterized by the property that it sends the class of a
complete connected smooth variety X to L−dimX [X].

De�nition 2.4. We call this involution the duality map.

Before proving the above proposition we recall that a vector bundle
V −→ X of rank n on a variety X is locally trivial by de�nition and
hence its class [V ] in K0(V ark) is equal to Ln[X]. Similarly the class of
its projectivisation [P(V )] equals [Pn−1][X] = (1 + L+ . . .+ Ln−1)[X].

Lemma 2.3. Let X be a smooth connected variety and Y ⊂ X a
smooth connected subvariety, let d denote the codimension of Y in X.
Let E be the exceptional divisor of the blow-up BlYX of X along Y .
Then [BlYX]− L[E] = [X]− Ld[Y ] in K0(V ark).

Proof. In K0(V ark), we have the relation

(1) [BlYX]− [E] = [X]− [Y ]

Furthermore, [E] = (1 + L+ . . .+ Ld−1)[Y ]. Thus,

(2) (1− L)[E] = (1− Ld)[Y ]

Adding (1) and (2) gives the desired expression. �



Proof of Proposition. Using the presentation bl from Bittner's de�ni-
tion and the above lemma, we de�ne a group homomorphism

K0(V ark) −→Mk

by sending the class of a smooth connected complete variety [X] to
L−dimX [X]. This morphism is multiplicative and sends L to L−1, hence
it can be extended uniquely to a ring endomorphism Dk ofMk. Obvi-
ously DkDk = idMk

. �

2.3.1. Why is it interesting to do computation in the Grothendieck
ring of varieties?

De�nition 2.5 (Additive Invariants). Let R and S be rings. An ad-
ditive invariant λ from the category V arR of algebraic varieties over
R with values in S, assigns to any X in V arR an element λ(X) of S,
such that:

λ(X) = λ(X ′);

for X ' X ′

λ(X) = λ(X ′) + λ(X\X ′),
for X ′ closed in X, and

λ(X ×X ′) = λ(X) · λ(X ′)

for every X and X ′.

Example 1. (1) Euler characteristic: Let k be a sub�eld of C,
the (topological) Euler characteristic

Eu(X) := Σi(−1)irkH i
c(X(C),C)

gives rise to an additive invariant Eu : V ark −→ Z
(2) Hodge polynomial: Let k be a �eld of characteristic zero.

Then it follows from Deligne's Mixed Hodge Theory that there
is a unique additive invariant H : V ark −→ Z[u, v], which as-
signes to a smooth projective variety X over k its usual Hodge
polynomial

HX(u, v) := Σp,q(−1)p+qhp,q(X)upvq,

with hp,q(X) = dimHq(X,Ωp
X) the (p, q)-Hodge number of X.

(3) Virtual motives: Let k be a �eld of characteristic zero, there
exists a unique additive invariant

χc : V ark −→ K0(CHMotk)

which assigns to a smooth projective variety X over k the class
of its Chow motive, whereK0(CHMotk) denotes the Grothendieck
ring of the category of Chow motives over k (with rational co-
e�cients).(See section 4.2)



(4) Counting points: Assume k = Fq and X be a scheme of �nite
type. For any integer r ≥ 1, let Nr be the number of point of
X̄ = X ×k k̄ which are rational over the �eld Fqr . In other
words, Nr is the number of points of X̄ whose coordinates lie
in Fqr . That is there is a map Nn : X 7−→ |X(Fnq )|. This map
gives rise to as additive invariant Nn : V ark −→ Z.
[CL05]

Theorem 2.1. Let X and X ′ be complex Calabi-Yau varieties of di-
mension n. Assume X and X ′ are birationally equivalent. Then they
have the same hodge numbers.

Idea of Proof. Using motivic integration, one can prove that [X] =
[X ′]. Apply Hodge polynomial to conclude. �

For a detailed proof explaining the motivic integration part, see
[CL05]

De�nition 2.6 (Zeta Function). Let X be a scheme of �nite type.
Then the zeta funtion of X is de�ned as

Z(t) = Z(X; t) = exp(Σ∞r=1Nr
tr

r
) ∈ Q[[t]]

For example, let X = P1. Over any �eld, P1 has one more point than
the number of elements of the �eld. Hence Nr = qr + 1. Thus

Z(P1, t) = exp(Σ∞r=1(q
r + 1)

tr

r
)

It is easy to sum this series, and we �nd that

Z(P1, t) =
1

(1− t)(1− qt)
In particular, it is a rational function of t.
[Har77]

Proposition 2.4. Let X and Y be two Fp-varieties such that [X] = [Y ]
in K0(V arFp), then they have the same zeta-function.

Proof. Since [X] = [Y ], from (4), we have that Nr([X]) = Nr([Y ]) for
all r. This along with the de�nition of zeta-function above, proves that
X and Y have the same zeta-function. �

Proposition 2.5. Let k be an algebraically closed �eld. Let C be an
irreducible curve over k, C is rational i� [C] = L+ β ; β ∈ Z



Proof. Using Nagata's theorem, Chow's lemma and �nally resolving
the singularities, we get a smooth projective connected curve C ′ such
that C ′ and C are birational. Then C is a rational curve ⇐⇒ C ′ is a
rational curve. and [C] = L+ β ⇐⇒ [C ′] = L+ β.
Thus, we can assume that C is a smooth projective connected curve.
Now, since k is algebraically closed, C is rational ⇐⇒ C ' P1

k but
we already know that, [P1

k] = 1 + L. Hence, if C is rational, then
[C] = L+ 1.
Conversely, suppose [C] = L + β for some β ∈ Z. Using Hodge

decomposition we get,

HC(u, u) = HL(u, u) + β

or
u2 + 2g(C)u+ 1 = u2 + β . . . (i)

where g(C) = genus of C.
(i) implies β = 1 and g(C) = 0.
We know that, a curve C is rational⇐⇒ g(C) = 0. Hence proved. �

Only a few things are known about the Grothendieck ring of varieties.
For example, we know that it is not a domain (See section 4.1). Some
motivational problems are still open, for example:

(1) Let X, Y be k-varieties such that [X] = [Y ]. Is it possible to
partition X and Y by a �nite number of locally closed subva-
rieties which are pairwise isomorphic? This question was origi-
nally asked by Larsen and Lunts. The only results known about
it is the work of Liu and Sebag which answers this question pos-
itively for curves, surfaces smooth and projective over an alge-
braically closed �eld of characteristic zero and variety of higher
dimension which does not contain many rational curves.

(2) Is L a zero divisor in K0(V ark)?

3. Stable Birational Geometry

The main result of this section is to obtain a unique homomorphism
between K0(V ark) and Z[SB], where SB denotes the multiplicative
monoid of classes of stable birational equivalence of varierties. This
fact was proved by Larsen and Lunts in their paper [LL03]. The proof
given by Larsen and Lunts uses induction where the induction step
requires checking various constructions and conditions on the image of
the map. The proof is quite long and complicated. In this section we
give a new proof of the same result using the Bittner's result [Bit04].
This proof is original and not written anywhere upto my knowledge.



From now on we assume that k is an algebraically closed �eld of
characteristic zero.

De�nition 3.1. We say that (irreducible)varieties X and Y are stably
birational if X × Pk is birational to Y × Pl for some k, l ≥ 0.

Example 2. P1
k and P2

k are stably birational.

Theorem 3.1 (Larsen-Lunts). Let G be an abelian monoid and Z[G]
be the corresponding monoid ring. Denote by M the multiplicative
monoid of isomorphism classes of smooth complete irreducible vari-
eties. Let

Ψ : M −→ G

be a homomorphism of monoids such that

(1) Ψ([X]) = Ψ([Y ]) if X and Y are birational.
(2) Ψ[Pn] = 1 for all n ≥ 0

Then there exists a unique homomorphism

Φ : K0(V ark) −→ Z[G]

such that Φ([X]) = Ψ([X]) for [X] ∈M

Proof. Note that, from Bittner's de�nition K0(V ark) ∼= Z[M]/ ∼,
where ∼ is given by:

[BlYX]− [E] = [X]− [Y ]

Let ρ denote the quotient map

ρ : Z[M] −→ Z[M]/ ∼
we write Z = BlYX. Let X be a smooth projective variety.
Then let π : Z −→ X be the blow-up map and with Y as its center

and E = π−1(Y ) as the exceptional divisor.
With the above notation the equivalence relation ∼ can be written

as:

[Z]− [π−1(Y )] = [X]− [Y ]

Now, we have a map:
Ψ : M −→ G

From this we get a natural extension Ψ̂ : Z[M] −→ Z[G]
To get a map Φ : K0(V ark) −→ Z[G] we need to show thatKer(ρ) ⊂

Ker(Ψ̂) i.e., Ψ̂([Z]− [π−1(Y )]) = Ψ̂([X]− [Y ])
It clearly su�ces to show that:

(1) Ψ([Z]) = Ψ([X])
(2) Ψ(π−1([Y ])) = Ψ([Y ])



(1) follows from the fact that blowing up map is a birational map(proved
in Appendix). For (2), recall corollary 2.0.1 from section 2. From that
we get that Ψ(π−1([Y ])) = Ψ([Y ])Ψ([Pr]) for some r determined by
the codimension on the center Y in X. Now, Ψ([Pr]) = 1, thus we get
Ψ(π−1([Y ])) = Ψ([Y ]).

�

Remark 3.1. Consider SB, the multiplicative monoid of stable bira-
tional equivalence classes of varieties. There is a canonical surjective
homomorphism ΨSB : M −→ SB which satis�es hypotheses (1) and (2)
of the above theorem (with ΨSB = Ψ,G = SB)). By de�nition, any
homomorphism Ψ as in the theorem factors through ΨSB. Denote by
ΦSB the ring homomorphism from K0(V ark) to Z[SB], corresponding
to ΨSB by the theorem.

Corollary 3.1.1. Let X1, . . . , Xk, Y1, . . . , Ym be smooth complete
connected varieties. Let mi, nj ∈ Z be such that

Σmi[Xi] = Σnj[Yj]

in K0(V arC). Then k = m and after renumbering the varieties Xi and
Yi are stably birational and mi = ni

Remark 3.2. There is a mistake in [LL03]. In the above corollary,
they omit the connected condition on the varieties which is an essential
condition for the corollary to hold true.

Proof. Applying the ring homomorphism ΦSB to the above equality, we
obtain the equality in the monoid ring Z[SB]:

ΣmiΨSB(Xi) = ΣnjΨSB(Yj)

and the corollary follows. �

Thus, any variety can be written uniquely (upto stable birational
equivalence) as linear combination (in K0(V arC)) of smooth complete
varieties.

Proposition 3.1. The kernel of the (surjective)homomorphism ΦSB:
K0(V arC) −→ Z[SB] is the principal ideal generated by the class [A1]
of the a�ne line A1.



Proof. Note that ΦSB is obtained uniquely from ΨSB using the above
theorem. Therefore, ΦSB([Pn]) = 1 for all n.
Hence, we have ΦSB([P1]) = 1.

So ΦSB([1] + [A1]) = 1.

and ΦSB(A1) = 0

Let a ∈ Ker(φSB). We write a as linear combination

a = [X1] + . . .+ [Xk]− [Y1]− . . .− [Yl]

where Xi, Yj are smooth complete and connected varieties. Since

ΦSB(a) = ΣΨSB(Xi)− ΣΨSB(Yj) = 0

we get k = l and after renumbering, Xi is stably birational to Yi. So
it is su�cient to show that if X, Y are smooth, complete and stably
birational, then [X]− [Y ] ∈ K0(V ark) · [A1]. Note that

[X × Pk]− [X] = [X] · [A1 + A2 + . . .+ Ak]
so we may assume that [X] and [Y ] are birational. Moreover by

weak factorization theorem, we may assume that X is a blow-up of Y
with a smooth center Z ⊂ Y and exceptional divisor E ⊂ X. Then
[E] = [Pt] · [Z] for some t and

[X]− [Y ] = [E]− [Z] = ([A1] + [A2] + . . .+ [At])[Z]

�

Proposition 3.2. Let α: K0(V arC) −→ B be an additive invariant.
The following conditions are equivalent:

(1) α([A1]) = 0
(2) If X, Y are smooth complete vareities that are birational then

α([X]) = α([Y ]).

If these conditions hold, then α([Z]) = α([W ]) for any smooth complete
varieties Z, W which are stably birationally equivalent.

Proof. Assume (1), then by previous proposition α factors through the
homomorphism ΦSB which implies (2). Now, assuming (2), let X̃ be a
blow-up of X at a point. Then [X̃] = [X] + [A1]. We know that, blow-
up map is birational which means α([X̃]) = α([X]). Hence α([A1]) = 0.
Now, suppose Z and W are two stably birationally equivalent smooth
complete varieties. This means, Z×Pk is birational to W×Pl for some
k, l ≥ 0. Now, since the conditions hold, we get that: α([Z × Pk]) =
α([W × Pl]) or α([Z]).α([Pk]) = α([W ]).α([Pl]) but condition (1) ⇒
α(Pn) = 1 for all n. Thus, α([Z]) = α([W ]) �



4. Application

4.1. Grothendieck Ring is not a Domain. We give an idea of the
proof of the fact that Grothendieck Ring is not a domain. This was
proved by Poonen [Poo02].

Remark 4.1. Note that for any extension of �elds k ⊆ k′, there is a
ring homomorphism K0(V ark) −→ K0(V ark′) mapping [X] to [Xk′ ].
We have already seen in theorem 3.1 and proposition 3.1 that when
k = C, there is a unique ring homomorphism K0(V ark) −→ Z[SBk]
mapping the class of any smooth projective integral variety to its stable
birational class. In fact, this homomorphism is surjective, and its ker-
nel is the ideal generated by L := [A1].
The set AVk of isomorphism classes of abelian varieties over k is a
monoid. The Albanese functor mapping a smooth, projective, geomet-
rically integral variety to its Albanese variety induces a homomorphism
of monoids SBk −→ AVk, since the Albanese variety is a birational
invariant, since formation of the Albanese variety commutes with prod-
ucts, and since the Albanese variety of Pn is trivial. Therefore we obtain
a ring homomorphism Z[SBk] −→ Z[AVk].

The proof uses the above fact and the following lemmas:

Lemma 4.1. Let k be an algebraically closed �eld of characteristic
zero. There exists an abelian variety A over k such that Endk(A) = O
where O is the ring of integers of a number �eld of class number 2.

For proof see [Poo02]

Lemma 4.2. Let k be an algebraically closed �eld of characteristic zero.
There exist abelian varieties A and B over k such that A×A ∼= B×B
but Ak � Bk.

Idea of proof. To prove this one uses the fact that O as in lemma 4.1,
is a dedekind domain which implies that the isomorphism type of a
direct sum of fractional ideals I1 ⊕ . . . ⊕ In is determined exactly by
the nonnegative integer n and the product of the classes of the Ii in
the class group Pic(O) and the fact that Pic(O) ∼= Z/2. �

Theorem 4.1. let k be an algebraically closed �eld of characteristic
zero. The Grothendieck ring of varieties K0(V ark) is not a domain.



Proof. Consider the maps:

K0(V ark) −→ Z[SBk] −→ Z[AVk]

Let A and B as in lemma 4.2. Then since the images of [A] + [B] and
[A]− [B] are non-zero under the above composition, both [A]+ [B] and
[A]− [B] are non-zero but ([A] + [B])([A]− [B]) = 0. �

4.2. Grothendieck Ring of motives. [CL05][GS96]

We explain what Chow motive and the category K0(CHMotk) are.
Let V denote the category of smooth projective varieties over C. For an
object X in V and an integer d, Zd(X) denotes the free abelian group
generated by irreducible subvarities of X of codimension d. We de�ne
the (rational) Chow group Ad(X) as the quotient of Zd(X)⊗Q modulo
rational equivalence. For X and Y in V, we denote by Corrr(X, Y )
the group of correspondences of degree r from X to Y . The category
Mot of C-motives may be de�nes as follows:

• Objects of Mot are triples (X, p, n) where X is in V, p is an idem-
potent(i.e., p2 = p) in Corr0(X,X), and n is an integer in Z.

• If (X, p, n) and (Y, q,m) are two motives, then

HomMot((X, p, n), (Y, q,m)) = qCorrm−n(X, Y )p.

Composition of morphisms is given by composition of correspondences.
The category Mot is additive, Q-linear, and pseudo-abelian. There is
a natural tensor product on Mot, de�ned on objects by,

(X, p, n)⊗ (Y, q,m) = (X × Y, p⊗ q, n+m)

We denote by h the functor h : V◦ −→ Mot which sends an object
X to h(X) = (X, id, 0) and a morphism f : Y −→ X to its graph in
Corr0(X, Y ). This functor is compatible with the tensor product and
the unit motive 1 = h(Spec(k)) is the identity for the product.

Theorem 4.2. Let k be a �eld of characteristic zero. There exists a
unique morphism of rings

χc : K0(V ark) −→ K0(CHMotk)

such that χc([X]) = [h(X)] for X projective and smooth.

Idea of Proof. We already know that by Bittner's theorem, we have a
canonical isomorphism

K0(V ark) −→ Kbl
0 (V ark)

The idea is to use this along with the fact that in K0(CHMotk),
h([BlYX]− [E]) = h([X]− [Y ]). �

[Ser91], [Jan95]



5. APPENDIX : Tools for Birational geometry

We �rst give some de�nitions:

De�nition 5.1 (Ideal Sheaf). Let Y be a closed subscheme of a scheme
X and let i : Y −→ X be the inclusion morphism. We de�ne the ideal
sheaf of Y , denoted IY , to be the kernel of the morphism i] : OX −→
i∗OY

Proposition 5.1. Let X be a scheme. For any closed subscheme Y of
X, the correspoding ideal sheaf IY is a quasi-coherent sheaf of ideals on
X. If X is noetherian, it is coherent. Conversely, any quasi-coherent
sheaf of ideals on X is the ideal sheaf of a uniquely determined closed
subscheme of X.

De�nition 5.2 (Prime Ideal Sheaf). Let S = SpecR be an a�ne
scheme, given a ring R. Given a quasi-coherent sheaf F of OS-algebras,
we de�ne prime ideal sheaf in F to be a quasi-coherent sheaf of ideals
I ( F , such that for each a�ne open subset U ⊂ S, the ideal I(U) ⊂
F(U) is either prime or the unit ideal.

Remark 5.1. For any scheme X, the points of X are simply the prime
ideal sheaves of OX .

We now de�ne Global Spec and Global Proj:

De�nition 5.3 (Global Spec). The idea is to extend the concept of
spectrum of a ring to describe analogous objects in the category of S-
schemes for arbitrary S(spectrum of some ring R). That is, given a
quasi-coherent sheaf F of OS-algebras, we de�ne X = Spec(F).

There are two alternative ways to construct Glocal Spec:

(1) Cover S by a�ne open subsets Uα = Spec(Rα), and de�ne X to
be the union of the schemes F(Uα), with gluing maps induced
by the restrictions maps F(Uα) −→ F(Uα ∪ Uβ).

(2) De�ne X as the set of prime ideal sheaves in F . Next it is
de�ned as a topological space as follows: for every open U ⊂
S(not necessarily a�ne) and section σ ∈ F(U), let VU,σ ⊂ X
be the set of prime ideal sheaves P ⊂ F such that σ ∈ P(U);
take these as a basis for the topology.



Finally, the structure sheaf OX on the basic open sets is de�ned by
setting:

O(VU,σ) = F(U)[σ−1]

For the morphism f : X −→ S: as a set, we assocaite to a prime
ideal sheaf P ⊂ F its inverse image in OS −→ F ; and the pullback
map on functions

f ] : OS(U) −→ OX(f−1(U)) = F(U)

is just the structure map OS −→ F on U

De�nition 5.4 (Global Proj). Let B be any scheme. By the quasico-
herent sheaf of graded OB-algebras we will mean a quasicoherent sheaf
F of algebras on B, and a grading

∞⊕
v=0

FV

such that FνFµ ⊂ Fν+µ and F′ = OB. Thus, for every a�ne open
subset U ⊂ B with coordinate ring A = OB(U), the ring F(U) will be
a graded A-algebra with 0-th graded piece F(U)0 = A. Given such a
sheaf F , for each a�ne open subset U ⊂ B we will let XU −→ U be the
scheme XU = ProjF(U) with the structure morphism ProjF(U) −→
spec(A) = U . For every inclusion U ⊂ V of open subsets of B, the
restriction map F(V ) −→ F(U) is a homomorphism of graded rings
whose 0-th graded piece is the restriction map OB(V ) −→ OB(U), and
so induces a map XU −→ XV commuting with the structure morphism
X −→ B; X is denoted ProjF ; and the construction of X is called
global proj.

Proposition 5.2. Let B,F as above, let X = ProjF , with projection
π : X −→ B and invertible sheaf OX(1). Then:
π is a proper morphism. In particular, it is separated and of �nite type.

Blowing Up

De�nition 5.5. Let X be a noetherian scheme, and let I be a co-
herent sheaf of ideals on X. Consider the sheaf of graded algebras
I =

⊕
d≥0 Id, where Id is the dth power of ideal I, and we set I0 = OX ,

then X, I clearly satisfy the above, so we can consider X̃ = ProjI. We
de�ne X̃ to be the blowing-up of X with respect to the coherent sheaf of
odeals I. If Y is the closed subscheme of X corresponding to I, then
we call X̃ to the be the blowing-up of X along Y , or with center Y .



De�nition 5.6 (Inverse Image Ideal Sheaf). Let f : X −→ Y be a
morphism of schemes, and let I ⊆ OY be a sheaf of ideals on Y . The
inverse image ideal sheaf I ′ ⊆ OY is de�ned as follows:
First consider f as a continuous map of topological spaces X −→ Y

and let f−1I be the inverse image of the sheaf I. Then f−1(I) is a
sheaf of ideals in the sheaf of rings f−1(OY ) on the topological space
X. Now there is a natural homomorphism of sheaves of rings on X,
f−1(OY ) −→ OX), so we de�ne I ′ to be the ideal sheaf in OX generated
by the image of f−1I. We denote I ′ by f−1I · OX or simply I · OX .

Theorem 5.1 (Universal property of Blowing Up). Let X be a noe-
therian scheme, I a coherent sheaf of ideals, and π : X̃ −→ X the
blowing up with respect to I. If f : Z −→ X is any morphism such
that f−1I · OZ is an invertible sheaf of ideals on Z, then there exists a
unique morphism g : Z −→ X̃ factoring f .

Z
g

- X̃

X

π

6

f

-

Proposition 5.3. Let X be a noetherian scheme, I a coherent sheaf
of ideals, and let π : X̃ −→ X be the blowing-up of I. Then:

(1) The inverse image ideal sheaf Ĩ = π−1I · OX̃ is and invertible

sheaf on X̃.
(2) If Y is the closed subscheme corresponding to I, and if U =

X − Y , then
π : π−1(U) −→ U

is an isomorphism.

Proof. (1) We know that X̃ is de�ned asProjI, where I =
⊕

d≥0 Id,
it comes equipped with a natural invertible sheaf O(1). For any
open a�ne U ⊆ X, this sheaf O(1) on ProjI(U) is the sheaf as-
sociated to the graded I(U)-module I(U)(1) =

⊕
d≥0 Id+1(U).

But this is clearly equal to the ideal I.I(U) generated by I in
I(U), so we see that the inverse image ideal sheaf Ĩ = π−1I ·OX̃
is in fact equal to OX̃(1). Hence it is invertible sheaf.

(2) If U = X − Y , then I |U∼= OU , so π−1U = ProjOU [T ] = U .
�



Theorem 5.2. Let X be a variety over k, let I ⊆ OX be a non-zero
coherent sheaf of ideals on X, and let π : X̃ −→ X be the blowing-up
with respect to I. Then:

(a) X̃ is also a variety

(b) π is birational, proper, surjective morphism

(c) if X is quasi-projective(respectively, projective) over k, then X̃ is
also. and π is a projective morphism

Proof. First of all since X is integral, the sheaf I =
⊕

d≥0 Id is a sheaf
of integral domains on X, so X̃ is also integral. Proposition 1 above
implies/shows that π is proper. In particular π is separated and of
�nite type, so it follows that X̃ is also separated and of �nite type, i.e.,
X̃ is a variety.
Now since I 6= 0, the corresponding closed subscheme Y is not whole
of X and so the open set U = X −Y is non-empty. Since π induces an
isomorphism from π−1U to U (from part 2 of proposition 5.3), we see
that π is birational.
Since π is proper, it is a closed map, so the image π(X̃) is a closed set
containing U , which must be all on X since X is irreducible. Thus π
is surjective.
Finally, if X is quasi-projective(respectively, projective), then X ad-
mits an ample invertible sheaf. So, by proposition 1, π is a projective
morphism. It follows that X̃ is also quasi-projective(respectively, pro-
jective) �

Resolution of Singularities

We now state some important results associated with Resolution of
Singularities:

Given an ideal sheaf I on a smooth variety X, the �rst aim is to write
down a birational morphism g : X ′ −→ X such that X ′ is smooth and
the pulled-back ideal sheaf g∗I is locally principal. This is called the
principalization of I.

Remark 5.2. Resolution of singularities implies principalization.



Theorem 5.3 (Elimination of indeterminacies). Let X be a smooth
variety over a �eld of characteristic zero and g : X 99K P a ratio-
nal map to some projective space. Then there is a smooth variety X ′

and a birational and projective morphism f : X ′ −→ X such that the
composite g ◦ f : X ′ −→ P is a morphism.

Proposition 5.4. Let X be a quasi-projective variety. Then there is a
smooth variety X ′ and a birational and projective morphism g : X ′ −→
X.

Theorem 5.4 (Hironaka). Let X be a reduced algebraic variety over
a �eld of characteristic zero, or more generally a reduced scheme that
is locally of �nite type over an excellent, reduced, locally Noetherian,
scheme of characteristic zero (i.e., char(k(x) = 0) for every x ∈ X).
Then X admits a desingularization in the strong sense.

Note that if X is a curve, to resolve the sigularities, it is su�cient
to take the normalisation of X.

Below we give a few important theorems and results used in the text:

(1) Chow's Lemma For any complete irreducible variety X, there
exists a projective variety X̄ and a surjective birational mor-
phism f : X̄ −→ X.

Proof of Chow's Lemma. Let X = ∪Ui be a �nite a�ne cover.
For each a�ne variety Ui ⊂ Ani , denote by Yi the closure of
Ui in projective space Pni ⊃ Ani . The variety Y =

∏
Yi is

obviously projective.
Set U = ∩Ui. The inclusions ψ : U ↪→ X and ψI : U ↪→ Ui ↪→ Yi
de�ne a morphism

φ : U −→ X × Y, with φ = ψ ×
∏

ψi

Write X for the closure of φ(U) in X × Y . The �rst projection
pX : X × Y −→ X de�nes a morphism f : X̄ −→ X. We prove
that it is birational. For this it su�ces to check that

f−1(U) = φ(U) (1)

Indeed, pX ◦ φ = 1 on U , and in view of (1), f coincides on
f−1(U) with the isomorphism φ−1. Now (1), is equivalent to

(U × Y ) ∩ X̄ = φ(U) (2)



that is, to φ(U) closed in U × X. But this is obvious, since
φ(U) in U × Y is just graph of the morphism

∏
ψi. The mor-

phism f is surjective, since f(X̄) ⊃ U , and U is dense in X.
It remains to prove that X̄ is projective. For this we use the
second projection g : X × Y −→ Y , and prove that its restric-
tion ḡ : X̄ −→ Y is a closed embedding. Since to be a closed
embedding is a local property, it is enough to �nd open sets
Vi ⊂ Y such that ∪g−1(Vi) ⊃ X̄ and ḡ : X̄ ∩ g−1(Vi) −→ Vi is a
closed embedding. We set

Vi = p−1
i (Ui),

where pi : Y −→ Yi is the projection. �rst of all, the g−1(Vi)
cover X̄. For this it is enough to prove that

g−1(Vi) = f−1(Ui) (3)

since ∪Ui = X and ∪f−1(Ui) = X̄. In turn, (3) will follow
from

f = p ◦ g on f−1(U) (4)

But it is enough to prove (4) on some open subset W ⊂
f−1(Ui). We can in particular take W = f−1(U) = φ(U) (ac-
cording to (1)), and then (4) is obvious. Thus it remains to
prove that

ḡ : X̄ ∪ g−1(Vi) −→ Vi

de�nes a closed embedding. Now recall that

Vi = p−1
i (Ui) = Ui × Ŷi whereŶ =

∏
j 6=i

Yj

we get that

g−1(Vi) = X × Ui × Ŷi
Write Zi for the graph of the morphism Ui× Ŷi −→ X, which

is the composite of the projection to Ui and the embedding
Ui ↪→ X. The set Zi is closed in X × Ui × Yi = g−1(Vi) and

its projection to Ui × Ŷi = Vi is an isomorphism. On the other
hand, φ(U) ⊂ Zi, and since Zi is closed, X̄ ∪ g−1(Vi) is closed
in Zi. Hence the restriction of the projection to this set is a
closed embedding.

�

Note that analogous result holds true for an arbitrary variety
when X̄ is quasiprojective.



(2) Nagata's theorem Every variety can be embedded as an open
dense subset of a complete variety.

(3) Weak Factorization Theorem Let φ : X1 99K X2 be a bi-
rational map between complete smooth varieties over K, let
U ⊂ X1 be and open set where φ is an isomorphism. Then
φ can be factored into a sequence of blow-ups and blow-downs
with smooth centers disjoint from U i.e., there exists a sequence
of birational maps:

X1 = V0 99K V1 99K . . . 99K Vi 99K Vi+1 99K . . . 99K Vl−1 99K Vl = X2,

where φ = φl ◦ φl−1 ◦ . . . φ2 ◦ φ1, such that each factor φi is an
isomorphism over U , and φi : Vi 99K Vi+1orφ

−1
i : Vi+1 99K Vi is

a morphism obtained by blowing up a smooth center disjoint
from U (here U is identi�ed with an open subset of Vi).
Moreover there is an index i0 such that for all i ≤ i0 the map
Vi 99K X1 is de�ned everywhere and projective, and for all i ≥ i0
the map Vi 99K X2 is de�ned everywhere and projective.
If X1−U (respectively, X2−U) is a simple normal crossing di-
visor, then the factorization can be chosen such that the inverse
images of this divisor under Vi −→ X1 (respectively, Vi −→ X2)
are also simple normal crossing divisors, and the centers of blow-
ing up have normal crossings with these divisors.
If φ is equivariant under the action of a �nite group, then the
factorization can be chosen equivariantly.

6. Glossary

We �rst give some de�nitions:
(a) Abstract Variety: An abstract variety is an integral sepa-

rated scheme of �nite type over an algebraically closed �eld
K. If it is proper over K, we say that it is complete. In the
text, by a k-variety we mean a reduced separated scheme
of �nite type over k unless speci�ed otherwise.

(b) Locally closed subset: A subset of X is locally closed if it
is the intersection of an open subset with a closed subset.

(c) Strati�cation: Decomposing of a scheme into locally closed
regular subschemes, mostly de�ned through the constancy
of some local invariant like dimension.

(d) Vector Bundle



De�nition 6.1. A family of vector spaces over X is a �-
bration p : E −→ X such that each �bre Ex = p−1(x) for
x ∈ X is a vector space over k(x), and the structure of al-
gebraic variety of Ex as a vector space coincides with that
of Ex ⊂ E as the inverse image of x under p.

A morphism of a family of vector space p : E −→ X into
another family q : F −→ X is a morphism f : E −→ F
for which diagram

E
f

- F

X

q

?

p

-

commutes (so that in particular f maps Ex to Fx for all
x ∈ X), and the map fx : Ex −→ Fx is linear over k(x).
It's obvious how to de�ne an isomorphism of families.

V is a vector space over k, and p the �rst projection of
X×V −→ X. A family of this type, or isomorphism to it,
is said to be trivial.
If p : E −→ X is a family of vector spaces and U ⊂ X any
open set, the �bration p−1(U) −→ U is family of vector
spaces over U . It is called the restriction of E to U and
denoted E|U

De�nition 6.2. A family of vector spaces p : E −→ X is
a vector bundle if every point x ∈ X has a neighbourhood
U such that restriction E is trivial.

The dimension of the �bre Ex of a vector bundle is a locally
constant function on X, and, in particular, is constant if
X is connected. In this case, the number dim(Ex) is called
the rank of E, and denoted by rank(E).

(e) Normal Crossing Divisor: Let Y be a regular Noetherian
scheme and let D be an e�ective Cartier divisor on Y . We
say that D has normal crossings at a point y ∈ Y if there
exists a system of parameters f1, f2, . . . , fn of Y at y, an
integer 0 ≤ m ≤ n, and integers r1, r2, . . . , rm ≥ 1 such
that OY (−D)y is generated by f r11 , . . . , f

rm
m . We say that

D has normal crossing if it has normal crossing at every



point of y ∈ Y . We say that the prime divisors D1, . . . , Dl

meet transversally at y ∈ Y is they are pairwise distinct
and if the divisor D1 + . . .+Dl has normal crossing at y.

(f) Calabi-Yau varieties: Let X be a smooth complex projec-
tive variety of dimension n. We say that X is Calabi-Yau
of X if X admits a nowhere vanishing degree n algebraic
di�erential form ω, that is, the sheaf Ωn

X is trivial.

(g) Abelian Variety: An Abelian variety is an algebraic group
which is a complete algebraic variety.

(h) Albanese Variety: Let V be a variety, and write G(V ) for
the set of divisors, Gl(V ) for the set of divisors linearly
equivalent to 0, and Ga(V ) for the group of divisors al-
gebraically equal to 0. Then Ga(V )/Gl(V ) is called the
Picard variety. The Albanese variety is dual to the Pi-
card variety. It is an Abelian variety which is canonically
attached to an algebraic variety (in this case V ).

(i) Normal scheme and Normalisation:
First of all recall that an integral domain A is called normal
if it is integrally closed in Frac(A).

De�nition 6.3 (Normal scheme:). Let X be a scheme. We
say that X is normal at x ∈ X if OX,x is normal. We say
X is normal if it is irreducible and normal at all its points.

For example, Ank , Pnk are normal schemes.

De�nition 6.4 (Normalization:). Let X be an integral
scheme. A morphism πX ′ −→ X is called normalization
morphism is X ′ is normal, and if every dominant mor-
phism f : Y −→ X with Y normal factors uniquely through
π.

Note that if πX ′ −→ X is a normalization of X, then for
every open set U ⊂ X, the restriction π−1(U) −→ U is a
normalization of U .

Proposition 6.1. Let X be an integral scheme. Then
there exists a normalization morphism πX ′ −→ X, and
it is unique upto isomorphism (of X-schemes). Moreover,
a morphism f : Y −→ X is the normalization morphism if
and only if Y is normal, and f is birational and integral.



(j) Singularity(or Singular Point): Point of a variety or scheme
where local ring in not regular;

(k) Desingularization(Resolution of Singularities): Let X be
a reduced locally Noetherian scheme. A proper birational
morphism π : Z −→ X with Z regular is called a desin-
gularization of X (or a Resolution of Singularities of X).
If π is an isomorphism above every regular point of X, we
say that it is a desingularization in the strong sense
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