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Introduction

This mémoire has two main goals: on one side, we try to give a significant account of the
theory of (∞, 1)-categories using the language of quasicategories of Joyal; on the other side,
we describe an application of the techniques developed. Let us present the first part (which
is exposed in Chapter 2).

Starting from the foundational work of D. Quillen [Qui67], the language of homotopical
algebra reached several areas of Mathematics; among the main applications we can recall the
earliest successes with the construction of the cotangent complex and the higher K-theory.
More recently, it has been understood that in a geometric context the model categories of
Quillen are simply needed as a presentation of a subtler object, which encodes the same
amount of information of the original category, but in a more essential way. It is a fact
that the theory of model categories is redundant: fibrations and cofibrations are nothing
but a technical tool making certain theorems to be true. For example, the construction of
the homotopy category does not depend in any way on fibrations and cofibrations; however,
to prove that the homotopy category exists within the same universe we started with, one
needs to use them. In practice, we need those two additional classes of maps in order to
coherently define cylinder and path objects, which are used to deal with (higher) homotopies.
However, there is another way to construct such objects: it is a standard fact that inside
a simplicial model categories the enrichment can be used in order to produce cylinder and
path objects of any order, at least after replacing the category with a suitable subcategory.
Following this reasoning, one might be led to expect that the simplicial enrichment is enough
to reconstruct the model structure or, at least, to reproduce the same amount of information
of the original model structure, in a sense to be made precise. In fact, there is some evidence:
it is a well-known result that weak equivalences can be recognized using mapping spaces in a
general model category. Actually, there is more: the existence of mapping spaces1 naturally
leads one to think that “model categories are simplicially enriched up-to-homotopy”. This
statement can be made more precise and can be proven using the technique called Dwyer-
Kan localization (we will deal with it in Chapter 2). The important lesson we can learn
from this is that there is a close relation between model categories and simplicially enriched
categories; this relation can be used in order to get a grasp on the theory of (∞, 1)-categories.

Roughly speaking an (∞, 1)-category is a category with morphisms “of every order”
satisfying the additional condition that every n-morphism is invertible for n > 1. The
correct formalization of this idea took several years to the mathematical community; one
of the easiest ways of formulating such a theory is to consider categories enriched over
CHaus (the category of compactly generated Hausdorff spaces), in such a way that 1-
morphisms are paths, 2-morphisms are homotopies (with fixed ending points) and so on.
This approach is not really useful, as it is quite hard to deal with. A better choice is to
consider simplicially enriched categories: it is in fact known from a long time that simplicial
sets can be used to describe CHaus in any question only concerned with homotopies. This
suggests that the theory of topological categories is equivalent to the theory of simplicially
enriched category (and it is not harder to prove formally this statement, up to giving a
rigorous definition of what equivalent means in this context). Therefore, assuming the
model of simplicial categories as model for the theory of (∞, 1)-categories, we see that the
Dwyer-Kan localization gives a way to associate to every model category an (∞, 1)-category.
The quasicategories of Joyal represent another approach to the same theory. In this mémoire
we will describe (∞, 1)-categories from this point of view, developing (or at least sketching)

1We are referring for the moment to the construction using simplicial and cosimplicial resolutions.
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generalization of standard categorical constructions to this new setting.
The second part of this mémoire deals with an application of this language to Derived

Algebraic Geometry (which can be thought both in the sense of Toën and Vezzosi and in the
sense of Lurie). More specifically, we will be concerned with a derived version of (formal)
deformation theory: in classical deformation theory one is concerned with the properties of
deformation functors (which are a particular class of functors of Artin rings). It is possible
to define a similar class of objects in the derived setting, leading to the notion of (derived)
formal moduli problems, which can be thought essentially as formal neighbourhoods of a
point in a derived stack. It is possible to attach to every such formal moduli problem a
“tangent complex”, which carries in a natural way a structure of differential graded Lie
algebra. This can be intuitively explained as follows: the formation of the tangent complex
is an operation which commutes with (homotopy) limits; it follows that TΩX ' ΩTX , where
Ω denotes the suspension functor (which can be defined in every pointed (∞, 1)-category)
and the object ΩX should be thought as an internal group object (up to homotopy), so that
TΩX should carry a Lie algebra structure. The main result of this mémoire is to show that in
characteristic 0, such a Lie algebra structure is enough to reconstruct completely the formal
moduli problem we started with. A more precise formulation is given in Theorem 4.4.1.
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Chapter 1

Classical formal deformation
theory

The goal of this first chapter is to introduce the reader to the context of classical deformation
theory. We tried to avoid the abstract language that will characterize the following chap-
ters. However, the need for the language of extensions forced us to introduce the cotangent
complex from the very beginning, in order to make the development of the subject more
natural and elegant. In order to make it compatible with our presentation, we construct it
from the scratch using, however, an ad hoc definition. We will return on this subject later,
reviewing it inside a more general framework which makes use of the techniques of Quillen.

1.1 Cotangent complex
The reader is assumed to be familiar with the language of standard category theory and
with the language of homological algebra. More in details, the prerequisites for this section
are:

1. the theory of monads (the reference is [Mac71, Ch. VI]);

2. the standard simplicial resolution associated to a monad (see [Wei94, Ch. 8.6]);

3. the Dold-Kan correspondence (see [Wei94, Ch. 8.4]);

4. the notion of derived category of an abelian category and more generally the basic
techniques of triangulated categories (see [Wei94, Ch. 10]).

1.1.1 The setting
The cotangent complex is an object associated to a morphism of schemes f : X → Y liv-
ing in the derived category of quasi–coherent sheaves over X. It is related to the notion
of smoothness and from a certain point of view it generalizes the construction of Kähler
differentials. When the morphism f is smooth, the cotangent complex gives back exactly
the same amount of information of the sheaf of Kähler differentials; however, when f is not
smooth, the cotangent complex is a better tool to analyze the behavior of f . This is the
same phenomenon that happens when dealing with Grothendieck duality: when the maps
we are considering are smooth enough (i.e. Cohen-Macaulay), the relative dualizing sheaf
exists; however, when the smoothness isn’t enough, the best we can do is to construct an
object in the derived category of quasi-coherent sheaves.

In this section we will use the (pointwise) Dold-Kan correspondence in order to switch
from bounded complexes of quasi-coherent sheaves to simplicial objects in QCoh(X).

Definition 1.1.1. Let (X,OX) be a scheme. A simplicial commutative OX -module is
a simplicial object in OX -Mod. The category of simplicial OX -modules will be denoted
OX -sMod. We will say that a simplicial OX -module is quasi-coherent if it is quasi-coherent
levelwise. We will denote by sQCoh(X) the category of quasi-coherent simplicial OX -
modules.

1



2 Classical formal deformation theory

Remark 1.1.2. It is clear that a quasi-coherent simplicial OX -module is the same as a sim-
plicial object in QCoh(X).
Remark 1.1.3. Recall that the Dold-Kan correspondence produces, for any abelian category
A an equivalence between sA (the category of simplicial objects in A) and Ch≤0(A). In
particular, we obtain an equivalence between OX -sMod and Ch≤0(OX -Mod). Similarly,
we have an equivalence between sQCoh(X) and Ch≤0(OX -Mod).

Let (X,OX) be a scheme. We have a functor

G : sQCoh(X)→ sSh(X)

where sSh(X) is the category of simplicial sheaves on X, which forgets the structure of
OX -module. This functor has a left adjoint:
Notation 1.1.4. If S is a set and R is a ring, we denote by R(S) the free R-module with basis
S. In other words, R(S) is the image of S under the left adjoint to the forgetful functor
R-Mod→ Set.

Lemma 1.1.5. Define F : sSh(X) → sQCoh(X) by sending a simplicial sheaf F∗ to the
(levelwise) sheafification of the simplicial presheaf

U 7→ OX(U)(F∗(U))

Then F is left adjoint to G.

Proof. We obviously have a natural transformation η : IdsSh(X) → GF which “inserts the
generators”. Moreover, the claimed adjunction holds at level of presheaves. The universal
property of sheafification implies that the same holds for sheaves.

We pass now to simplicial commutative OX -algebras. Recall the following standard
result:

Proposition 1.1.6. Let (X,OX) be a scheme. The category QCoh(X) of quasi-coherent
sheaves on X has a symmetric monoidal structure (QCoh(X),⊗OX ,OX), where ⊗OX is the
tensor product of OX-modules.

Proof. It is nothing more than a straightforward verification.

Definition 1.1.7. Let (X,OX) be a scheme. A (commutative) OX -algebra is a (commu-
tative) monoid object in (QCoh(X),⊗OX ,OX). The category of commutative OX -algebras
will be denoted OX -Alg.

Definition 1.1.8. Let (X,OX) be a scheme. A simplicial commutative OX -algebra is a sim-
plicial object in the category OX -Alg. We will denote the category of simplicial commutative
OX -algebras by OX -sAlg.

Let (X,OX) be a scheme. We have another obvious forgetful functor

V : OX -sAlg→ sQCoh(X)

This functor has a left adjoint:

Lemma 1.1.9. Define S : sQCoh(X) → OX-sAlg to be the symmetric algebra functor
applied levelwise. Then S is a left adjoint for V.

It is well known that the analogous statement for the forgetful functor QCoh(X) →
OX -Alg is true. Therefore previous lemma readily descends from the following categorical
argument:

Proposition 1.1.10. Let F : C � D : G be an adjunction between categories and let B be
any other category. Then we have an adjunction

F∗ : Funct(B, C) � Funct(B,D) : G∗
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Proof. Let, in general, ϕ : f → g be a natural transformation between functors from C to
D. Then we can define a new natural transformation ϕ∗ : f∗ → g∗ in the obvious way: if
h : B → C is any functor, define

(ϕ∗)h := ϕh : f ◦ h→ g ◦ h

It’s clear that the construction of ϕ∗ preserves both vertical composition and identities, so
that Funct(B,−) can be really regarded as a functor. This implies trivially that the adjunc-
tion F a G lifts to F∗ a G∗, since the triangular identities are preserved by Funct(B,−).

Notation 1.1.11. Let (X,OX) be a scheme. Consider the functors F and S introduced in
Lemma 1.1.5 and 1.1.9 respectively. Then the composition OX [−] := S ◦ F gives a functor

OX [−] : sSh(X)→ OX -sAlg

which is a left adjoint for the obvious forgetful functor U : OX -sAlg→ sSh(X).

1.1.2 Canonical resolution
Let (X,OX) be a scheme and consider the adjuntion

OX [−] : sSh(X) � OX -sAlg : U

introduced in Notation 1.1.11; let moreover η and ε be the unit and the counit of this
adjunction. We canonically obtain a comonad (⊥, ε, δ) on OX -sAlg, where

⊥ := OX [U(−)], δ := OX [ηU ]

The general techniques explained in [Wei94, Ch. 8.6] allows to construct a functor

⊥∗ : OX -Alg→ OX -sAlg

associating to an OX -algebra A the simplicial set

{⊥nA }n∈N

where
⊥nA := ⊥n+1A

and where face and degeneracy operators are defined as

∂i := ⊥iε⊥n−i : ⊥n+1A → ⊥nA
σi : ⊥iδ⊥n−i : ⊥n+1A → ⊥n+2A

The natural morphism εA : ⊥A → A satisfies the identity

εA ◦ ∂0 = εA ◦ ∂1 (1.1)

so that this simplicial object is augmented. Moreover, we have the following key result:

Proposition 1.1.12. Let A be an OX-algebra. The augmented chain complex corresponding
to ⊥∗A via Dold–Kan is exact.

Proof. See [Wei94, Proposition 8.6.8].

1.1.3 The construction
At this point we can easily construct the cotangent complex associated to a morphism of
schemes.

Definition 1.1.13. Let f : X → Y be a morphism of schemes. Let ⊥ be the monad
associated to f−1OY -sAlg as in 1.1.2. The cotangent complex of f is the simplicial OX -
module

LX/Y := Ω1
⊥∗OX/f−1OY

⊗⊥∗OX OX

where the construction of the sheaf of Kähler differentials is done levelwise.
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Equation (1.1) translates in this context into an augmentation

⊥∗OX → OX

which induces another augmentation morphism

LX/Y → Ω1
OX/f−1OY

⊗OX OX ' Ω1
X/Y

This induces an isomorphism
H0(LX/Y )→ Ω1

X/Y

Remark 1.1.14. Let (C, τ) be a Grothendieck site and let F ∈ sSh(C) be a simplicial sheaf.
Following Jardine [Jar] we consider the sheaves of homotopy groups of F . In our setting the
definition given by Jardine coincides with the definition of homotopy group of a simplicial
object in an abelian category given in [Wei94, Definition 8.3.6]. Then [Wei94, Theorem 8.3.8]
can be used to deduce that

π0(LX/Y ) ' Ω1
X/Y

where π0 is meant in the sense of Jardine.
The cotangent complex has a functorial behavior which is formally similar to the one of

Ω1
X/Y . The main result in this direction is the existence of the transitivity triangle:

Theorem 1.1.15. Let f : X → Y and g : Y → Z be maps of schemes. Then there is a
canonical exact triangle in D(X)

LX/Y
zz

zz

f∗LY/Z // LX/Z

cc

Proof. To be added.

Corollary 1.1.16. Let f : X → Y and g : Y → Z be maps of schemes. Then there is a long
exact sequence of sheaves on X

f∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0

Proof. This is the last part of the long exact sequence associated to the exact triangle of
Theorem 1.1.15.

1.1.4 The language of extensions
We apply now the theory of cotangent complex to develop the language of extensions, which
is of crucial importance in deformation theory.

Definition 1.1.17. Let A be a commutative ring. An (A-)extension of an A-algebra B is
a surjective morphism of A-algebras f : C → B such that I = ker f is a nilpotent ideal of
B′. If moreover I2 = 0, then the extension is said to be a square-zero extension.

Definition 1.1.18. Let A be a commutative ring and let (B1, I1, f1), (B2, I2, f2) be two A-
extensions of B. A morphism of A-extensions is simply a morphism of A-algebras g : B1 →
B2 such that f1 = f2g.

Let A be a fixed commutative ring and consider an A-algebra B. We can obviously define
a category ExA(B) whose objects are the A-extensions of B and whose morphisms are the
morphism of extensions.

One has the following result:

Lemma 1.1.19. Let A be a commutative ring and let f : B′ → B be a square-zero extension
of B by I. Then I has a structure of B-module.

Proof. Let m ∈ I and b ∈ B. We define b ·m := b′m, where b′ ∈ B′ is any element satisfying
f(b′) = b. It is straightforward to check that this definition gives a B-module structure over
I.
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The previous lemma allows us to construct a forgetful functor

U : ExA(B)→ B-Mod

sending an extension (B′, I, f) to I = ker f . The fiber over a B-module M is identified with
the A-extensions of B by M . This category will be denoted ExA(B,M).

Lemma 1.1.20. ExA(B,M) is a groupoid.

Proof. It is a straightforward application of the snake lemma.

We will denote the set of connected components of ExA(B,M) by ExA(B,M). We want
to show that this set has a natural structure of B-module and that it fits naturally into a
long exact sequence. One can approach this question using a construction similar to that of
Yoneda Ext module in homological algebra (see e.g. [Ser06, Ch. 1.1.2]); however, we prefer
the approach via the cotangent complex. We view M as a complex concentrated in degree
0 and we think of LB/A as a complex via Dold-Kan correspondence. We obtain in this way
a cohomological complex

HomB(LB/A,M) ' DerA(⊥∗B,M)

Its n-th cohomology is denoted as usual

ExtnB(LB/A,M)

and it is called the André-Quillen cohomology of B with values in M .

Proposition 1.1.21. We have a bijection between Ext1
B(LB/A,M) and ExA(B,M).

Proof. See [Ill71, Theorem 1.2.3].

Finally, if
0→M ′ →M →M ′′ → 0

is a short exact sequence of B-modules we obtain a long exact sequence

0→ DerA(B,M ′)→ DerA(B,M)→ DerA(B,M ′′)→ ExA(B,M ′)→ · · ·

1.2 Infinitesimal deformations
The goal of this section is to establish two of the main constructions of (formal) deformation
theory, namely the construction of the Kodaira-Spencer map and the obstruction class of
an infinitesimal deformation with respect to a small extension. More precisely, we begin
by giving the basic definitions and analyzing the affine case. The first main result will be
the rigidity of smooth affine schemes. Successively, we will analyze first order deformations,
and we will be mainly concerned with the explicit construction of the Kodaira-Spencer map
using Čech cohomology. Finally, we shall approach the problem of obstructions, which will
be studied more in detail in the next section.

1.2.1 First definitions
We will work over a fixed field k. For the moment, we won’t do any assumption on the
characteristic. All the schemes we are considering are supposed to be schemes over k.

We can give a general definition of deformation of a given scheme X:

Definition 1.2.1. A deformation of a scheme X is a pullback diagram

X //

��

X

π

��

Spec(k) s // S

where π : X → S is a flat and surjective morphism of schemes. We will denote by ξ :=
(X, S, s, π) such a deformation of X. We will also say that ξ is a deformation of X over the
base (S, s).
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Definition 1.2.2. Let X be a fixed scheme and let ξ := (X, S, s, π) and ξ′ := (X′, S, s, π′)
be two deformation of X over the same base (S, s). A morphism from ξ to ξ′ is a morphism
of schemes f : X→ X′ such that the diagram

X

  ��

X

π
��

f
// X′

π′
~~

S

is commutative.

Remark 1.2.3. Fix a scheme X and consider a k-pointed scheme (S, s) (i.e. a scheme over
Spec(k) with a fixed k-rational point). Then the deformations of X over the base (S, s)
do form a category, where morphisms of deformations are the ones defined above. The
composition is defined in the obvious way, and it is easily checked that the axioms of category
are satisfied. More generally, one could consider deformations of X over a varying base
scheme S. The result will be a category fibered in groupoids, and one could ask if this
category form a stack.

Let X and S be schemes, and let s : Spec(k) → S be a k-rational point on S. It is
always possible to construct a deformation of X parametrized by S: namely, it is sufficient
to consider the product

X
f
//

h

��

X ×k S

p2

��

Spec(k) s // S

(1.2)

where the map f is induced by the maps

X

X

idX
77

s◦h
''

f
// X ×k S

p1

OO

p2

��

S

Observe that p2 is flat and surjective because those properties are stable under pullback.

Definition 1.2.4. A deformation (X, S, s, π) of a scheme X is said to be trivial if it is
isomorphic to the product deformation (1.2).

Remark 1.2.5. As usual in this kind of situations, we would like to have an algebraic criterion
to decide whether a deformation is trivial or not. This will be accomplished in the next part
of this section, via the introduction of the Kodaira-Spencer class map.

In this mémoire we will be mainly concerned with formal deformation theory. This means
that we won’t consider deformations over arbitrary base schemes, but only over spectra of
artinian rings. As we will explain better later, this corresponds to study formal neighborhood
of a point in a would-be moduli space for a given moduli problem. Even though the moduli
problem is not representable, we might be able to obtain information about this “virtual
neighborhood”, and use this to understand better the problem itself. For the moment, we
introduce the notion of infinitesimal deformation:

Definition 1.2.6. A deformation (X, S, s, π) is said to be local if S = Spec(A) for some
commutative ring A; the deformation is said to be infinitesimal if S = Spec(A) with A a
local artinian ring. If in particular A = k[ε] (the ring of dual numbers), then the deformation
is said to be a first order deformation.
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Remark 1.2.7. Accordingly to Definition 1.2.1, if (S,Spec(A), s, π) is an infinitesimal de-
formation of X, then the local artinian ring A has necessarily residue field isomorphic to
k.
Lemma 1.2.8. Let (X,Spec(A), s, π) be an infinitesimal deformation of a given scheme X.
The natural map f : X → X is a homeomorphism of topological spaces.
Proof. It is well known that if i : Y ↪→ Z is a nilpotent closed immersion (i.e. a closed
immersion defined by a nilpotent sheaf of ideals), then itop is a homeomorphism of topo-
logical spaces. Since s : Spec(k) → Spec(A) satisfies this hypothesis, it will be sufficient to
show that nilpotent closed immersions are stable under pullbacks, and this is completely
straightforward: since the sheaf of ideals associated to a closed immersion is defined locally,
and since nilpotence of a sheaf of ideals is a local property, we are readily reduced to the
affine case. Now, if I is a nilpotent ideal of A, it is clear that for every A-algebra A → B,
the ideal IB is nilpotent, completing the proof.

1.2.2 Infinitesimal deformations of affine schemes
We turn now to the proof of the first main result: the rigidity of smooth affine schemes.
First of all we should define the notion of rigidity:
Definition 1.2.9. A scheme X is said to be rigid if every infinitesimal deformation ξ =
(X, S, s, π) of X is trivial.

Before starting the discussion, we need to give also another definition:
Definition 1.2.10. Let A be a k-algebra and let ϕ : A′ → A be a square-zero k-extension
of A. We say that the extension is small if kerϕ ' k, then the extension is said to be small.

We will return on the notion of (small) extension in the next section.
Lemma 1.2.11. Let Z0 ⊂ Z be a closed immersion defined by a sheaf of nilpotent ideals.
Then Z is affine if and only if Z0 is affine.
Proof. It is a well known fact that a closed subscheme of an affine scheme is again affine.
For the other direction, see [EGAI, Proposition 5.1.9].

Let B0 be a k-algebra and let X0 := Spec(B0). If

X0
� � i //

��

X

π

��

Spec(k) s // Spec(A)

is an infinitesimal deformation of X0, then i : X0 → X is a closed immersion defined by a
sheaf of ideals J . It is straightforward to check locally that J is a sheaf of nilpotent ideals.
It follows from Lemma 1.2.11 that X has to be an affine scheme, that is X = Spec(B).
Therefore we are immediately reduced to study pushout diagrams

A

f

��

// k

��

B // B0

where the map f is flat. We will say that the A-algebra B is an A-deformation of B0.
If B and B′ are A-deformation of B0, then Definition 1.2.2 translates in this context

as follows: a morphism from B to B′ is an A-algebra morphism ϕ : B → B′ making the
following diagram to commute:

B0

B

>>

ϕ
// B′

``

A

==``
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Lemma 1.2.12. If ϕ : B → B′ is a morphism of deformations of B0 over A, then ϕ is an
isomorphism.

Proof. Let mA be the maximal ideal of A. Regarding B and B′ as A-modules, let K :=
coker ϕ. Tensoring

B → B′ → K → 0

with κ(mA) = A/mA we obtain K ⊗A κ(mA) = 0. Since mA is nilpotent, Nakayama implies
K = 0. Let now I = kerϕ. Tensoring

0→ I → B → B′ → 0

with κ(mA) we obtain

TorA1 (κ(mA), B′)→ I ⊗A κ(mA)→ B ⊗A κ(mA)→ B′ ⊗A κ(mA)→ 0

Since B′ is flat over A, the first term vanishes and since B ⊗A κ(mA)→ B′ ⊗A κ(mA) is an
isomorphism, we see that I ⊗A κ(mA) = 0, i.e. I = 0.

Lemma 1.2.13. Let A be an artinian local k-algebra with residue field isomorphic to k.
If dimk(A) = 2 then there exists a non-canonical isomorphism A ' k[ε], where k[ε] :=
k[X]/(X2) is the ring of dual numbers.

Proof. Let mA be the maximal ideal of A. Since dimk(A) = 2, it follows necessarily that

dimk mA/m
2
A ≤ 1

so that mA is principal by Nakayama’s Lemma. Let mA = (t), with t ∈ A. Then 1A and t
are k-linearly independent, so that

A ' k ⊕ k · t

Finally, we must have t2 = 0 because otherwise 1, t, t2 would be k-linearly independent.
Therefore, the canonical morphism k[ε]→ A defined by ε 7→ t is an isomorphism.

Theorem 1.2.14. Every smooth k-algebra is rigid.

Proof. Consider an infinitesimal deformation

B // B0

A

f

OO

// k

OO

with f : A → B flat. We will proceed by induction on d = dimk(A). If dimk(A) = 1,
A = k and there is nothing to prove. If dimk(A) = 2, apply Lemma 1.2.13 to conclude that
A ' κ[ε].

In this case, the fiber of SpecB → Spec k[ε] is smooth by hypothesis, so that k[ε] → B
is smooth. Introduce the trivial deformation

B0[ε] := B0 ⊗k k[ε]

and consider the commutative diagram

B //

g

""

B0

k[ε]

OO

// B0[ε]

OO

The kernel of B0[ε]→ B0 is generated by ε ∈ B0[ε] and so it is square-zero. It follows from
smoothness of k[ε] → B that the dotted arrow exists. Lemma 1.2.12 implies that g is an
isomorphism.
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Now assume the statement for (d − 1) and let dimk(A) = d ≥ 2. Choose an element
t ∈ mA, satisfying t 6= 0 and t2 = 0 and set A′ := A/(t), so that dimk(A′) = d−1. Therefore
we have a small extension:

0→ (t)→ A→ A′ → 0

Consider the commutative diagram

B //

g

##

B ⊗A A′

A

f

OO

// B0 ⊗k A

OO
(1.3)

Since
(B ⊗A A′)⊗A′ k = B ⊗A k = B0

we deduce that A′ → B ⊗A A′ is a deformation of B0 over A′; induction hypothesis implies
the existence of an isomorphism B ⊗A A′ ' B0 ⊗k A′. Since the kernel of

B0 ⊗k A→ B0 ⊗K A′

is square-zero, the smoothness of f : A → B implies the existence of the dotted arrow in
diagram (1.3). Lemma 1.2.12 implies that g is an isomorphism, completing the proof.

1.2.3 Locally trivial deformations
Our next goal is to give a first construction of the Kodaira-Spencer map, which allows to
give a geometric interpretation to the first cohomology group H1(X, TX), where TX is the
tangent sheaf of the algebraic variety X. We begin with a discussion about locally trivial
deformations.

Lemma 1.2.15. Let ξ = (X, S, s, π) be any deformation of a scheme X. The natural map
X → X is affine.

Proof. Affine morphisms are stable under pullback, and Spec(k)→ S is clearly affine.

Lemma 1.2.16. Let ξ = (X, S, s, π) be an infinitesimal deformation of a scheme X. Let
i : U ⊂ X be an open immersion with U 6= ∅ and let V := U ×XX ⊂ X be the corresponding
open immersion on X. Then the diagram

V

��

// U

π◦i
��

Spec(k) // S

expresses U as a deformation of V .

Proof. Easy abstract nonsense shows that the diagram is a pullback. Let x ∈ U be any point;
then π(x) has to be the only point of S; it follows that π ◦ i is surjective. Finally, π ◦ i is
flat because open immersions are flat and flat morphisms are stable under composition.

Definition 1.2.17. Let ξ = (X, S, s, π) be an infinitesimal deformation of a scheme X. We
say that ξ is locally trivial if for each point x ∈ X there is an open affine neighborhood
x ∈ U ⊂ X such that the induced deformation

U ×X X

��

// U

��

Spec(k) // S

is trivial.
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1.3 Formal theory
We explained in the previous section what a general deformation is. To study the structure of
a scheme X, we might be interested in analysing all the deformations of X over an arbitrary
base scheme S. In this way, we are lead to the introduction of the category of deformations
of X; the associated category fibred in groupoids will be denoted by Def(X). To simplify
a bit the problem, we could consider as well the associated category fibred in sets, Def(X).
This is nothing but a classical moduli problem.

More generally, one could consider other deformation problems: for example, he might
be interested in the deformation of line bundles over a given scheme, or to deform a scheme
as subscheme of a given scheme. We should develop a sufficiently flexible language in order
to deal with all these needs. The simplest thing to do is to say that a deformation problem
is a particular kind of moduli problem, that is a functor

X : Sch/k,∗ → Set (1.4)

from the category of k-pointed schemes to Set. We might require X to satisfy some addi-
tional property; for example we might require X(k) to be a one point set.

Formulated in this way, it would be really hard to develop a satisfying enough formulation
of deformation theory. Formal deformation theory is meant to provide a simplified approach
to the subject; namely, assume that we are given a deformation problem (1.4) and choose
a (k-rational) point η ∈ X(k). We would like to analyse the “local structure” of X around
the point η; to understand what we mean, assume that X is represented by a moduli space
M. Then the geometry of M could be rather complicated, but we could expect to have a
good understanding of formal neighbourhoods of a given point η ∈M. The key observation
to develop formal deformation theory is to observe that this formal neighbourhood can be
entirely recovered from the moduli problem X, even without knowing the existence ofM. In
fact, assume that such a formal neighbourhood is described by a complete local noetherian
ring A, with maximal ideal mA. Then every ring A/mnA is artinian and

A ' lim←−
n

A/mnA

This means that A is a pro-object in the category Artk of local artinian k-algebras with
residue field isomorphic to k. Moreover, A corepresents the functor obtained by X

X̂ : Artk → Set

described by the formula
X̂(R) = X(Spec(R))×X(k) {η}

In general, the goal of formal deformation theory is to study “formal neighbourhoods” of
special kind of moduli problems. We will formalize what we precisely mean with the notion
of deformation functor.

1.3.1 Functor of Artin rings
Let k be a field. We will denote by Artk the full subcategory of CRing having as objects local
artinian k-algebras with residue field isomorphic to k. We will denote by Ârtk (resp. Art∗k)
the full subcategory of CRing having as objects (complete) local noetherian k-algebras with
residue field isomorphic to k.

Definition 1.3.1. A functor of artin rings is a (covariant) functor F : Artk → Set such that
F (k) is a one-point set.

Example 1.3.2. Consider a moduli problem

F : CRing→ Set

If A is a commutative ring, any element of F (A) is said to be an A-rational point of F . Fix
a field k and let η ∈ F (k) be a k-rational point for the moduli problem F . We obtain a
functor of artin rings

F̂ : Artk → Set
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defining F̂ (A) to be the pullback of the diagram

F (A)×F (k) {η} //

��

F (A)

��

{η} // F (k)

This is called the completion of F at the point η ∈ F (k).

Example 1.3.3. Suppose that the moduli problem F : CRing→ Set of previous example
is representable by a schemeX. Then a k-rational point of F is simply a k-point x : Spec k →
X. The induced functor of artin rings can be therefore described as

F̂ (A) = HomCRing(ÔX,x, A)

In fact, the universal property of completion shows that any morphism f : Spec(A) → X
with A local artinian k-algebra and with image x must be induced by a morphism from the
completed ring ÔX,x.

Previous examples show how to associate to every moduli problem many functors of artin
rings. Motivated from example 1.3.3 we will refer to such functors also as (classical) formal
moduli problems. The same example show that it is unreasonable to ask for a formal moduli
problem to be representable. However, it might be interesting to consider the following
weaker property:

Definition 1.3.4. A functor of artin rings F : ArtΛ → Set is said to be prorepresentable
if it is a the restriction of the representable functor hR to Artk for some complete local
Λ-algebra R.

Lemma 1.3.5. The category Artk has pullbacks.

Proof. It will be sufficient to show that if in a diagram

B ×A C //

��

B

��

C // A

the rings A, B and C are in Artk, then so is B ×A C. Observe first of all that the product
of artinian rings is again artinian: in fact

Spec(B × C) = Spec(B) t Spec(C)

so that dim.Krull(B × C) = 0. Moreover, B × C satisfies clearly the ascending chain
condition on ideals, so that it is noetherian; it follows that B × C is an artinian k-algebras
whose maximal points are k-rationals. The structure theorem for artinian rings readily
implies dimk B × C <∞. Since

dimk B ×A C ≤ dimk B × C <∞

it follows that B ×A C satisfies the descending chain condition on ideals, i.e. it is artinian
as well.

Let now
B ×A C //

��

C

��

B // A

be a cartesian diagram in Artk. Let

α : F (B ×A C)→ F (B)×F (A) F (C) (1.5)

be the natural map.
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Definition 1.3.6. A functor of Artin rings F : Artk → Set is said to be a deformation
functor if:

1. the map α appearing in (1.5) is surjective whenever B → A is a small extension;

2. the map α appearing in (1.5) is an isomorphism whenever A = k.

Proposition 1.3.7. Let F = hR be a prorepresentable functor. Then F satisfies the follow-
ing properties:

1. F (k) consists of one element;

2. F commutes with pullbacks;

3. F (k[ε]) is a finite dimensional k-vector space.

In particular F is a deformation functor.

Proof. The statements 1. and 2. are obvious. For the last one,

F (k[ε]) = HomΛ(R, k[ε]) = DerΛ(R, k)

is the relative tangent space of R.

Schlessinger’s criterion gives a characterization of those functors of Artin rings which are
representable.

Theorem 1.3.8 (Schlessinger). Let F : Artk → Set be a functor of Artin rings. Given a
pullback in Artk

B ×A C //

��

B

��

C // A

let
α : F (B ×A C)→ F (B)×F (A) F (C)

be the natural map. Then F is prorepresentable if and only if it satisfies the following
conditions:

1. the map α is bijective whenever B = C and B → A is a small extension;

2. if C → A is a small extension, then α is surjective;

3. if A = k and C = k[ε]/(ε2) the map α is bijective;

4. dimk(TF ) <∞.

Proof. See [Ser06, Theorem 2.3.2].



Chapter 2

Higher algebra

The purpose of this chapter is to develop enough language to deal with Derived Algebraic
Geometry. A higher categorical perspective is essential in order to do so; however, we don’t
really need a complete theory of Higher Category Theory: it will be more than enough to
be able to deal with (∞, 1)-categories. There is an axiomatic approach to the theory of
(∞, 1)-categories, as well as several models for it. It would be indeed really useful to know
and master them all; despite that, in writing this mémore we made a choice: we choose to
follow J. Lurie and to use the model given by quasicategories.

We organized the chapter in three part. The first one is essentially a compendium of
the needed results of [HTT]; the general goal is to develop (∞, 1)-categorical analogues
of the main constructions and results of classical category theory (overcategories, limits
and colimits, adjunctions). Since we are working with the language of quasicategories, it is
unavoidable to deal with simplicial and combinatorial arguments; we grouped these technical
details in special sections, called “interludes”.

In the second part of the chapter, we focus on the relationship between quasicategories
and model categories. In particular, we exhibit a way of passing from a model category to
a quasicategory, via the Dwyer-Kan localization. The main reference for this part is the
article [DK80]; we completed several details left to the reader in that article.

Finally, the last part is devoted to the basics of higher algebra. We followed closely the
first sections of [HA, Chapter 1]. We give the definition of stable (∞, 1)-category and we
construct loop and suspension functors, proving the canonical adjunction between them. We
conclude introducing the notion of spectrum in a quasicategory.

2.1 The language of quasicategories

In this first section we introduce the language of quasicategories. This notion has been
developed systematically by A. Joyal in [Joy08] and J. Lurie made an extensive use of it in
all his works up to this moment, starting with his PhD thesis and with the book [HTT].
Among other things, this theory gives a satisfying model for the theory of (∞, 1)-categories.
However, we won’t try to give motivations for this theory too seriously; the book [HTT]
fulfill this task in an excellent way.

The reader is supposed to be familiar with the language of simplicial sets. Appendix A
is meant to give a quick overview of all the needed notions. In particular, in this section we
will use the join of simplicial sets without recalling its construction.

2.1.1 First definitions

Definition 2.1.1. An quasicategory (or ∞-category, or (∞, 1)-category) is a simplicial set
S ∈ sSet satisfying the weak Kan condition: for any n ∈ N , any 0 < i < n and any

13
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morphism ϕ : Λni → S there is a commutative diagram

Λni

��

ϕ
// S

∆n

ψ

>> (2.1)

Example 2.1.2. Let C be an ordinary category. Then the simplicial set NC is a quasicate-
gory. In fact, we can characterize the essential image of the nerve functor N : Cat→ sSet:
it consists exactly of those simplicial sets K such that for each n ∈ N , each 0 < i < n and
any morphism ϕ : Λni → S there exists a unique morphism ψ : ∆n → S making the diagram
(2.1) commutative. This is sometimes called the Segal condition.

Example 2.1.3. Let X ∈ CGHaus. Then the singular complex Sing(X) ∈ sSet is a
quasicategory: in fact, it is a Kan complex. Conversely, every Kan complex is weakly
equivalent to a simplicial set arising in this way. Sometimes, we will refer to Kan complexes
as ∞-groupoids.

The following definition are quite expected:

Definition 2.1.4. Let S be a quasicategory. An object of S is a vertex of S, i.e. a morphism
∆0 → S; an edge of S is a 1-simplex of S, i.e. a morphism ∆1 → S. We will denote by
Ob(S) the set of objects of S.

If S is a quasicategory and X,Y are objects of S, then an edge e : ∆1 → S is said to be
an arrow from X to Y if

e ◦ d1 = X, e ◦ d0 = Y

We will see that going deeper in the framework of quasicategories, this notion of arrows
matches perfectly the idea that one has from (intuitive) higher category theory.
Notation 2.1.5. If X,Y ∈ Ob(S), we will denote by homS(X,Y ) the set of arrows from X
to Y .

We can use the few ideas introduced up to this moment and the classical homotopy
theory for simplicial sets to build the homotopy category of a quasicategory. We begin with
the following remark:

Lemma 2.1.6. Let S be a quasicategory and let f0 : ∂∆n → S be any morphism. The
homotopy relation rel.∂∆n defines an equivalence on the set Sf0 of n-simplexes of S extending
f0.

Proof. Let f ∈ Sf0 . Then sn(f) : ∆n+1 → S and

dnsn(f) = dn+1sn(f) = f

while for 0 ≤ i < n we have:
disn(f) = sn−1di(f)

so that the relation is reflexive.
Assume now that f, g, h ∈ Sf0 and let ϕ : ∆n+1 → S be a homotopy from f to g,

ψ : ∆n+1 → S be a homotopy from h to g. Consider the n+ 2 (n+ 1)–simplexes

d0snsnf, . . . , dn−1snsnf,−, ϕ, ψ

Then we have

didjsnsnf = dj−1disnsnf i < j < n

diϕ = sn−1dif = dnsn−1sn−1dif i < n

= dndisnsnf

diψ = sn−1dig = dnsn−1sn−1dig i < n

= dnsn−1sn−1dif = dndisnsnf

dn+1ψ = g = dn+1ϕ
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It follows that we have a morphism

σ : Λn+2
n → S

Since S is a quasicategory we can extend it to a morphism ω : ∆n+2 → S, and dnω defines
a homotopy from f to h:

dndnω = dndn+1ω = dnϕ = f

dn+1dnω = dndn+2ω = dnψ = h

Now we can show that the homotopy relation is symmetric: if ω realizes a homotopy from
α to β, apply the previous argument taking f = g = β, h = α, ϕ = sn(g), ψ = ω.

Finally, the same argument and the symmetry show that the homotopy relation is also
transitive.

Remark 2.1.7. The proof is slightly trickier than in the classical context, where S is assumed
to be a Kan complex. In [May69] the statement is proved in this case, using the horn Λn+2

n+2
which allows a more direct proof.

Using Lemma 2.1.6 we can move the next step toward the definition of the homotopy
category of a quasicategory S. Let hS be the graph whose vertexes are the objects of S. If
X,Y ∈ Ob(S), we set

HomhS(X,Y ) := homS(X,Y )/ ∼

where ∼ is the homotopy relation of 1-simplexes relative to ∂∆1. To define the composition,
proceed as follows: if [α] ∈ HomhS(X,Y ) and [β] ∈ HomhS(Y, Z) are homotopy classes
represented by α and β we observe that they determine a map

Λ2
1 → S

which can be extended to a 2-simplex ω : ∆2 → S. We set

[β] ◦ [α] := [d1ω]

Lemma 2.1.8. The above definition depend only on the homotopy class of α and β.

Proof. Assume that σ : ∆2 → S is another 2-simplex completing the horn inclusion

(α,−, β) : Λ2
1 → S

Then we can consider the map

(s1(β),−, σ, ω) : Λ3
1 → S

Completing it into a map τ : ∆3 → S we obtain

d0d1τ = d0d0τ = d0s1(β) = s0(Z)
d1d1τ = d1d2τ = d1σ

d2d1τ = d1d3τ = d1ω

showing that d1τ is a homotopy between d1σ and d1ω.
In a similar way it is seen that the definition does not depend on the choice of the

representatives α and β (cfr. [HTT, Proposition 1.2.3.7] for the details).

Theorem 2.1.9. The construction above yields a category hS. Moreover, if S is a Kan
complex, hS is a groupoid.

Proof. The proof is entirely straightforward. We check the existence of the identities, but
we refer to [HTT, Proposition 1.2.3.8] for the associativity of the composition.

If x is an object of hS, define idx to be s0(x) ∈ S1. If f : x → y represents a morphism
in hS, we observe that s0(f) is a 2-simplex satisfying

d0s0(f) = d1s0(f) = f, d2s0(f) = s0d1(f) = s0(x)
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showing that [f ]◦ idx = [f ]. A similar argument shows that idx◦ [g] = [g] for every morphism
[g] : z → x.

Finally, if S is a Kan complex and [f ] : x → y is a morphism in hS, complete the horn
inclusion Λ2

2 → S depicted as
x

f

  
x

s0(x)
// x

to obtain a left inverse for f ; using the horn Λ2
0 one sees that f has also a right inverse, so

that it is invertible.

Definition 2.1.10. Let S be a quasicategory. The category hS built in Theorem 2.1.9 will
be called the homotopy category of S.

Remark 2.1.11. We will see later that the homotopy category of a quasicategory can be
considered as a simplicial category. This will allow to introduce the correct definition of
equivalence of quasicategories.

Definition 2.1.12. Let S be a quasicategory. An edge φ : ∆1 → S is said to be an equiva-
lence if it is an isomorphism in hS.

Finally, we introduce the notion of full subcategory. Let S be a simplicial set and let
V0 be a set of vertexes of S. We define a new sub-simplicial set S0 of S by saying that an
n-simplex σ : ∆n → S lies in S0 if and only if every composition

∆0 → ∆n → S

factors through V0. It is straightforward to see that S0 is a simplicial set. Moreover, if S
was a quasicategory to begin with, then S0 is a quasicategory: in fact, the definition itself
of S0 shows that in a diagram

Λnj
��

ϕ

��

// S0 // // S

∆n

σ

77

the n-simplex σ belongs to S0. In fact every map

∆0 → ∆n σ−→ S

factors as
∆0 → Λnj

ϕ−→ S0

so that we are done. We give the following definition:

Definition 2.1.13. Let S be a quasicategory and let V0 be a subset of its vertexes. The
category S0 defined above is said to be the full subcategory of S spanned by V0.

Remark 2.1.14. From now on we won’t make any distinction between the words “quasicat-
egory”, “(∞, 1)-category” and “∞-category”.

2.1.2 Interlude I: fibrations of simplicial sets
Before going on any further our framework, we will need to develop a number of techniques
in order to deal with quasicategories. In fact, the proofs are usually hard without the correct
machinery, and it is quite difficult to proceed in the theory avoiding such technicalities. The
purpose of this part is to describe the formalism of fibrations and anodyne extensions in the
context of quasicategories. In order to reduce the number of technical arguments presented
here, we moved some of them into the Appendix; a proper reference is given whenever
needed.

We begin with a definition:
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Definition 2.1.15. A morphism f : K → L of simplicial sets is said to be:

1. a left fibration if it has the RLP with respect to every horn inclusion Λni → ∆n for
0 ≤ i < n;

2. a right fibration if it has the RLP with respect to every horn inclusion Λni → ∆n for
0 < i ≤ n;

3. a inner fbration if it has the RLP with respect to every horn inclusion Λni → ∆n for
0 < i < n;

4. left anodyne if it has the LLP with respect to every left fibration;

5. right anodyne if it has the LLP with respect to every right fibration;

6. inner anodyne if it has the LLP with respect to every inner fibration.

Left fibrations and left anodyne extensions

Throughout this chapter it will appear more and more clear that left fibrations are the
correct generalization in the ∞-categorical setting of the notion of category cofibered in
groupoids. For the moment, we will simply give equivalent characterization of left anodyne
extensions in order to obtain some stability property. We will apply this theory to show that
if p : X → S is a left fibration and f : ∆1 → S is an edge in S from s to s′, then there exists
a functor Xs → Xs′ , which is well defined up to homotopy.

The characterization of left anodyne extensions consists in describing this class of maps
as the saturation of certain well understood families of maps. The resulting theorem, due
to Joyal, is the analogue of the well-known theorem of Gabriel and Zisman concerning
Kan fibrations of simplicial sets. We will omit the proof, but we will analyze some of its
consequences:

Theorem 2.1.16. The following collections of morphisms generate the same weakly satu-
rated class of morphisms of sSet:

1. the collection A1 of all horn inclusions Λni ⊆ ∆n for 0 ≤ i < n;

2. the collection A2 of all inclusions

(∆m × {0})
∐

∂∆m×{0}

(∂∆m ×∆1) ⊆ ∆m ×∆1

3. the collection A3 of all inclusions

(S′ × {0})
∐

S×{0}

(S ×∆1) ⊆ S′ ×∆1

where S ⊆ S′.

Proof. See [HTT, Proposition 2.1.2.6].

Corollary 2.1.17. Let i : A→ A′ be a left anodyne map and let j : B → B′ be a (standard)
cofibration. Then the induced map

F̃ (i, j) : (A×B′)
∐
A×B

(A′ ×B)→ A′ ×B′ (2.2)

is left anodyne.

Proof. Fix the cofibration j : B → B′ and let g : ∅ → B′ be the unique map; Lemma A.2.9
shows that the hypothesis of Proposition A.2.8 are satisfied if we take F = −×B′, S1 = {g}
and S2 equal to the class of left anodyne extensions. It follows that the class M of maps
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A→ A′ such that A×B′ → A′ ×B′ is left anodyne is saturated; using Theorem 2.1.16 we
see that if we show thatM contains the set A3 of the inclusions of the form

α : (S′ × {0})
∐

S×{0}

(S ×∆1) ⊆ S′ ×∆1

for S ⊆ S′, thenM will contain all the left anodyne extensions. However, A3 is stable under
the application of − × B′ (because S × B′ ⊆ S′ × B′), so that A3 ⊂ M. Now apply again
Lemma A.2.9 and Proposition A.2.8 to the set S1 = {g, j}: we obtain another saturated
set M′ which is defined as the class of maps i : A → A′ such that F̃ (i, g) and F̃ (i, j) are
left anodyne. We already showed that F̃ (i, g) is left anodyne for every left anodyne map
i; to show thatM′ contains all the left anodyne maps, we are left to check that F̃ (α, j) is
left anodyne for every α ∈ A3. Nonsense shows that this is true (cfr. the proof of [GoJa,
Corollary I.4.6]).

Let p : X → S be a left fibration of simplicial sets. For every edge f : s → s′ in S, we
can consider the following diagram

{0} ×Xs
//

��

X

p

��

∆1 ×Xs
//

66

∆1 f
// S

Previous Corollary shows that {0} × Xs → ∆1 × Xs is left anodyne, so that the lifting
problem has solution. We therefore obtain a map

f! : Xs ' {1} ×Xs → Xs′ ⊂ X

Inner fibrations and inner anodyne extensions

An analogue of Theorem 2.1.16 holds for inner anodyne extensions. We now focus on this
class of maps and we develop some stability property.

Theorem 2.1.18. The following collections of morphisms generate the same saturated class
of morphisms in sSet:

1. the collection of all horn inclusions Λni ⊂ ∆n, 0 < i < n;

2. the collection of all inclusions

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2

3. the collection of all inclusions

(S′ × Λ2
1)
∐
S×Λ2

1

(S ×∆2) ⊆ S′ ×∆2

where S ⊆ S′.

Proof. See [HTT, Proposition 2.3.2.1].

Corollary 2.1.19. Let i : A → A′ be an inner anodyne map of simplicial sets and let
j : B → B′ be a cofibration. Then

(A×B′)
∐
A×B

(A′ ×B)→ A′ ×B′

is inner anodyne.

Corollary 2.1.20. Let i : A→ A′ be an inner anodyne extension and let K be a simplicial
set. Then the induced map A×K → A′ ×K is inner anodyne.

Proof. In Corollary 2.1.19 choose B = ∅, B′ = K and observe that A× ∅ = A′ × ∅ = ∅.
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2.1.3 Overcategories and undercategories
Lemma 2.1.21. Let p : K → S be a morphism of simplicial sets, where S is a quasicategory.
There exists a simplicial set S/p satisfying the following universal property: for any other
simplicial set Y we have a natural isomorphism

HomsSet(Y, S/p) ' Homp(Y ? K, S) (2.3)

where the subscript p means that we are considering the subset of those maps f : Y ?K → S
such that f |K ≡ p.

Proof. Define
S/p := Homp(∆• ? K, S) ∈ sSet

Then equation 2.3 hold by definition when Y = ∆n for some n ∈ N. The general formula
follows from the fact that both sides commute with colimits in Y .

Remark 2.1.22. Let p : K → S as above. From the explicit construction of S/p it follows
that we have a natural “forgetful functor”

f : S/p → K

obtained applying HomsSet(−, S) to the inclusion map

K → ∆• ? K

(on the left side, K is considered as constant bisimplicial set). In a similar way, considering
the inclusion

∆• → ∆• ? K
we obtain a natural map

S/p → HomsSet(∆•, S) ' S
which is the other natural forgetful functor.

The idea is to use this simplicial set S/p as the ∞-categorical analogue of a comma
category. However, before taking it as a definition, we would like to know whether S/p is an
∞-category or not. The answer is affirmative, and using the machinery of left fibrations it
is not too hard to prove it.

Lemma 2.1.23. Let f : A0 ⊆ A and g : B0 ⊆ B be inclusions of simplicial sets. If f is right
anodyne or g is left anodyne then the map

h = h(f, g) : (A0 ? B)
∐

A0?B0

(A ? B0) ⊆ A ? B

is inner anodyne. If f is left anodyne then h is left anodyne.

Proof. In the notations of Proposition A.2.6, choose the bifunctor F to be − ? −; choose
S1 to be the class of all monomorphisms in sSet and let S2 be the class of inner fibrations.
Lemma A.3.13, Corollary A.2.4 and Lemma A.2.7 imply that the hypothesis of Proposition
A.2.6 are satisfied. It follows that the class M of monomorphisms f such that h is inner
anodyne for every inclusion g is saturated. To show thatM contains all the right anodyne
maps, it is sufficient to show thatM contains all the morphisms Λnj ⊂ ∆n for 0 < j ≤ n.

Fix such an inclusion f : Λnj ⊂ ∆n. Apply Proposition A.2.8 taking S1 to be

{∅ → ∆n,Λnj ⊂ ∆n}

Lemma A.2.6 implies that the hypothesis of the proposition are satisfied. It follows that the
setM′ of monomorphisms g such that h is inner anodyne whenever f is in S1 is saturated.
To show that M′ contains all the inclusions it is sufficient to show that M′ contains all
the inclusions g : ∂∆m ⊂ ∆m. Now, considering f and g, h(f, g) becomes the inclusion
Λn+m+1
j ⊂ ∆n+m+1 which is inner anodyne since 0 < j ≤ n < n + m + 1. Taking ∅ → ∆n

and g, h becomes the inclusion

Λn+m+1
m+j ' ∆m ? Λnj ⊂ ∆m ?∆n ' ∆n+m+1

which is inner anodyne.
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Proposition 2.1.24. Consider a diagram of simplicial sets

K0 ⊂ K
p−→ X

q−→ S

with q an inner fibration; set r = q ◦ p, p0 = p|K0 , r0 = r|K0 . The induced map

Xp/ → Xp0/ ×Sr0/ Sr/

is a left fibration. If moreover the map q is a left fibration then the induced map

X/p → X/p0 ×S/r0 S/r

is a left fibration as well.

Proof. The universal property of overcategories implies that the lifting problem

Λnj

��

// Xp/

��

∆n //

99

Xp0/ ×Sr0/ Sr/

(0 ≤ j < n) is equivalent to the following lifting problem:

K0 ? Λnj //

��

##

K0 ?∆n

��

{{
X

q

��

K ? Λnj //

;;

##

K ?∆n

{{

cc

S

which is in turn equivalent to

(K ? Λnj )
∐

(K0 ?∆n) //

��

X

q

��

K ?∆n //

77

S

Now, the previous lemma implies that

(K ? Λnj )
∐
K0?Λnj

(K0 ?∆n)→ K ?∆n

is inner anodyne, so that the last lifting problem has solution. The proof of the other
statement is similar.

Corollary 2.1.25. Let S be an ∞-category and let p : K → S be any map. Then the natural
projection Sp/ → S is a left fibration. In particular, Sp/ is itself an ∞-category.

We can finally give the following definition:

Definition 2.1.26. Let p : K → S be a morphism of simplicial sets, where S is a quasicat-
egory. The quasicategory S/p of Lemma 2.1.21 is called the overcategory of S with respect
to p.
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2.1.4 Mapping spaces
We introduced in Definition 2.1.4 the notion of object and edge of an ∞-category S. In the
discussion following that definition, we introduced the notion of arrow and equivalence as
well. We undertake now the task of organizing the set of arrows from an object to another
one into a space. We stress the word “space” because it is what we should expect starting
with our intuition in higher category theory: morphisms should be parametrized by a space,
and homotopies in this space should correspond to higher morphisms in our higher category.

Definition 2.1.27. Let S be a quasicategory and let X,Y ∈ S0 be objects in S. We define
MapS(X,Y ) to be the simplicial set

HomR
S (X,Y ) := HomX,Y (∆• ?∆0, S)

where the subscript means that we are considering only those maps of simplicial sets

f : ∆n ?∆0 → S

such that f |∆n ≡ X and f |∆0 ≡ Y .

To prove that this gives back a space (i.e. a Kan complex) we need to work out an
interesting characterization of Kan complexes. We begin with the following elementary
propositions, studying the relationship between left fibrations and equivalences:

Proposition 2.1.28. Let p : C → D be a left fibration of ∞-categories and let f : X → Y be
a morphism in C such that p(f) is an equivalence in D. Then f is an equivalence in C.

Proof. Let g be a homotopy inverse for p(f) and let

p(Y )
g

##

p(X)

p(f)
;;

idp(X)

// p(X)

be a 2-simplex in D attesting that g is a right homotopy inverse for p(f). Consider the map
Λ2

0 → C given by the diagram
Y

X

f
>>

idX
// X

Since p : C → D is a left fibration, it follows that there exists a right homotopy inverse
g : Y → X for f such that p(g) = g. Since this latter map is a homotopy equivalence, we
deduce, via the same argument, that g has a right homotopy inverse. It follows that f is a
right homotopy inverse for g, i.e. f is an equivalence.

Corollary 2.1.29. Let p : C → D be a left fibration of ∞-categories, let Y be an object of C
and let f : X → p(Y ) be an equivalence in D. There exists an equivalence f : X → Y in C
such that p(f) = f .

Proof. Let g : p(Y )→ X be a homotopy inverse for f and choose g : X → Y in C such that
p(g) = g (using the right lifting property of p with respect to Λ1

0 ⊂ ∆1. Now consider a
2-simplex in D

X

f

!!

p(Y )

p(g)
==

idp(Y )

// p(Y )
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attesting that g = p(g) is a homotopy inverse for f and apply the lifting property of p to
the map Λ2

0 → C given by
X

Y

g
>>

idY
// Y

The lifted map f : X → Y is an equivalence thanks to Proposition 2.1.28.

Proposition 2.1.30. Let S be an ∞-category and let φ : ∆1 → S be an edge. φ is an
equivalence if and only if for every map f0 : Λn0 → S such that f |{0,1} = φ there is an
extension of f0 to ∆n.

Proof. First of all assume that φ is an equivalence.

Corollary 2.1.31. Let S be a simplicial set. The following statement are equivalent:

1. S is an ∞-category and hS is a groupoid;

2. S has the lifting property with respect to all the horn inclusions Λni ⊂ ∆n for 0 ≤ i < n;

3. S has the lifting property with respect to all the horn inclusions λni ⊂ ∆n for 0 < i ≤ n;

4. S is a Kan complex.

Proof. Lemma 2.1.30 readily implies the equivalence between 1. and 2. A dual argument
shows the equivalence between 1. and 3.; now the thesis follows because 4. is equivalent to
2. and 3.

Proposition 2.1.32. Let S be a quasicategory. Then HomR
S (X,Y ) is a Kan complex.

Proof. Consider a diagram
Λni��

��

ϕ
// HomR

S (X,Y )

∆n

ψ

99

where 0 < i ≤ n. Unfolding the definition of HomR
S (X,Y ) we see that this problem is

equivalent to finding a lift in the following diagram:

Λn+1
i

∼ //
��

��

Λni ?∆0
��

��

// S

∆n+1 ∼ // ∆n ?∆0

;;

so that the previous problem becomes equivalent to

Λn+1
i

//
��

��

S

∆n+1

==

Since 0 < i < n+ 1, we see that the lifting exists by hypothesis. Corollary 2.1.31 shows that
HomR

S (X,Y ) is a Kan complex.

Remark 2.1.33. In the notation HomR
S the letter R stands for “right”. This is because other

choices are possible. For example one could introduce, symmetrically:

HomL
S(X,Y ) := HomX,Y (∆0 ?∆•, S)

There is no particular reason to choose one instead of the other, just a matter of convenience.
However, it is important to remark that the two definitions lead to weakly equivalent simpli-
cial sets. This is not completely obvious, especially because there isn’t a obvious comparison
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map between HomR
S (X,Y ) and HomL

S(X,Y ), at least to the best of my knowledge. Here
we sketch briefly how to do prove the result: we can introduce a third definition, which will
appear surely more natural to the reader accustomed with the theory of simplicial sets:

HomS(X,Y ) := homX,Y (∆1, S)

where homX,Y denotes the subcomplex of hom(∆1, S) defined by the condition that all its
element

f ∈ (hom(∆1, S))n = HomsSet(∆1 ×∆n, S)

satisfy
f |{0}×n ≡ X, f |{1}×n ≡ Y

Now, we have natural inclusions of bisimplicial sets

∆• ?∆0 → ∆• ×∆1 ← ∆0 ?∆•

inducing maps
HomR

S (X,Y )← HomS(X,Y )→ HomL
S(X,Y )

It can be shown that these maps are weak equivalences of simplicial sets.

2.1.5 Interlude II: simplicial nerve
In this second technical interlude we develop the machinery of the simplicial nerve. We will
need this construction many times in this mémoire. The most immediate one will be the
definition of the notion of categorical equivalence, which is the correct notion of equivalence
between ∞-categories. In fact, the simplicial nerve will provide a different way to build the
homotopy category of a quasicategory S, in such a way that the enrichment over sSet will
be immediate.

We begin with the following definition:

Definition 2.1.34. Let (J,<) be a finite, nonempty linearly ordered set. If i, j ∈ J define
Pi,j to be the partially ordered set

P Ji,j = Pi,j := {I ⊆ J | i, j ∈ I and ∀k ∈ I i ≤ k ≤ j}

Fix (J,<) = (J,<J) as in the above definition. If i0 < i1 < . . . < in are elements in J
then we have a map

αJi0,...,in : Pi0,i1 × . . .× Pin−1,in → Pi0,in

defined by
αi0,...,in(I1, . . . , In) := I1 ∪ . . . ∪ In

This map is natural in J in the sense that if (J ′, <J′) is another finite nonempty linearly
ordered set and f : J → J ′ is an increasing function, then each choice of elements

i0 <J i1 <J . . . <J in

determines a commutative diagram

P Ji0,i1 × . . .× P
J
in−1,in

αJi0,...,in //

f

��

Pi0,in

f

��

P J
′

f(i0),f(i1) × . . .× P
J′

in−1,in

αJ
′
f(i0),...,f(in)

// Pf(i0),f(in)

Consider the following definition:

Definition 2.1.35. Let (J,<) be a finite nonempty linearly ordered set. The simplicial
category C[∆J ] is defined as follows:

1. the objects of C[∆J ] are the elements of J ;
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2. if i, j ∈ J then

MapC[∆J ](i, j) :=
{
∅ if j < i

N(Pi,j) if i ≤ j

3. if i0 ≤ i1 . . . ≤ in then the composition morphism

MapC[∆J ](i0, i1)× . . .×MapC[∆J ](in−1, in)→ MapC[∆J ](i0, in)

is given by N(αJi0,...,in) (observing that N commutes with products).

The assignment J 7→ C[∆J ] is functorial in J . It follows that we obtain a functor

C : ∆→ Cat∆

where Cat∆ is the category of (small) simplicial categories. In particular, we obtain a
cosimplicial object C[∆•] in Cat∆; this object can be used in order to define the simplicial
nerve:

Definition 2.1.36. Let C be a simplicial category. We define the simplicial nerve N(C) to
be the simplicial set

HomCat∆(C[∆•], C)

Remark 2.1.37. It is possible to extend the functor C to a colimit-preserving functor

C : sSet→ Cat∆

In fact, the left Kan extension of C along the Yoneda embedding ∆→ sSet exists because
Cat∆ is cocomplete.
Remark 2.1.38. If S is a simplicial set, C[S] is a simplicial category; it can be shown that
forgetting the enrichment over sSet, C[S] is just another model for hS. This allows to give
another definition of the mapping spaces for an∞-category; the main drawback is that these
new mappings spaces need not to be fibrant in general.

The main result concerning the simplicial nerve is the following:

Theorem 2.1.39. Let C be a simplicial category such that for every pair of objects X,Y ∈
Ob(C) the mapping space HomC(X,Y ; sSet) is a Kan complex. Then N(C) is an∞-category.

Proof. Using the adjunction C a N , we are reduced to show that for every 0 < i < n, every
extension problem

C[Λni ] //

��

C

C[∆n]

==

has a solution. We can review C[Λni ] as a simplicial subcategory of C[∆n]; this subcategory
contains all the objects of C[∆n] and moreover MapC[Λn

i
](j, k) coincides with MapC[∆n](j, k)

whenever j 6= 0 and k 6= n. It is therefore sufficient to show that the lifting problem

MapC[Λn
i

](0, n)

��

// HomC(X,Y ; sSet)

MapC[∆n](0, n)

66

has solution. Since HomC(X,Y ; sSet) is a Kan complex, we are reduced to show that
the map on the left is a standard trivial cofibration. This follows by a direct verifica-
tion: MapC[∆n](0, n) can be identified with a cube (∆1)n−1, and under this identification
MapC[Λn

i
](0, n) is obtained by removing the interior and one face.

We conclude this section giving the following definition:

Definition 2.1.40. A morphism of ∞-categories F : T → S is said to be a categorical
equivalence if the induced functor hC[F ] : hC[T ] → hC[S] is an equivalence of simplicial
categories.
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2.1.6 Functor categories
In higher category theory, the task of giving a correct definition of higher functor is not
easy, depending on the approach. The problem is that one should specify a large amount
of additional data (besides the obvious functions sending an n-arrow into another n-arrow),
whose purpose is to attest the commutativity of certain diagrams in a coherent way. Limiting
ourselves to (∞, 1)-categories and working in the framework of quasicategories, this task is
not difficult at all. A higher functor will be simply a morphism of simplicial sets. An intuitive
explanation will be given later, after the discussion about mapping space.

Assuming that this gives the correct notion of higher functor, another problem is to
deal with the collection of all higher functors between two (∞, 1)-categories. As in standard
category theory we can form a category out of functors between categories (whose morphisms
are given by natural transformations), we aim to do the same thing in the higher categorical
context. This gives a first motivation for the following definition:

Definition 2.1.41. Let S be a quasicategory and let K be any simplicial set. We define
the space of (higher) functors from K to S to be

Fun(K,S) := hom(K,S)

In order to have a good definition, we should prove the following theorem:

Theorem 2.1.42. If S is a quasicategory, then Fun(K,S) = hom(K,S) is a quasicategory
for every simplicial set K.

Proof. The theory of anodyne extensions allows to check that Fun(K,S) has the lifting
property with respect to every inner anodyne extension A ⊂ B. A standard adjunction
argument shows that the following two lifting problems are equivalent:

A��

��

// Fun(K,S)

B

::
A×K
��

��

// S

B ×K

<<

Corollary 2.1.20 implies now that A×K → B×K is inner anodyne. Since S is an∞-category,
the second problem has solution, and the thesis follows.

2.1.7 Limits and colimits
The next step in building our framework will be to define the notion of limit and colimit
of a ∞-functor. As in classical category theory, the best way to define limits and colimits
is to reduce to the case of initial and final objects with the machinery of overcategories
and undercategories. In our framework the latter notions have already been defined, so we
consider initial and final objects.

Definition 2.1.43. Let S be a quasicategory and let X be a vertex of S. We say that X is
final in S if the canonical map p : S/X → S is a trivial Kan fibration.

To explain how this definition generalizes the classical one we need to work out a property
of left fibrations. In particular, we need the following:

Lemma 2.1.44. Let p : S → T be a left fibration of simplicial sets. Suppose that for every
vertex t ∈ T the fiber St is contractible. Then p is a trivial Kan fibration.

Proof. See [HTT, Lemma 2.1.3.4].

Remark 2.1.45. In [HTT] this Lemma is a key point in proving an interesting characterization
of Kan fibrations. We don’t reproduce the proof, but we state the result: a left fibration
f : S → T of simplicial sets is a Kan fibration if and only if for every edge f : t→ t′ in T the
induced map f! : St → St′ is an isomorphism in Ho(sSet).

Proposition 2.1.46. Let S be a quasicategory and let X be a vertex of S. X is final in S
if and only if for every other vertex Y of S, HomR

S (Y,X) is a contractible Kan complex.
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Proof. We claim that the fiber of p : S/X → S over Y is precisely HomR
S (Y,X). In fact, this

fiber is spanned by those simplexes sent to the constant subcomplex generated by Y . Under
the identification

Hom(∆n, S/X) ' HomX(∆n ?∆0, S) ' HomX(∆n+1, S)

we see that for ω ∈ Hom(∆n, S/X), p(ω) corresponds to ω|{0,...,n}. If ω ∈ p−1(Y ), then
ω|{0,...,n} = Y , i.e. ω ∈ HomR

S (Y,X). The other inclusion being trivial, we completed the
proof of our claim.

Now, if p is a trivial fibration, HomR
S (Y,X) is a contractible Kan complex. For the

converse, observe first of all that Proposition 2.1.24 implies that

p : S/X → S

is a left fibration. Since its fibers are contractible Kan complexes by hypothesis, Lemma
2.1.44 implies that p is a trivial Kan fibration.

Corollary 2.1.47. Let S be a quasicategory and let X be a final object in S. For every
other object Y there is a 1-simplex f : ∆1 → S (unique up to a contractible space of choices)
such that d0f = X and d1f = Y .

Proof. A contractible Kan complex is in particular nonempty (it has the lifting property
with respect to ∅ = ∂∆0 → ∆0, hence the statement is a consequence of the previous
proposition.

Definition 2.1.48. Let S be an ∞-category and let p : K → S be a morphism of simplicial
sets. A limit for p is a final object in the category S/p. Dually, a colimit for p is an initial
object in the category Sp/.

We will show at the end of next section that this notion of (co)limit has a homotopical
significance. Namely, we will show that to every model category we can associate an ∞-
category and that under this correspondence, (co)limits corresponds exactly to homotopy
(co)limits.

We conclude giving the analogue in the∞-categorical setting of a some well known results
of classical category theory:

Proposition 2.1.49. Let S be an∞-category and suppose we are given a map σ : ∆2×∆1 →
C, depicted as a dagram

X //

��

Y

��

// Z

��

X ′ // Y ′ // Z ′

Suppose that the left square is a pushout in S. Then the right square is a pushout if and
only if the outer square is a pushout.

Notation 2.1.50. If K is a simplicial set we will denote by KB the simplicial set K ? ∆0.
Similarly, we will denote by KC the simplicial set ∆0 ? K.

Proposition 2.1.51. Let K and S be simplicial sets and let C be an ∞-category which
admits k-indexed colimits. Then:

1. the ∞-category Fun(S, C) admits K-indexed colimits;

2. a map KB → Fun(S, C) is a colimit diagram if and only if for each vertex s ∈ S, the
induced map KB → C is a colimit diagram.

Proof. See [HTT, Corollary 5.1.2.3].
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2.1.8 Yoneda lemma
Notation 2.1.52. Consider the model category sSet, with the standard model structure.
This category is a simplicial category; let Kan be the full subcategory of fibrant-cofibrant
objects in Kan; this is still a simplicial category and the hypothesis of Theorem 2.1.39 are
satisfied, so that the nerve N(Kan) is an ∞-category. We will denote it by S and we will
refer to that as the ∞-category of spaces.

Given any∞-categoryX, we can therefore consider the category of (simplicial) presheaves
on X:

P(X) := Fun(Xop,S)
We would like to construct an embedding j : X → P(X). One possibility is the following:
assume that C is a simplicial category. Then we can construct a functor toward the category
of Kan complexes:

Cop × C → Kan
given by the formula

(X,Y ) 7→ Sing|HomC(X,Y ; sSet)|
If we take C = C[X], using the universal property of the product to obtain a functor

C[Xop ×X]→ Cop × C → Kan

Passing to the simplicial nerve we get a functor

Xop ×X → S = N(Kan)

which can be seen as a functor

j : X → Fun(Xop,S)

Definition 2.1.53. Let X be an ∞-category. The Yoneda embedding of X is the functor
j : X → Fun(Xop,S) built above.

In order to check that this construction is a good generalization of the standard categor-
ical construction, one has to be sure that the following result holds:

Proposition 2.1.54. Let X be an ∞-category. The Yoneda embedding j : X → P(X) is
fully faithful.

Proof. See [HTT, Proposition 5.1.3.1].

Next, one can also prove that the Yoneda embedding j preserves small limits:

Proposition 2.1.55. Let X be a small ∞-category and let j : X → P(X) be the Yoneda
embedding. Then j preserves all small limits which exist in X.

Proof. See [HTT, Proposition 5.1.3.2].

In particular, combining (the dual of) this result with Proposition 2.1.51 we obtain that
for every object x ∈ Ob(X), the corresponding functor j(x) commutes with colimits. Observe
that this functor is informally expressed by the formula

y 7→ MapX(y, x)

We end this section by sketching the construction of another model for P(X), where X
is an ∞-category. Let P ′(X) be the nerve of the full subcategory of sSet/X spanned by
the right fibrations Y → X. The important result is that the categories P(X) and P ′(X)
are equivalent; however, the proof, which essentially consists in the generalization of the
Grothendieck construction in the ∞-categorical setting, uses tools we haven’t developed
(more precisely, the straightening and unstraightening functors); we therefore state it as a
result:

Proposition 2.1.56. If X is an ∞-category there is an equivalence of ∞-categories between
P(X) and P ′(X).

Proof. See [HTT, Proposition 5.1.1.1].
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2.1.9 Interlude III: Cartesian fibrations
The goal of this technical interlude is to develop the machinery necessary to the introduc-
tion of the notion of adjoint morphisms. The goal is to introduce the definition of cartesian
fibration, and to work out some of its basic properties. In Section 2.1.2 we saw that right
fibrations generalize the notion of category cofibered in groupoids in our ∞-categorical set-
ting. Here we undertake the problem of giving a satisfying generalization of (co)fibered
category.

Cartesian morphisms

The first thing to do is to provide a notion of (co)cartesian morphism. Before diving into the
definition, let us make a simple observation: one of the main features of fibered categories is
their equivalence with pseudo–functors. To get something similar, we should consider only
morphisms of ∞-categories whose fibers are again ∞-categories. For this reason, we shall
restrain ourselves to inner fibrations.

Definition 2.1.57. Let p : X → S be an inner fibration of simplicial sets. An arrow
f : x→ y in X is said to be p–Cartesian if the induced map

X/f → X/y ×S/p(y) S/p(f) (2.4)

is a trivial Kan fibration.

Lemma 2.1.58. Let p : X → S be an inner fibration of simplicial sets. An edge f in X is
p–Cartesian if and only if the dotted arrow in the diagram

∆1

[n+1,n+2]

��

f

��

Λn+2
n+2
��

��

// X

p

��

∆n+2

??

// S

(2.5)

exists for every n ≥ 0.

Proof. We have to show that for every n ≥ 0 the lifting problem

∂∆n

��

// X/f

��

∆n

77

// X/y ×S/p(y) S/p(f)

(2.6)

is equivalent to the lifting problem (2.5). The universal property of overcategories implies
immediately that the lifting problem 2.6 is equivalent to the following pair of diagrams

Λn+1
n+1

//

$$
α

��

∆n+1

}}

��

X

p

��

∂∆n ?∆1

::

//

$$

∆n+2

bb

||
S

∆1

��

f

$$
∂∆n ?∆1 // X

(2.7)
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where the map α is defined as (cfr. Lemma A.3.13.4):

Λn+1
n+1 ' ∂∆n ?∆0 id?d0

// ∂∆n ?∆1

Using the fact that the geometric realization reflects colimits (cfr. Corollary A.1.3) we obtain
that the following diagram is a pushout in sSet:

Λn+1
n+1

//

α

��

∆n+1

��

∂∆n ?∆1 // Λn+2
n+2

and that the induced map ∆1 → ∂∆n ?∆1 → Λn+2
n+2 is exactly the map

[n+ 1, n+ 2] : ∆1 → Λn+2
n+2

It follows immediately that the lifting problem (2.7) is equivalent to the lifting problem (2.5),
so that the lemma follows.

This lemma allows to show that the familiar properties of cartesian morphisms are sat-
isfied in the ∞-categorical setting:

Corollary 2.1.59. 1. If p : X → S is an isomorphism of simplicial sets, every edge of
X is p-Cartesian;

2. let
X ′

q
//

p′

��

X

p

��

S′ // S

be a pullback diagram of simplicial sets, where p is an inner fibration. If f is an edge
of X ′ such that q(f) is p-Cartesian, then f is p′-Cartesian.

3. let p : X → Y and q : Y → Z be inner fibrations and let f : x′ → x be an edge of X such
that p(f) is q-Cartesian. Then f is p-Cartesian if and only if f is (q ◦ p)-Cartesian.

Proof. 1. and 2. are straightforward consequences of Lemma 2.1.58. The proof of 3. is not
hard, but we refer to [HTT, Proposition 2.4.1.3] since we won’t need it in this mémoire.

Cartesian fibrations

Definition 2.1.60. A map p : X → S of simplicial sets is said to be a Cartesian fibration
if the following conditions are satisfied:

1. the map p is an inner fibration;

2. for every edge f : x → y of S and every vertex ỹ of X with p(ỹ) = y, there is a
p-Cartesian edge f̃ : x̃→ ỹ such that p(f̃) = f .

The main result concerning cartesian fibrations consists in showing that given a Cartesian
fibration p : X → S there is a functor going from S to an ∞-category of ∞-categories. This
is an analogue of the familiar equivalence between fibered categories over a category S and
functors from S to Cat. However, the proof of this result use a quite refined technique
(marked fibrations of simplicial sets), and so we will omit the proof.
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2.1.10 Adjunctions
Definition 2.1.61. Let C and D be ∞-categories. An adjunction between C and D is a
map q : M → ∆1 which is both a Cartesian fibration and a coCartesian fibration together
with equivalences C →M{0} and D →M{1}.

In order to be able to switch easily from cartesian fibrations to functors, one should
develop the theory of straightening and unstraightening functors, which is beyond the scope
of this mémoire. We will prove the existence of an adjunction later on using an ad hoc
construction, but we strongly recommend to look at the treatment of this subject given in
[HTT, Chapter 5.2].

Still, we will need the existence of a unit transformation attached to every adjunction.
Let us therefore give the following definition:

Definition 2.1.62. Suppose we are given a pair of functors

C
f
// D

g
oo

between ∞-categories. A unit transformation for (f, g) is a morphism u : idC → g ◦ f in
Fun(C, C) with the following property: for every pair of objects C ∈ Ob(C), D ∈ Ob(D), the
composition

MapD(f(C), D)MapC(g(f(C)), g(D) //
u(C)

// MapC(C, g(D))

is an isomorphism in the homotopy category of spaces Ho(sSet).

The main result concerning unit transformation is the following:

Theorem 2.1.63. Let f : C → D and g : D → C be a pair of functors between ∞-categories
C and D. The following conditions are equivalent:

1. the functor f is a left adjoint to g;

2. there exists a unit transforamtion u : idC → g ◦ f .

Proof. See [HTT, Proposition 5.2.2.8].

Corollary 2.1.64. Let C and D be ∞-categories and let f : C → D and g : D → C be
adjoint functors. Then f and g induce adjoint functors hf : hC � hD : hg between Ho(sSet)-
enriched categories.

Proof. This is a clear consequence of Theorem 2.1.63, since the unit transformation u : idC →
g ◦ f induces a unit transformation hu : idhC → (hg) ◦ (hf).

Corollary 2.1.65. Let f : C → D be right adjoint to a functor g : D → C. Then f is a
categorical equivalence if and only if

1. f reflects equivalences;

2. the unit transformation u : IdD → g ◦ f is an equivalence.

Proof. This is a consequence of previous corollary. In fact, if f reflects equivalences, then
hf reflects isomorphisms, and if the unit transformation is an equivalence, then the induced
unit of hg a hf is an isomorphism. Since f is a categorical equivalence if and only if hf
is an equivalence of enriched categories, the result follows from the analogous statement
in classical enriched category theory (where it is a trivial consequence of the triangular
identities).
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2.1.11 Interlude IV: presentable ∞-categories
In this last technical interlude, we develop the machinery of presentable ∞-categories.
Throughout this mémoire we will make really often this assumption on the ∞-categories
we are using; the idea behind such technical property is that the category is large enough to
have small limits and colimits, but at the same time we can completely control it via a small
subcategory, making results as the adjoint functor theorem true in the context of presentable
∞-categories. In order to give the definition and develop the first basic properties, we will
need to review the notion of filtered simplicial set and of ind-completion; after that, we will
introduce the notion of accessible∞-category and finally the one of presentable∞-category.

Ind completion

First of all, we will need to translate in the language of∞-categories the definition of filtered
diagram. This generalization is quite easy to obtain:

Definition 2.1.66. Let κ be a regular cardinal and let C be an ∞-category. We will say
taht C is κ-filtered if, for every κ-small simplicial set K and every map f : K → C there
exists a map f : KB → C extending f .

Suppose now we are given an ∞-category C and a regular cardinal κ. We would like to
define a new category C̃ containing C as a full subcategory and such that it is complete under
κ-filtered colimits. We can use, as in ordinary category theory, the Yoneda embedding j : C →
P(C); the best way to define the completion we are looking for is to employ the equivalence of
Proposition 2.1.56: we will define Indκ(C) to be the full subcategory of Fun(Cop,S) spanned
by those morphisms classifying right fibrations D → C, where D is κ-filtered.

Proposition 2.1.67. Let C be a small ∞-category and let κ be a regular cardinal. The full
subcategory Indκ(C) ⊆ P(C) is stable under κ-filtered colimits.

Proof. See [HTT, Proposition 5.3.5.3].

Accessible and presentable ∞-categories

An accessible ∞-category is an ∞-category that can be obtained as the ind completion of
some small ∞-category.

Definition 2.1.68. Let κ be a regular cardinal. An ∞-category C is κ-accessible if there
exists a small ∞-category C0 and an equivalence

Indκ(C0)→ C

We will say that C is accessible if it is κ-accessible for some regular cardinal κ.

Definition 2.1.69. If C is an accessible ∞-category, then a functor F : C → C′ is accessible
if it preserves κ-filtered colimits for some regular cardinal κ.

Definition 2.1.70. An∞-category C is said to be presentable if it is accessible and moreover
it admits small colimits.

The presentability hypothesis allows to proof deep theorems in the theory of∞-categories,
such as the analogue of the adjoint functor theorem:

Theorem 2.1.71. Let F : C → D be a functor between presentable ∞-categories.

1. The functor F has a right adjoint if and only if it preserves small colimits;

2. the functor F has a left adjoint if and only if it is accessible and preserves small limits.

Proof. See [HTT, Corollary 5.5.2.9].
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2.1.12 The small object argument
In this last subsection about the language of quasicategories, we will present an∞-categorical
generalization of the well-known small object argument. This result will play a major role in
the proof of the main theorem of Chapter 4, since it will allow to begin a reduction argument.

Theorem 2.1.72. Let C be a presentable ∞-category and let S be a small collection of
morphisms in C. Then every morphism f : X → Z admits a factorization

X
f ′
// Y

f ′′
// Z

where f ′ is a transfinite pushout of morphisms in S and f ′′ has the RLP with respect to S.

Proof. Write S = {gi : Ci →i}i∈I . Choose a regular cardinal κ such that each of the objects
Ci is κ-compact. We will construct by transfinite induction a diagram F : N [κ] → C/Z ,
where [κ] denotes the linearly ordered set of ordinals {β : β ≤ α}. Set F0 to be the morphism
f : X → Z; for a nonzero limit ordinal λ ≤ κ, we let Fλ be a colimit of the diagrams obtained
from the maps {Fα}α<λ. Assume now that α < κ and that Fα has been constructed. Then
Fα(α) corresponds to a map X ′ → Z; let T (α) be a set of representatives for all equivalence
classes of diagrams σt:

Ct //

gt

��

X ′

��

Dt
// Z

where gt is a morphism in S. Choose a pushout diagram∐
t∈T (α) Ct

//

��

X ′

��∐
t∈T (α)Dt

// X ′′

in C/Z . We look at X ′′ as an object of (CX′/)/Z . The natural map

(C/Z)Fα/ → (CX′/)/Z

is obviously a trivial Kan fibration,1 so that we can lift X ′′ to an object of (C/Z)/Fα/, which
determines the desired map Fα+1.

For each α ≤ κ, let fα : Yα → Z be the image F (α) ∈ C/Z . Let Y = Yκ and f ′′ = fκ. To
show that f ′′ has the RLP with respect to every morphism in S, we can equivalently show
that for each i ∈ I and every map Di → Z the induced map

MapC/Z (Di, Y )→ MapC/Z (Ci, Y )

is surjective on connected components. Choose a point η ∈ MapC/Z (Ci, Y ); since Ci is κ-
compact, the space MapC/Z (Ci, Y ) can be realized as the filtered colimit of mapping spaces

MapC/Z (Ci, Y ) ' lim−→
α

MapC/Z (Ci, Yα)

so that we may assume that η is the image of ηα ∈ MapC/Z (Ci, Yα) for some α < κ. This
point determines a commutative square

Ci //

gi

��

Yα

��

Di
// Z

1Proposition 2.1.24 implies that it is a left fibration, and the fibres are obviously non-empty and con-
tractible.
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which is equivalent to σt for some t ∈ T (α). Therefore the image of ηα in MapC/Z (Ci, Yα+1)
extends to Di, showing that η lies in the image of

MapC/Z (Di, Yα+1)→ MapC/Z (Ci, Y )

The morphism F (0)→ F (κ) in C/Z induces a morphism f ′ : X → Y in C; if we can show
that f ′ is a transfinite pushout of morphisms in S, the proof will be complete. Since f ′ is
the transfinite pushout of the maps Yα → Yα+1, we are reduced to show that such maps
are transfinite pushouts of morphisms in S. Choose a well-ordering of T (α), corresponding
to an ordinal β. For γ < β, let tγ denote the corresponding element of T (α). We define a
functor G : N [β]→ C in such a way that, for every β′ ≤ β we have a pushout diagram∐

γ<β′ Ctγ

��

// Yα

��∐
γ<β′ Dtγ

// G(β′)

This exhibits Yα → Yα+1 as a transfinite pushout of morphisms in S.

Corollary 2.1.73. Let C be a presentable ∞-category and let S be a small collection of
morphisms in C. Let Y be any object of C and let φ : C/Y → C be the forgetful functor. There
exists a simplicial object X• of C/Y with the following properties:

1. for each n ≥ 0 let un : Ln(X•)→ Xn be the canonical map. Then φ(un) is a transfinite
pushout of mosphisms in S;

2. for each n ≥ 0, let vn : Xn → Mn(X•) be the canonical map in C/Y . Then φ(vn) has
the RLP with respect to every morphism in S.

Proof. We construct by induction on n a compatible family of diagrams X(n)
• : N(∆≤n)op →

C/Y . If n = −1, we take the constant diagram at ∅, the initial object of C. Assume now
that n ≥ 0 and that X(n−1)

• has been constructed. Therefore we have well defined latching
objects and matching objects Ln(X), Mn(X) as well as a map

t : Ln(X)→Mn(X)

To extend in a compatible way the diagram X
(n−1)
• is sufficient to produce a factorization

Xn

vn

$$

Ln(X•)

un

;;

t // Mn(X•)

in C/Y . However, the dual version of Corollary 2.1.25 implies that the map φ : C/Y → C is
a right fibration, so that this problem becomes equivalent to the problem of producing a
commutative diagram

Kn

%%

φ(Ln(X•))

u

99

φ(t)
// φ(Mn(X•))

in the ∞-category C. Theorem 2.1.72 implies that it is possible to produce a similar factor-
ization in such a way that conditions 1. and 2. are satisfied.

2.2 From model categories to quasicategories
It is well known that the framework of model categories developed by Quillen is a really
powerful context where to speak about abstract homotopy theory. The idea is that a model
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category provides a “presentation” of a homotopy theory; the main problem is to understand
how to extract these homotopical informations fromM and to avoid forgetting something.
For example, it is clear that the construction of the homotopy category forgets too much:
essentially, it preserves only 1-homotopical informations.

Mapping spaces suggest that every model category is “almost enriched” over sSet; there
is a more refined construction, the Dwyer-Kan localization that realizes this enrichment in a
proper way. This provides a way of turning a model category into a simplicial model category.
At this point, the general machinery of the homotopy-coherent nerve can be employed to
convert our data into a quasicategory.

2.2.1 O-categories
Generalities

We will fix a Grothendieck universe U throughout this section; Cat will denote the category
of all U-small categories. Let O be a fixed U-small set. We will denote by O-Cat the sub-
category of Cat whose objects are categories C satisfying Ob(C) = O and whose morphisms
are the functors inducing the identity on objects.

Lemma 2.2.1. The category O-Cat has binary products.

Proof. Let C,D ∈ Ob(O-Cat) be two O-categories. Define C × D as the category whose set
of objects is O and whose morphisms are defined by

HomC×D(X,Y ) := HomC(X,Y )×HomD(X,Y )

Identities and composition are defined componentwise. It is straightforward to check that
C ×D is a well defined category. Let us check the universal property of the product: first of
all we have obviously defined functors of O-categories

p : C × D → C, q : C × D → D

If F : A → C and G : A → D are arbitrary functors of O-categories, we define F ×G : A →
C ×D to be the identity on objects and

(F ×G)(α, β) := (F (α,G(β))

The functoriality is obvious; it is also clear that p ◦ (F ×G) = F , q ◦ (F ×G) = G. Finally
the uniqueness of F ×G is immediate.

Lemma 2.2.2. The category O-Cat has coproducts.

Proof. We show that O-Cat has binary coproducts. A similar argument shows the existence
of arbitrary coproducts. Let C,D ∈ Ob(O-Cat) be two O-categories. Define C ∗ D in the
following way: first of all, Ob(C ∗ D) is O; next, set

Arr(C)∗ := Arr(C) \Ob(C)
Arr(D)∗ := Arr(D) \Ob(D)

where we think the element x ∈ Ob(C) in Arr(C) as idx. Consider

S := Arr(C)∗ tArr(D)∗

and
T =

∐
n∈N

Sn

We will say that an element (fn, . . . , f0) ∈ T is reduced if for each i ∈ {0, . . . , n − 1},
fi ∈ Arr(C) implies fi+1 ∈ Arr(D). Let T denote the subset of reduced elements of T . Given
x, y ∈ O define

Hom′C∗D(x, y) := {(fn, fn−1, . . . , f0) ∈ T | fi : zi → zi+1, z0 = x, zn+1 = y}
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Finally set

HomC∗D(x, y) :=
{

Hom′C∗D(x, y) if x 6= y

Hom′C∗D(x, y) ∪ {idx} if x = y

The composition is defined in the obvious way, and it is straightforward to check that C ∗D
is a category. Observe that C ∗D is a U-small category because we have the following bound

|Hom′C∗D(x, y)| ≤

∣∣∣∣∣∣
⋃
n∈N

∏
(xi)∈On

HomC(xi, xi+1) ∪HomD(xi, xi+1)

∣∣∣∣∣∣
and since O is U-small, the set on the right is still U-small.

Let us check that C ∗ D satisfies the desired universal property. First of all we have well
defined functors

I0 : C → A
I1 : D → A

sending an arrow f to the one-element string (f) in C ∗D. If A is any other O-category and
F0 : C → A, F1 : D → A are functors in O-Cat, define

(F0 ∗ F1) : C ∗ D → A

as the functor sending a string (fn, . . . , f0) where, for example, f0 ∈ Arr(C) in

Fn(fn) ◦ Fn−1(fn−1) ◦ . . . ◦ F0(f0)

where k denotes the residue of k in Z/2Z. It is easily checked that this gives a well-defined
functor satisfying

F0 ∗ F1 ◦ Ik = Fk, k = 0, 1
Moreover, the way we defined the arrows in C ∗D implies that F0 ∗F1 is the only functor of
O-categories satisfying the previous equations. It follows the thesis.

Free O-categories

Denote by O-Grph the category of oriented graphs with set of vertexes equal to O and whose
morphism are morphisms of graphs preserving the vertexes. We have a natural forgetful
functor

U : O-Cat→ O-Grph
We can construct a left adjoint

F : O-Grph→ O-Cat

sending a O-graph to the associated free category. The procedure is the same as for standard
categories and we won’t recall it here (see [Mac71, Ch. II.7]). We just remark that the same
bound employed in the proof of previous lemma can be used to show that the free category
over a O-graph yields a U-small category, and hence it provides a well-defined functor.
Checking the adjunction relation is then straightforward (we omit the details).
Definition 2.2.3. An O-category C is said to be a free category if it is in the essential image
of the functor F .
Lemma 2.2.4. The coproduct of free categories is again free.
Proof. First of all observe that the categoryO-Grph admits coproducts: ifG,H ∈ Ob(O-Grph)
are O-graphs, define G tH as the graph whose vertexes are the elements of O and whose
arrows from x ∈ O to y ∈ O are

ArrG(x, y) tArrH(x, y)

The verification is straightforward. At this point, the statement follows by nonsense: F
commutes with colimits being a left adjoint, so that if C = F (G) and D = F (H), then

F (G tH) = F (G) ∗ F (H) = C ∗ D

proving that C ∗ D is a free category.
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Simplicial O-categories

Definition 2.2.5. A simplicial O-category is a simplicial object in the category O-Cat.
The category of simplicial O-categories will be denoted by sO-Cat.

Remark 2.2.6. Observe that the “rigidity” of O-Cat implies that that a simplicial O-category
is simply a category enriched over sSet with set of objects equal to O. Observe also that in
general a simplicial object in Cat is a category enriched over sSet if and only if face and
degeneracy functors are the identities over the objects.

Theorem B.2.9 shows that sO-Cat is a simplicial category. To give this category a model
structure, we might hope to use Theorem B.2.15. In order to do so, we will need to analyze
the effective epimorphisms in O-Cat.

Lemma 2.2.7. The forgetful functor U : O-Cat→ O-Grph creates reflexive coequalizers.

Proof. Let
F,G : R → C

be morphisms in O-Cat with a common (strict) section

S : C → R

Introduce the following relation on Arr(C):

f ∼ g ⇐⇒ f = F (h), g = G(h) for some h ∈ Arr(R)

It’s clear that this relation is symmetric and transitive. The existence of the section makes
also clear that this relation is reflexive; finally, functoriality of F and G show immediately
that this relation is compatible with compositions. As consequence, the quotient graph
D := U(C)/ ∼ has a natural structure of O-category. The universal property of the quotient
is completely straightforward: if in the diagram

R
F //

G
// C P //

Q
��

D

P
��

B

the functor Q coequalizes F and G, we immediately obtain a unique morphisms of O-graphs
P : D → B. Since P is surjective on arrows, it is straightforward to check that P is a functor
of O-categories. At this point, uniqueness is obvious.

Corollary 2.2.8. The category O-Cat is cocomplete.

Proof. We already know that O-Cat has arbitrary coproducts; moreover, Lemma 2.2.7 im-
plies that O-Cat has reflexive coequalizers (because O-Grph is obviously cocomplete). Ab-
stract nonsense shows then that O-Cat has all the coequalizers. In fact, if we are given a
pair of parallel arrows in a category C with coproducts and reflexive coequalizers

X
f
//

g
// Y

we obtain a reflexive diagram

X t Y
ft1
//

gt1
// Y

It is straightforward to check that the coequalizer of this last diagram is also a coequalizer
for the first diagram.

Corollary 2.2.9. The forgetful functor U : O-Cat → O-Grph preserves effective epimor-
phisms.

Proof. Every effective epimorphism is in particular a reflexive coequalizer.
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Corollary 2.2.10. Let F : C → D be an effective epimorphism in O-Cat. Then F is
surjective on arrows.

Proof. This follows from Corollary 2.2.9 and the fact (which we are going to prove) that
every epimorphism in O-Grph is surjective on arrows. In fact, let f : G1 → G2 be an
epimorphism of O-graphs and let α : x → y be an edge in G2. Consider the O-graph G
which has exactly one edge between a and b if (a, b) 6= (x, y), and exactly two edges γ0, γ1
if (a, b) = (x, y). Define p : G2 → G as the only morphism sending every edge from x to y
into γ0 and q : G2 → G as the only morphism sending α into γ1 and every other edge from
x to y into γ0. Then p ◦ f = q ◦ f if and only if α is not in the image of f . Since f is
an epimorphism, this equality would imply p = q, which is impossible. It follows that f is
surjective on arrows.

Corollary 2.2.11. Let X,Y ∈ O be distinct objects and let GX,Y be the O-graph character-
ized by the following condition:

Edges(A,B) =
{
{∗} if A = B or (A,B) = (X,Y )
∅ otherwise.

Then CX,Y := F (GX,Y ) is a projective object in O-Cat.

Proof. Let f : C → D be an effective epimorphism. Corollary 2.2.10 implies that f is surjec-
tive on arrows. Since the following lifting problems

C

f

��

CX,Y

==

// D

U(C)

U(f)
��

GX,Y

;;

// U(D)

are equivalent by adjoint nonsense, we conclude the proof.

Corollary 2.2.12. The set S := {CX,Y }(X,Y )∈O2 is a set of small projective generators for
O-Cat. Moreover, for every other O-category C there is an effective epimorphism∐

k∈I

CXk,Yk → C

Proof. Every object in S is a projective object thanks to Corollary 2.2.9; each CX,Y is
manifestly small. It is also clear that S is a set of generators. Finally, observe that every
free category can be obtained as coproduct of the categories CX,Y . Write ⊥ := F ◦ U ; the
usual simplicial techniques show the existence of a reflexive diagram:

⊥2C //
// ⊥C // C (2.8)

Applying the forgetful functor U , we see that this diagram becomes a split coequalizer in
O-Grph. Since U creates reflexive coequalizers, it also reflects them. It follows that the
diagram (2.8) is a coequalizer in O-Cat. In particular, the map ⊥C → C is a regular
epimorphism, hence an effective epimorphism (here we are using the fact that O-Cat has
binary products, as shown in Lemma 2.2.1).

Theorem 2.2.13. The category sO-Cat has a simplicial model category structure where

1. a functor F : A → B is a weak equivalence if and only if for each pair of objects
X,Y ∈ O the induced map

HomA(X,Y ; sSet)→ HomB(X,Y ; sSet)

is a weak equivalence of simplicial sets;

2. a functor F : A → B is a fibration if for each pair of objects X,Y ∈ O the induced map

HomA(X,Y ; sSet)→ HomB(X,Y ; sSet)

is a fibration;
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3. a map is a cofibration if and only if it has the LLP with respect to trivial fibrations.

Proof. Theorem B.2.15 guarantees the existence of a model structure where a functor F : A →
B is a weak equivalence or a fibration if and only if for each projective object C, the induced
map HomsO-Cat(C, F ; sSet) is a weak equivalence or a fibration. Proposition B.2.16 and
Corollary 2.2.12 allow us to take C = CX,Y . In this case, the map HomsO-Cat(C, F ; sSet)
coincides exactly with the induced map

HomA(X,Y ; sSet)→ HomB(X,Y ; sSet)

The theorem follows.

Following Quillen and Dwyer-Kan we obtain the following characterization of cofibrations
in sO-Cat. Recall first of all the following definition:

Definition 2.2.14. A map f : A→ B in a category C is a strong retract of a map g : A→ B′

if there exists a commutative diagram

A

f

��

A

g

��

A

f

��

B
r // B′

s // B

where sr = idB .

Theorem 2.2.15. A map in sO-Cat is a cofibration if and only if it is a strong retract of
a free map. In particular, an object in sO-Cat is a cofibrant if and only if it is a retract of
a free one.

2.2.2 Dwyer-Kan localization
The general techniques exposed in [Wei94, Ch. 8.6] allows to use the adjunction F a U to
construct an explicit cofibrant replacement functor. In fact, let (⊥, ε, δ) be the comonad
associated to this adjunction. For an O-category C we define

⊥kC := ⊥k+1C

and

di := ⊥iε⊥k−i : ⊥kC → ⊥k−1C
si := ⊥iδ⊥k−i : ⊥kC → ⊥k+1C

as face and degeneracy functors.
We get therefore a functor

F : O-Cat→ sO-Cat
defined by

F (C) := {⊥∗C}
Reviewing C as a simplicial O-category concentrated in degree zero we obtain a natural
functor

F (C)→ C
which is a weak equivalence. At this point we can give the following

Definition 2.2.16. Let C be an O-category and let W ⊂ C be a subcategory. The standard
simplicial localization (or Dwyer-Kan localization) of C is the category

L(C,W ) := F (C)[F (W )−1]

We immediately obtain the following

Proposition 2.2.17. Let C be an O-category and let W ⊂ C be a subcategory. Then we
have a canonical isomorphism

π0L(C,W ) = C[W−1]
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Remark 2.2.18. If in the definition of the Instead of taking a free resolution we could have
taken any cofibrant resolution. It can be proven that the final result is invariant modulo
homotopy in the category sO-Cat.
Remark 2.2.19. Those already knowing the construction of mapping spaces in a general
model category will recognize a more global approach to the problem: instead of resolving
an object at time, we are resolving the whole category. The advantage of this approach is
that it produces mapping spaces which are composable. The lack of this property is, in fact,
the main drawback of the other approach.

2.2.3 Homotopy (co)limits
There is an important relationship between the definition we gave of (co)limit (Definition
2.1.48) and homotopy (co)limits in model categories. The main result is the following:

Theorem 2.2.20. Let C and J be fibrant simplicial categories and F : J → C a simpli-
cial functor. Suppose we are given an object C ∈ Ob(C) and a compatible family of maps
{ηI : F (I)→ C}I∈J . The following conditions are equivalent:

1. the maps ηI exhibit C as a homotopy colimit of the diagram F ;

2. let f : N(J )→ N(C) be the simplicial nerve of F and f : N(J )B → N(C) the extension
of f determined by the maps {ηI}. Then f is a colimit diagram in N(C).

Proof. See [HTT, Theorem 4.2.4.1].

In particular ifM is a model category, its Dwyer-Kan localization is a fibrant simplicial
category, and the localization preserves all the homotopical informations. It follows that if an
∞-category is presented by a model category, to compute colimits in the sense of Definition
2.1.48 we can compute them as homotopy colimits in M. This will be useful in the next
section.

2.3 Stable (∞, 1)-categories
2.3.1 Definition
Definition 2.3.1. A pointed quasicategory S is a category endowed with an object 0 which
is both initial and final.

Definition 2.3.2. Let S be a pointed quasicategory. A triangle in S is a morphism of
simplicial sets from ∆1 ×∆1 to S such that the image of d0 × d1 : ∆0 → ∆1 ×∆1 is a zero
object for S.

We will depict a triangle in a quasicategory as

X //

��

Y

��

0 // Z

Definition 2.3.3. Let S be a pointed quasicategory. A triangle in S is a fiber sequence if
it is a pullback. Dually, a triangle is a cofiber sequence if it is a pushout.

Definition 2.3.4. A quasicategory S is said to be stable if the following conditions are
satisfied:

1. S is pointed;

2. every morphism has a fiber and a cofiber;

3. a triangle is a fiber sequence if and only if it is a cofiber sequence;
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2.3.2 Suspension and loop functors
A basic result concerning stable ∞-categories is that the their homotopy category is trian-
gulated. This is the counterpart of a well known result of Quillen in the context of model
categories (a nice exposition is given in [Hov99, Chapter 7]). We won’t give the full proof
of this theorem, even though it is not hard, because it has little to do with the main topic
of this mémoire. However, we will show how to construct the suspension functor and its
adjoint, the loop functor.

Let S be an ∞-category. We consider the full subcategory MΣ of C := Fun(∆1 ×∆1, S)
spanned by those pushout diagrams

X //

��

0

��

0′ // Y

(2.9)

where 0 and 0′ are zero objects of S. Evaluation at the first vertex produces a natural
functor

e0 : MΣ → S

which is a Kan fibration. If moreover every morphism has a cofiber, then we see that the
fibers of e0 are nonempty and contractible. Lemma 2.1.44 implies that θ is a trivial Kan
fibration; choose a section of θ

s : S →MΣ

and let e1 : MΣ → S be the evaluation at the last vertex. The composition e1 ◦ s produces
a functor

Σ: S → S

which is called the suspension of S. In a dual way, we can define the loop functor Ω: S → S,
using the category MΩ whose objects are pullback diagrams of the same shape as above.
Remark 2.3.5. We would like to give an intuitive explanation for the unexperienced reader.
Avoiding the technicalities of simplicial sets, we can imagine to work within a model category.
Then, according to Theorem 2.2.20, we have to consider homotopy pushout diagrams; the
construction given above defines the suspension of an object X in C to be the homotopy
pushout of the diagram ∗ ← X → ∗, and this matches with the topological intuition of a
homotopy pushout.

Proposition 2.3.6. Let S be a pointed ∞-category and assume that every morphism in S
has a fiber and a cofiber. Then Σ is left adjoint to Ω.

Proof. Let i : MΣ → C and j : MΩ → C be the natural inclusions. Since MΣ and MΩ are
∞-categories, it follows that i and j are inner fibrations. Set

M := MΣ
i?j M

Ω

Since C is a quasicategory, Proposition A.3.9 implies that M is an ∞-category. Moreover
Proposition A.3.10 produces a morphism of simplicial sets p : M→ ∆1 such that

M{0} 'MΣ, M{1} 'MΩ

We claim that p is both cartesian and cocartesian. Let us show the cartesian statement;
the other will be similar. If an object ξ = ξn of M lies over 1, then it represents a pullback
square of the form

X //

��

0

��

0′ // Y

Let ξn−1

X ′ //

��

0

��

0′ // Y
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be the cofiber of the morphism 0→ Y . We obtain a morphism (unique up to a contractible
space of choices) ξn−1 → ξn in C,2 which corresponds to an edge f : ∆1 → M from ξn−1
to ξn. We claim that f is a cartesian morphism. Accordingly to Lemma 2.1.58 we have to
show that every lifting problem of the following form

∆1

[n−1,n]

��

f

��

Λnn��

��

α //M

p

��

∆n

??

// ∆1

has solution for every n ≥ 2. However, the commutativity of the diagram forces the map
∆n → ∆1 to be the one induced by the map ϕ : n→ 1 characterized by ϕ−1(1) = {n}.

Consider the inclusion

ι : ∂∆n−1 // ∆n−1 dn // ∆n

and let α := α ◦ ι. The definition of n-simplexes in the relative join M = MΣ
i?j M

Ω shows
that our problem is equivalent to the induced lifting problem:

∂∆n−1
��

��

α //M

∆n−1

;;

Let e0 : M → S be the evaluation at the initial vertex. If we denote by β : ∆n−1 → M the
(n− 1)-simplex corresponding via α to the inclusion of the (n− 1)-th face of Λnn we obtain
an (n− 1)-simplex ω in S. Since

e0(ξn) = e0(ξn−1)

by construction, we obtain a commutative diagram

∂∆n−1 α //
��

��

M

e0

��

∆n−1 ω //

;;

S

Since e0 is a trivial Kan fibration, the lifting exists, and the proof is complete.

If S is stable, then MΣ = MΩ, and Σ and Ω define an adjoint equivalence of ∞-
categories. We conclude citing the following result:

Theorem 2.3.7. Let S be stable ∞-category. Then hS is triangulated and the translation
functor is exactly the suspension Σ.

Proof. See [HA, Theorem 1.1.2.14].

2.4 Spectra
In this last section we introduce the idea of spectrum, which is in a certain sense the higher
algebraic analogue of an abelian group.

2This is essentially a consequence of Corollary 2.1.47, jointly with our definition of limit.
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Notation 2.4.1. We let S denote the ∞-category of (small) spaces. This can be obtained as
follows: one start with a Grothendieck universe U and consider the model category U-sSet
of U-simplicial sets, with the standard model structure. Taking the Dwyer-Kan localization
and successively the simplicial nerve, we obtain an ∞-category which is V-small, where V is
a Grothendieck universe extending U.

We will denote by S∗ the category of pointed objects of S. Finally, we will denote by
Sfin the smallest full subcategory of S which contains the final object ∗ and is closed under
finite colimits.

Definition 2.4.2. Let F : C → D be a functor of ∞-categories.

1. if C admits pushouts, F is said to be excisive if it carries pushout squares in C to
pullback squares in D;

2. if C admits a final object ∗, F is said to be reduced if F (∗) is a final object of D

In the particular case where D has a zero object, we give a special name to those functors
which are both excisive and reduced:

Definition 2.4.3. Let D be a pointed ∞-category. A functor F : C → D is said to be
strongly excisive if it is reduced and excisive.

We are finally ready to give the definition of spectrum object:

Definition 2.4.4. Let C be a pointed ∞-category. A spectrum in C is a strongly excisive
functor Sfin

∗ → C.

This definition is particularly elegant, and it allows to deduce immediately that given a
pointed∞-category C, there exists an∞-category whose objects are the spectra of C (namely,
the full subcategory of Fun(Sfin

∗ , C) spanned by the strongly excisive functors). However, to
produce in practice spectra, it is useful to have another characterization of them.

Proposition 2.4.5. Let C be a pointed∞-category with finite colimits. A spectrum F : Sfin
∗ →

C is equivalently determined by a sequence {En}n∈N of objects in C equipped with equivalences

En ' ΩEn+1

Proof. Given a sequence E := {En}n∈N with equivalences En ' ΩEn+1, define

FE(Sn) := En

Since the spheres generates Sfin
∗ under finite colimits, we obtain that there is a Kan extension

of FE to the whole Sfin
∗ ; moreover, this extension is unique up to a contractible space of

choices.
Conversely, given a spectrum F : Sfin

∗ → C, define

En := F (Sn)

Since Sn+1 ' ΣSn, using the fact that F is strongly excisive, we obtain

En = F (Sn) ' ΩF (Sn+1) = ΩEn+1

This is enough to conclude.
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Homotopy theory of algebras

3.1 Differential graded modules
3.1.1 Graded modules
We will consider Z as a discrete category. We moreover fix a commutative ring (with unit)
A.

Definition 3.1.1. The category of graded A-modules is an element of the functor category
A-GMod := (A-Mod)Z. We will denote by M∗ = {Mn}n∈Z an object in this category.

Remark 3.1.2. More classically a differential graded A-module is an A-module M with a
direct sum decomposition

M =
⊕
n∈Z

Mn (3.1)

Under this identification, the morphisms of the category A-GMod becomes simply mor-
phisms of A-modules f : M → N such that

f(Mi) ⊂ f(Ni)

Notation 3.1.3. If M∗ is a differential graded A-module and we are given a direct sum
decomposition as in (3.1), an element of M lying in Mn for some n ∈ Z is said to be
homogeneous of degree n; if x is such an element, we will express this writing |x| = n.
Remark 3.1.4. Recall that if A is an abelian category and I is a small category, the functor
category AI is again an abelian category. In particular, we see that A-GMod is an abelian
category. In particular G := Funct(Z,−) defines a functor which goes from the category of
(small) abelian categories to (small) abelian categories.

For every n ∈ Z there exists a forgetful (additive) functor

pn : A-GMod→ A-Mod

sending M = {Mn}n∈Z to Mn, which is trivially exact. This functor has a left adjoint. In
fact, for every m ∈ Z we can consider

Sm : A-Mod→ A-GMod

defined on objects by M 7→ Sm(M), where

(Sm(M))n :=
{
M if n = −m
0 otherwise

Lemma 3.1.5. We have the adjunction S−n a pn.
Proof. We have an obvious natural map

ηM : M → S−n(Mn)

and it is straightforward to check that this map is a universal arrow from M to the functor
S−n.

43
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Notation 3.1.6. We will denote by A[n] the graded module Sn(A). If n = 0 we will write A
instead of A[0] whenever it is clear that we are working inside A-GMod.

Symmetric monoidal closed structure

It is possible to endow A-GMod with a symmetric monoidal closed structure. We begin
with a definition of the tensor product of graded A-modules. Using the functor

G := Funct(Z,−)

we observe that we can use the ordinary product of A-modules to obtain an additive functor

−�A − : G(A-Mod)×G(A-Mod)→ G2(A-Mod) ' Funct(Z× Z, A-Mod)

defined on objects as

({Mp}p∈Z , {Nq}q∈Z) 7→ {Mp ⊗Nq}(p,q)∈Z×Z

Moreover, we have a functor

Tot⊕ : G2(A-Mod)→ G(A-Mod)

defined by

Tot⊕(M∗,∗) :=
{ ⊕
p+q=n

Mp,q

}
n∈Z

It is easily checked that this functor is additive.

Definition 3.1.7. The tensor product of graded A-modules is by definition the additive
functor

−⊗A − := Tot⊕(−�A −) : A-GMod×A-GMod→ A-GMod

Proposition 3.1.8. (A-GMod,⊗A, A) is a symmetric monoidal category, and the symme-
try isomorphism can be chosen as the natural transformation

σM∗,N∗ : M∗ ⊗A N∗ → N∗ ⊗AM∗

induced by
Mp ⊗A Nq → Nq ⊗Mp : m⊗A n 7→ (−1)pqn⊗A m

Proof. It is easily checked the existence of natural isomorphisms

−⊗A A ' IdA-GMod ' A⊗A −

To prove the existence of the associativity isomorphism let us observe that the universal
property of direct sums implies the existence of natural isomorphisms⊕

r∈Z

⊕
p+q=n−r

Mp,q,r '
⊕

p+q+r=n
Mp,q,r '

⊕
p∈Z

⊕
q+r=n−p

Mp,q,r

This implies immediately that

Tot⊕ ◦ Tot⊕2,3 ' Tot⊕ ◦ Tot⊕1,2

Moreover, associativity of tensor product shows as well that

(M∗ �A N∗) �A P∗ 'M∗ �A (N∗ �A P∗)

It follows the existence of a natural isomorphism

(M∗ ⊗A N∗)⊗A P∗ 'M∗ ⊗A (N∗ ⊗A P∗)

It is a straightforward exercise to check that the pentagonal axiom holds.
Finally, the map σ defines indeed a natural isomorphism of −⊗A−, and it is easy to verify

that the additional diagrams relating associativity and symmetry are commutative.
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Notation 3.1.9. Let M∗ be a graded A-module. We will denote by M∗[n] the tensor product

M∗[n] := M∗ ⊗A A[n]

We will say that M∗[n] is obtained shifting M∗ by n.
Remark 3.1.10. Inspection reveals immediately that

(M∗[n])m = Mm−n

Lemma 3.1.11. The shifting functor −⊗A A[n] is left adjoint to −⊗A A[−n].

Proof. In fact the elements of HomA-GMod(M∗[−n], N∗) are canonically identified with A-
linear maps

f :
⊕
p∈Z

Mp →
⊕
q∈Z

Nq

such that
f(Mp) ⊂ Nq+n

On the other side, the elements of HomA-GMod(M∗, N∗[n]) have the same canonical descrip-
tion, so that the result follows.

Definition 3.1.12. Let M∗, N∗ be a graded A-modules. A map from M∗ to N∗ of degree n
is an element of HomA-GMod(M∗[−n], N∗).

We can now define the internal hom for the monoidal structure of A-GMod. Given
graded A-modules M∗ and N∗ define

(HomA(M∗, N∗))n := HomA-GMod(M∗[−n], N∗)

Proposition 3.1.13. For every graded A-module N∗ it holds the adjunction relation

−⊗A N∗ a HomA(N∗,−)

Proof. Fix a graded A-module N∗. For every pair of integers (p, q) ∈ Z2 consider

evp,q : HomA(N∗, P∗)p ⊗A Nq → Pp+q

defined by
evp,q(f ⊗ n) := f(n)

This is well defined because f is a map of degree p, i.e. f(Nq) ⊂ Pp+q. Now define

ev : HomA(N∗, P∗)⊗A N∗ → P∗

to be the sum of the morphisms evp,q. Naturality in P∗ is clear, so that we obtain a natural
transformation

ev : HomA(N∗,−)⊗A N∗ → IdA-GMod

We claim moreover that ev is a universal arrow from −⊗AN∗ to P∗. In fact, let M∗ be any
other graded A-module and let

α : M∗ ⊗A N∗ → P∗

be any map. Define
β : M∗ → HomA(N∗, P∗)

to be the sum of βp : Mp → HomA(N∗, P∗)p, where βp is the map

βp(m) := α(m⊗A −)

Inspection reveals immediately that

ev ◦ (β ⊗ idN∗) = α

Finally, if γ : M∗ → Hom(N∗, P∗) is another map satisfying previous equation, we see that

γ(m)(n) = α(z ⊗ n)

for every m ∈ Mp and n ∈ Nq. It follows that γ = β, so that the adjunction is completely
proved.
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3.1.2 Differential graded modules
We now introduce a variation on the constructions done up to this moment. The proofs do
not change very much, hence we will not give the details of them. Also in this section A
denotes a fixed commutative ring (with unit).

Definition 3.1.14. A differential graded A-module (in short dg A-module) is a graded
A-module M∗ together with a map of degree −1

d : M∗ →M∗

such that d2 = 0, called the differential of M∗. A morphism of dg A-modules is a morphism
of graded A-modules commuting with the differentials.

Notation 3.1.15. Let (M∗, d) be a dg A-module. We will write dn to denote the map
dn : Mn →Mn−1 induced by d.

Differential graded A-modules and maps between them can be obviously organized into
a category, which we will denote by A-Moddg or with Ch(A-Mod).

Lemma 3.1.16. A-Moddg is an abelian category.

Proof. It is a straightforward check.

We have an obvious forgetful functor

U : A-Moddg → A-GMod

which forgets the differential. It is also possible to define a less trivial functor, given by the
cohomologies of a differential graded module:

Definition 3.1.17. Let (M∗, d) be a dg A-module. Define

Hn(M∗, d) := ker dn/ Im dn+1

Define moreover
H∗(M∗, d) := {Hn(M∗, d)}

It is straightforward to see that H∗ defines a true functor

H∗ : A-Moddg → A-GMod

Finally, let us observe that each graded A-module can be reviewed as a dg A-module
with zero differential. In particular, the functor Sn : A-Mod → A-GMod can be thought
as a functor

Sn : A-Mod→ A-Moddg

Symmetric monoidal structure

The functor Tot⊕ : G2(A-Mod)→ A-GMod can be extended to a functor

Tot⊕ : Ch2(A-Mod)→ Ch(A-Mod)

Remark 3.1.18. An object in Ch2(A-Mod) is a double complex {Mp,q, d
h
p,q, d

v
p,q} where the

maps
dhp,q : Mp,q →Mp−1,q, dvp,q : Mp,q →Mp,q−1

satisfy the relations

dhp−1,q ◦ dhp,q = 0, dvp,q−1 ◦ dvp,q = 0, dvp−1,q ◦ dhp,q = dhp,q−1 ◦ dvp,q
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In order to define Tot⊕ we simply have to take care of the differentials. We will define
the differential of Tot⊕(Mp,q, d

h
p,q, d

v
p,q) to be the sum of

dhp,q + (−1)pdvp,q : Mp,q →Mp−1,q ⊕Mp,q−1

It is a straightforward exercise to check that we obtain in this way a chain complex.
On the other side, it is straightforward to check that if (M∗, d) and (N∗, δ) are differential

graded A-modules, then
(Mp ⊗A Nq, dp ⊗ idNq , idMp

⊗ δq)

defines an element M∗ �N∗ in Ch2(A-Mod). As we previously did for graded modules we
set

M∗ ⊗A N∗ := Tot⊕(M∗ �N∗)
The following lemma holds as well:

Lemma 3.1.19. (A-Moddg,⊗A, A) is a symmetric monoidal category.

Proof. Straightforward.

As before, we can introduce an internal hom for this monoidal structure. Given cochain
complexes (M∗, d) and (N∗, δ) we endow HomA(U(M∗), U(N∗)) with the following differ-
ential ρ: if f : U(M∗)→ U(N∗) is a map of degree n, then

ρ(f) := δ ◦ f − (−1)nf ◦ d

It is an easy exercise to check that this defines a cochain complex structure on

HomA(U(M∗), U(N∗))

We will denote this cochain complex as Homdg
A (M∗, N∗).

Proposition 3.1.20. For every cochain complex (N∗, dN ) the adjunction relation

−⊗A N∗ a Homdg
A (N∗,−)

holds.

Proof. One simply has to check that under the adjunction of Proposition 3.1.13 maps of
differential graded A-modules correspond to maps of differential graded A-modules, and this
is straightforward.

Example 3.1.21. Assume that N∗ is concentrated in degree 0. Then for every other chain
complex M∗ we have directly from the definition:

(Homdg
A (M∗, N∗))n = HomA(M−n, N)

Moreover, if f ∈ HomA(Mn, N) then

ρ(f) = (−1)n+1f ◦ d

Therefore, Homdg
A (M∗, N∗) is isomorphic to the chain complex obtained by applying the

contravariant functor HomA(−, N) to M∗. In fact, this follows from the following easy
observation: if (M∗, d) is any chain complex and n ∈ Z is an integer, introduce a new
differential d(n) on M∗ defined by

d(n)
m =

{
dm if m 6= n

−dn if m = n

Then we can define f : (M∗, d)→ (M∗, d(n)) by setting

fm :=
{

id if m > n

−id if m ≤ n

f is a morphism of chain complexes which is an isomorphism.
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3.1.3 Model structure
In this last part concerning differential graded A-modules we discuss a model structure on
A-Moddg. The result is very well known and it is proved in full detail in [Hov99, Chapter
2.3]. For this reason, we will omit the proof of the main theorem.

Definition 3.1.22. A morphism f : M∗ → N∗ of cochain complexes is said to be a quasi–
isomorphism if the induced map H∗(f) : H∗(M∗)→ H∗(N∗) is an isomorphism.

Definition 3.1.23. For every A-module M and every n ∈ Z define a cochain complex
(Dn(M), d) by setting:

(Dn(M))p :=
{
M if p = n or p = n+ 1
0 otherwise

dp :=
{

idM if p = n

0 otherwise

Define I to be the set of all inclusions Sn(A) → Dn(A) and let J be the set of all the
maps 0→ Dn(A). The main result is the following:

Theorem 3.1.24. There exists a cofibrantly generated model structure on A-Moddg with
I as set of generating cofibrations and J as set of generating trivial cofibrations, and where
weak equivalences are exactly quasi–isomorphisms.

Proof. See [Hov99, Theorem 2.3.11].

It is useful to characterize fibrations and cofibrations for this model structure:

Proposition 3.1.25. In the model structure on A-Moddg introduced in Theorem 3.1.24
the following characterization hold:

1. a map f : X → Y is a fibration if and only if it is degreewise surjective;

2. a cofibrant chain complex is degreewise projective;

3. a map f : X → Y is a cofibration if and only if it is a degreewise split inclusion with
cofibrant cokernel.

Proof. See [Hov99, Proposition 2.3.5, Lemma 2.3.6, Proposition 2.3.9].

Using the machinery of Dwyer-Kan localization we can pass from A-Moddg to an ∞-
category, which we will denote by

A-Moddg

If A = k is a field we will also adopt the notations Vectdg
k and Vectdg

k to denote the categories
k-Moddg and k-Moddg.

3.2 (Commutative) differential graded algebras
The ultimate goal of this section is to endow the category of commutative differential graded
algebras with a model structure. In fact, the general result [SS00, Theorem 4.1] does not
apply because of the commutativity requirement; to explain the difficulty, let us say that
the natural classes of fibrations and weak equivalences fail in certain situations (we will give
an explicit counterexample later on). Therefore, we will need some additional hypothesis in
order to apply Theorem B.2.1.

3.2.1 Definition
We begin by recalling the classical theory of (commutative) differential graded algebras. Let
k be a fixed commutative ring.

Definition 3.2.1. A differential graded k-algebra is a monoid in the symmetric monoidal
category (k-Moddg,⊗k, k). A commutative differential graded k-algebra is a differential
graded k-algebra equipped with a structure of commutative monoid.
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Notation 3.2.2. We will denote by Algdg
k and CAlgdg

k the categories of differential graded
algebras and commutative differential graded algebras over k, respectively.

The categories Algdg
k and CAlgdg

k comes equipped with forgetful functors

V : Algdg
k →Moddg

k , U : CAlgdg
k →Moddg

k

Both these functors have a left adjoint, given by the tensor algebra and the symmetric
(tensor) algebra:

T : Moddg
k → Algdg

k , Sym: Moddg
k → CAlgdg

k

If M∗ is a differential graded k-module, we define T (M∗) to be the differential graded
algebra which in degree n is:

T (M∗)n :=
⊕
s∈Z

⊕
i1+...+is=n

Mi1 ⊗k . . .⊗kMis

The differential of T (M∗) is given by extending the differential of M∗ using the (graded)
Leibniz rule. The symmetric algebra Sym(M∗) is defined to be the quotient of T (M∗) by
the two-sided ideal generated by those elements of the form

x⊗ y − (−1)|x||y|y ⊗ x

where x and y range over the homogeneous elements of M∗. It is a straightforward exercise
to verify the following proposition:

Proposition 3.2.3. There are adjoint relations T a V and Sym a U .

Proof. This is a straightforward verification.

3.2.2 Model structure
In order to endow CAlgdg

k we wish to apply Theorem B.2.1 to the adjunction we previously
introduced:

Sym: Moddg
k

// CAlgdg
k : Uoo

The category Moddg
k is always cofibrantly generated (see Theorem 3.1.24), so that we have

only to verify the following facts:

1. the functor U commutes with sequential colimits;

2. defining a map f to be a fibration or a weak equivalence if U(f) is so, then every map
with the LLP with respect to every fibration is a weak equivalence.

The first statement has a completely formal proof and doesn’t need any assumption on
the base ring k. In fact, one has even a stronger result:

Lemma 3.2.4. The forgetful functor U : CAlgdg
k →Moddg

k creates sifted colimits.

Proof. Let I be a sifted category and let F : I → CAlgdg
k be an I-indexed diagram. Set

G := U ◦ F and let
A := colimi∈IG(i)

be the colimit computed in Moddg
k . Since the diagonal map I→ I×I is final, it follows that

colimi∈IG(i)⊗k colimj∈IG(j) ' lim
(i,j)∈I2

G(i)⊗k G(j) ' lim
i∈I

G(i)⊗k G(i)

The multiplication maps µi : G(i)⊗k G(i)→ G(i) then produce a map

µ : A⊗k A→ A

and the universal property of the colimits allows to check that µ is a graded commutative
multiplication, and that the natural derivation on A satisfies the graded Leibniz rule. The
natural maps F (i)→ A are then morphisms of graded commutative algebras by construction;
it is straightforward to check that A is the colimit of F in CAlgdg

k .
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It is much harder to verify condition 2.; in fact, it is impossible without some additional
assumption on the base ring k as the following example shows.

Example 3.2.5. Let k be a field of characteristic 2 and let D(n) be the chain complex with
one copy of k in degrees n and n − 1 (with identity boundary). Then 0 → D(n) is a weak
equivalence, but

k = Sym(0)→ Sym(D(n))
cannot be a weak equivalence. In fact, if y is a nonzero element of D(n) in degree n, then
y2 = y ⊗ y ∈ Sym(D(n)) satisfies

d(y2) = 2y ⊗ d(y) = 0

so that it is a cycle which cannot be a boundary. If Theorem B.2.1 could be applied, then
adjoint nonsense would show that Sym takes acyclic cofibrations to acyclic cofibrations,
which is not the case (this is [GS06, Example 3.7]).

In order to rule out pathologies like in previous example, we will assume from this moment
on that k is a field of characteristic 0. Under this assumption, we can prove the following
result, which is really strong:

Lemma 3.2.6. Let k be a field of characteristic 0. If a morphism f : V∗ → W∗ in Moddg
k

is a weak equivalence then U(Sym(f)) is a weak equivalence as well.

Proof. Assume that f : V∗ → W∗ is a weak equivalence. Since in Vectdg
k every object is

both fibrant and cofibrant (cfr. Proposition 3.1.25), we see that f is a chain equivalence.
We are therefore reduced to show that if f : V∗ → W∗ is nullhomotopic, then Sym(f) is
nullhomotopic as well.

Observe that if f : V∗ →W∗ is a chain equivalence, then the induced map

f⊗n : V ⊗n∗ →W⊗n∗

is a chain equivalence for every n ≥ 0. Since k is of characteristic 0, we have a retraction

ψn : Symn(V∗)→ V ⊗n∗

defined by
ψn(v1 · · · vn) := 1

n!
∑
σ∈Sn

vσ(1) ⊗ . . .⊗ vσ(n)

This implies the thesis, since we have a retraction diagram

Symn(V∗) //

Symn(f)
��

V ⊗n∗

f⊗n

��

// Symn(V∗)

Symn(f)
��

Symn(W∗) // W⊗n∗ // Symn(W∗)

so that Symn(f) is a quasi-isomorphism. Taking the direct sum, it follows that Sym(f) is a
quasi-isomorphism as well.

We can finally prove the following result:

Proposition 3.2.7. Let k be a field of characteristic 0. Every object in CAlgdg
k has a path

object.

Proof. Let M be a direct sum of modules of the form Dn(k) (cfr. Definition 3.1.23); since
0 → Dn(k) is a weak equivalence and since the homology is an additive functor, it follows
that 0→M is a weak equivalence as well; Lemma 3.2.6 implies then that

k → Sym(M)

is a weak equivalence in CAlgdg
k (that is, a chain equivalence in Vectdg

k ). If A is an object
in CAlgdg

k , then the natural map

A ' A⊗k k → A⊗k Sym(M)
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is a weak equivalence, because A⊗k − preserves chain homotopies.
Let A be an object in CAlgdg

k and B := A×A. For each b ∈ Bn, set Cb := Dn(k). Set:

M :=
⊕
b∈B

Cb

We have natural maps in Vectdg
k

Cb → B

which in degree n maps the generator to b and which in degree n− 1 maps the generator to
d(b). These maps induce a map M → B so that we obtain, by adjunction, a map

ϕ : Sym(M)→ B

which is surjective by construction. Moreover, we have a factorization of ∆: A→ B = A×A
given by

A // A⊗k Sym(M) ∆⊗ϕ
// B

The initial argument shows that A → A ⊗k Sym(M) is a weak equivalence, while ∆ ⊗ ϕ
is degreewise surjective because ϕ is so. It follows that A ⊗k Sym(M) is a path object for
A.

Remark 3.2.8. In the previous proof I adapted the argument given in [Hin97, Theorem
2.2.1]; observe that we could have obtained a direct proof of the factorization axiomMC5(i).
However, the difficulty was exactly to obtain a path object; now the existence of the model
structure is completely formal.

Theorem 3.2.9. Let k be a field of characteristic 0. The category CAlgdg
k has a left proper

model structure where a map f : A → B is a fibration or a weak equivalence if and only if
U(f) is so.

Proof. Every object in CAlgdg
k is fibrant and Proposition 3.2.7 guarantees that every com-

mutative dg algebra has a path object. Proposition B.2.3 implies that a cofibration with the
LLP with respect to every fibration is a weak equivalence; the hypothesis of Theorem B.2.1
are then satisfied, so that we obtain the existence of the model structure. Left properness
is obvious, since every object is fibrant.

3.3 Differential graded Lie algebras
The main goal of this section is to endow the category of differential graded Lie algebras
with a good enough model structure, in order to apply the Dwyer-Kan localization and the
simplicial nerve to produce an ∞-category.

3.3.1 Definition and basic constructions
Let k be a ring.

Definition 3.3.1. A differential graded Lie algebra over k is a chain complex of k-modules
(g∗, d) equipped with a multiplication

[−,−] : g∗ ⊗k g∗ → g∗

such that:

1. for homogeneous elements x, y ∈ g∗ the relation [x, y] + (−1)|x||y|[y, x] = 0 holds;

2. for homogeneous elements x, y, z ∈ g∗ the Jacobi identity holds:

(−1)|x||z|[x, [y, z] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

3. the differential d : g∗ → g∗ becomes a derivation.
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Definition 3.3.2. A morphism of differential graded Lie algebras over k from (g∗, d) to
(g′∗, d′) is a map of chain complexes over k, F : (g∗, d)→ (g′∗, d′), such that

F ([x, y]) = [F (x), F (y)]

for every pair of homogeneous elements x, y ∈ g∗.

Notation 3.3.3. Differential graded Lie algebras over k form naturally, together with their
morphisms, a category which we will denote by Liedg

k .

Example 3.3.4. Let A∗ be a differential graded algebra. Define a bracket on A∗ by setting

[x, y] := xy − (−1)|x||y|yx

for every pair of homogeneous elements x, y ∈ A∗. Jacobi identity is easily seen to be
satisfied, as well as the anticommutativity. Moreover

d[x, y] = d(x)y + (−1)|x|xd(y)− (−1)|x||y|d(y)x− (−1)(|x|+1)|y|yd(x)
= [d(x), y] + (−1)|x|[x, d(y)]

It follows that this bracket makes A∗ into a differential graded Lie algebra. We will denote
this structure by Lie(A∗). It is moreover clear that in this way we defined a functor

Lie : Algdg
k → Liedg

k

Universal enveloping algebra

We have an obvious functor
Lie : Algdg

k → Liedg
k

We will construct now a left adjoint for this functor, which will be called the universal
enveloping algebra functor:

U : Liedg
k → Algdg

k

Consider first of all the obvious forgetful functor Θ: Liedg
k →Moddg

k . If (g∗, d) is a differ-
ential graded Lie algebra we commit a slight abuse of notation denoting by T (g∗) the free
(tensor) algebra associated to T (Θ(g∗, d)) (see Section 3.2.1). Define U(g∗) to be the algebra
obtained by quotienting T (g∗) by the two-sided ideal generated by all the expressions of the
form

x⊗ y − (−1)|x||y|y ⊗ x− [x, y]

where x and y range over the homogeneous elements of g∗. The set of such elements is stable
under the differential, so that the resulting two-sided ideal will be graded. It follows that
U(g∗) has a natural structure of differential graded algebra.

Proposition 3.3.5. The adjunction U a Lie holds.

Proof. Fix a differential graded Lie algebra (g∗, d). We have an obvious morphism of chain
complexes

Θ(g∗)→ U(g∗)

which extends to a morphism T (g∗)→ U(g∗) by the universal property of the tensor algebra.
Now, applying the functor Lie we obtain a morphism of differential graded Lie algebras:

ηg∗ : g∗ → Lie(T (g∗))→ Lie(U(g∗))

which is easily seen to be natural in (g∗, d). If now we are given a morphism of differential
graded Lie algebras

f : g∗ → Lie(A∗)

we obtain immediately a morphism f ′ : T (g∗) → A∗, and it is easily seen that f ′ sends
expressions of the form

x⊗ y − (−1)|x||y|y ⊗ x− [x, y]
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to zero, as x and y range over the homogeneous elements of g∗. It follows that f ′ factors as
map

f̃ : U(g∗)→ A∗

such that Lie(f̃) ◦ ηg∗ = f . Since the uniqueness of such a morphism is obvious, the proof is
complete.

It will be important to understand better the structure of the universal enveloping alge-
bra U(g∗) associated to a differential graded Lie algebra g∗. In the classical context, this
is achieved using Poincaré-Birkhoff-Witt theorem. This theorem has an analogue in the
differential graded setting, as we are going to discuss.

The universal enveloping algebra U(g∗) has a filtration

F : U≤0(g∗) ⊆ U≤1(g∗) ⊆ U≤2(g∗) ⊆ · · ·

where U≤n(g∗) is the image of ⊕
0≤i≤n

g⊗i∗

inside U(g∗). Since the elements of the form [x, y] are of degree 1 with respect to this
filtration, the explicit construction of U(g∗) shows that the graded algebra associated to this
filtration

gr∗F(U(g∗)) :=
⊕
n≥0

U≤n(g∗)/U≤n−1(g∗)

is graded commutative. It follows that the natural morphism

g∗ → U≤1(g∗)→ gr∗F(U(g∗))

induces a morphism
Ψ: Sym(g∗)→ gr∗F(U(g∗))

Theorem 3.3.6 (Poincaré-Birkhoff-Witt). The morphism Ψ is an isomorphism of differ-
ential graded commutative algebras.

Proof. See [Qui69, Theorem B.2.3] for an equivalent statement and a proof.

Corollary 3.3.7. Let k be a field of characteristic zero and let g∗ be a differential graded
Lie algebra. There is an isomorphism of chain complexes between Sym(g∗) and U(g∗).

Proof. Let ψn : g⊗n∗ → U(g∗) be the multiplication map. For every permutation on n ele-
ments σ, let φσ denote the induced automorphism of g⊗n∗ . The induced map

1
n!
∑
σ∈Sn

ψ ◦ φσ

is invariant under precomposition with each of the maps φσ, so that it factors as

g⊗n∗
ψn //

��

U(g∗)

Symn(g∗)
Ψn // U(g∗)≤n

OO

OO

We obtain in this way a morphism of chain complexes

Ψ: Sym∗(g∗)→ U(g∗)

Since the composite

Symn(g∗)
ψn // U(g∗)≤n // grnF(U(g∗))

is an isomorphism of chain complexes in virtue of Poincaré-Birkhoff-Witt theorem, it follows
that

gr∗F(Ψ): gr∗F(Sym∗(g∗))→ gr∗F(U(g∗))
is an isomorphism, so that Ψ is an isomorphism as well.
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Free DGLA construction

We now use the universal enveloping algebra to construct explicitly a free Lie algebra functor.
We have an obvious forgetful functor

Θ: Liedg
k →Moddg

k

This functor has a left adjoint, which we will denote by

f : Moddg
k → Liedg

k

We remark that the existence of this functor can be obtained in a purely formal way, using
the adjoint functor theorem. To obtain a direct construction, we can proceed as follows:
if M∗ is a chain complex of k-modules, we consider the free algebra T (M∗) introduced in
section 3.2.1; example 3.3.4 shows that Lie(T (M∗)) has a structure of differential graded Lie
algebra. Define f(M∗) to be the Lie subalgebra of Lie(T (M∗)) spanned by the image of M∗
in Lie(T (M∗)).

Proposition 3.3.8. The adjunction relation f a Θ holds.

Proof. We have a morphism of chain complexes

ηM∗ : M∗ → Θ(f(M∗))

which is easily seen to be natural in M∗. If we are given a morphism of chain complexes
f : M∗ → Θ(g∗) we define obtain a unique functor T (M∗) → U(g∗); applying Lie we get a
morphism

f̃ : Lie(T (M∗))→ Lie(U(g∗))→ g∗

which is such that Θ(f̃)◦ηM∗ = f . Since the uniqueness of such a functor is clear, we obtain
the thesis.

3.3.2 Model structure
Let k be a field of characteristic 0. We would like to apply Theorem B.2.1 to the adjunction

f : Vectdg
k

// Liedg
k : Θoo

Define a morphism f : g∗ → h∗ in Liedg
k to be a weak equivalence or a fibration if and only

if Θ(f) is so. We immediately have the following result:

Lemma 3.3.9. A morphism of differential graded Lie algebras f : g∗ → h∗ is a weak equiv-
alence if and only if U(f) : U(g∗) → U(h∗) is a weak equivalence of differential graded
algebras.

Proof. This is an immediate consequence of Lemma 3.2.6 and Corollary 3.3.7.

Theorem 3.3.10. Let k be a field of characteristic 0. Then the weak equivalences and the
fibrations we defined endow Liedg

k with a left proper and combinatorial model structure.

Proof. A fully detailed proof can be found in [DAGX, Proposition 2.1.10]. Another argument
is possible using the transfer principle of Theorem B.2.1.

Corollary 3.3.11. The adjoint pair

f : Vectdg
k

// Liedg
k : Θoo

is a Quillen pair.

Proof. We simply observe that the functor Θ preserves fibrations and weak equivalences by
definition.
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Corollary 3.3.12. The adjoint pair

U : Liedg
k

// Algdg
k : Lieoo

is a Quillen pair.

Proof. By definition, the functor Lie preserves both fibrations and weak equivalences.

We will denote by Liek the ∞-category underlying Liedg
k . Observe that the forgetful

functor
Θ: Liedg

k → Vectdg
k

preserves weak equivalences, so that it induces a forgetful functor

θ : Liek → Modk

where Modk is the ∞-category underlying Vectdg
k .

Lemma 3.3.13. The ∞-category Liek is presentable and the forgetful functor θ preserves
small sifted colimits.

Proof. The first statement is the content of [HA, Proposition 1.3.3.9]. The remaining argu-
ment can be found in [DAGX, Proposition 2.1.16].

3.3.3 Chevalley-Eilenberg complexes of g∗
If g is a Lie algebra, it is possible to define a notion of (right) g-module; the category of
such objects turn out to be equivalent to the category of U(g)-modules, making clear that
it has enough projectives and injectives. Adopting this point of view, one defines then the
homology and cohomology groups of g as

Hn(g) := TorU(g)
n (k, k), Hn(g) := ExtnU(g)(k, k)

The Chevalley-Eilenberg groups of g are classically used to compute these groups in an
explicit way. In this last part, we develop a similar theory in the differential graded setting.

Homological Chevalley-Eilenberg complex

Let g∗ be a fixed differential graded Lie algebra. Consider the cone of g∗ as a chain complex:

Cone(g∗) := Cone(Θ(g∗))

We will denote an element in Cone(g∗)n as x+εy. Using this notation, the usual differential
in Cone(g∗) becomes

d(x+ εy) := dx+ y − εdy (3.2)

We define a bracket on Cone(g∗) by setting

[x+ εy, x′ + εy′] := [x, x′] + ε([y, x′] + (−1)|x|[x, y′])

as x ranges over the homogeneous elements of g∗.

Lemma 3.3.14. With the bracket defined above, Cone(g∗) is a differential graded Lie alge-
bra.

Proof. This is a straightforward verification.

Definition 3.3.15. Let g∗ be a differential graded Lie algebra. We define the homological
Chevalley-Eilenberg complex of g∗ to be

C∗(g∗) := U(Cone(g∗))⊗U(g∗) k
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In order to better understand the underlying chain complex of C∗(g∗), let us consider the
categories GLAk of graded Lie algebras over k and CGAk of graded commutative algebras
over k (without differential). We have an obvious forgetful functor

F : CGAk → GLAk

which operates as the functor Lie of example 3.3.4. The same construction we gave in 3.3.1
produces a left adjoint to F , which we still denote

U : GLAk → CGAk

Observe that the forgetful functor GLAk → GModk creates coproducts. We therefore see
that Cone(g∗) is the coproduct of g∗ and g∗[−1] in the category GLAk, where the last one
has vanishing bracket. Applying the universal enveloping functor we get an isomorphism of
graded algebras:

U(Cone(g∗)) ' U(g∗[−1])⊗k U(g∗)

because U commutes with coproducts being a left adjoint. Using the analogue of Poincaré-
Birkhoff-Witt theorem for these categories we deduce that there is an isomorphism of chain
complexes

Sym∗(g∗[−1]) ' U(g∗[−1])

Therefore we obtain a nice description of the underlying chain complex of C∗(g∗):

C∗(g∗) ' Sym∗(g∗[−1]) (3.3)

The canonical filtration on Sym∗(g∗[−1]) induces, via this identification, a filtration on
C∗(g∗):

k ' C≤0
∗ (g∗) ⊆ C≤1

∗ (g∗) ⊆ C≤2
∗ (g∗) ⊆ · · ·

Lemma 3.3.16. There is an isomorphism in the category of chain complexes

C≤n∗ (g∗)/C≤n−1
∗ (g∗) ' Symn(g∗)

Proof. We claim that under the identification (3.3), the differential on C∗(g∗) is given by
the formula

D(x1 · · ·xn) =
∑

1≤i≤n
(−1)p1+...+pi−1x1 · · ·xi−1dxixi+1 · · ·xn+

∑
1≤i<j≤n

ηx1 · · ·xi−1xi+1 · · ·xj−1[xi, xj ]xj+1 · · ·xn

where η ∈ {±1} is a sign. Observe that, assuming this statement, the lemma is completely
obvious. As for the computation, start by considering the natural map of graded Lie algebras
g∗[−1] → Cone(g∗). The image of an element x1 · · ·xn ∈ Sym∗(g∗[−1]) inside C∗(g∗) is
obtained as the image of the element

εx1 ⊗ . . .⊗ εxn ∈ U(g∗[−1])

via the map (of graded algebras)

U(g∗[−1])→ U(g∗[−1])⊗k U(g∗)→ U(g∗[−1])⊗k U(g∗)⊗U(g∗) k ' U(g∗[−1])

The differential coming from the definition of C∗(g∗) is the one induced from the differential
(3.2) of the cone, so that computing shows that D(x1 · · ·xn) correspond under the above
identification to

n∑
i=1

(−1)q(1,i)εx1 ⊗ · · · ⊗ εxi−1 ⊗ (xi − εdxi)⊗ . . .⊗ εxn =

=
n∑
i=1

(−1)q(1,i)εx1 ⊗ (−dxi)⊗ . . .⊗ εxn +
n∑
i=1

(−1)q(1,i)εx1 ⊗ . . .⊗ xi ⊗ . . .⊗ εxn



3.3 Differential graded Lie algebras 57

where q(i, j) = pi + . . .+ pj−1. Now, under the identification (3.3) the element

εx1 ⊗ (−dxi)⊗ . . .⊗ εxn

corresponds to x1 · · · dxi · · ·xn (because the differential on g∗[−1] is changed of sign). On
the other side, using the equation given by the ideal defining U(Cone(g∗)) we can rewrite

(−1)q(1,i)εx1 ⊗ . . .⊗ xi ⊗ εxi+1 ⊗ . . .⊗ εxn =(−1)q(1,i+2)εx1 ⊗ . . . εxi+1 ⊗ xi ⊗ . . .⊗ εxn+
+ (−1)q(1,i)εx1 ⊗ . . .⊗ [xi, εxi+1]⊗ . . .⊗ εxn

Observing that [xi, εxi+1] = (−1)piε[xi, xi+1] and iterating this process, we eventually arrive
to the form ∑

i<j

ηjεx1 ⊗ . . .⊗ ε[xi, xj ]⊗ . . .⊗ εxn + ηnεx1 ⊗ . . .⊗ εxn ⊗ xi

and the last element is zero in the identification (3.3). The claim is therefore completely
proved.

Proposition 3.3.17. Let k be a field of characteristic 0; let f : g∗ → h∗ be a quasi-
isomorphism between differential graded Lie algebras. The induced map

C∗(f) : C∗(g∗)→ C∗(h∗)

is a quasi-isomorphism of chain complexes.

Proof. Using the filtration on C∗(g∗) introduced above, one is immediately reduced to show
that the induced maps θn : C≤n∗ (g∗) → C≤n∗ (h∗) are quasi-isomorphism. This can be dealt
with by induction on n: if n = 0, this is the hypothesis. Otherwise, previous lemma shows
that there is a commutative diagram with exact rows

0 // C≤n−1
∗ (g∗) //

θn−1
��

C≤n∗ (g∗)

θn
��

// Symn(g∗[−1])

φ

��

// 0

0 // C≤n−1
∗ (h∗) // C≤n∗ (h∗) // Symn(h∗[−1]) // 0

The inductive hypothesis shows that θn−1 is an isomorphism, while the proof of Lemma
3.2.6 implies that φ is a quasi-isomorphism. It follows that θn is a quasi-isomorphism as
well, completing the proof.

As consequence, we see that the functor

C∗ : Liedg
k → Vectdg

k

preserve quasi-isomorphism. Therefore, it induces a functor of ∞-categories

C∗ : Liek → Modk

Proposition 3.3.18. Let k be a field of characteristic zero. The functor of ∞-categories

C∗ : Liek → (Modk)k/

preserves small colimits.

Proof. See [DAGX, Proposition 2.2.12].

Example 3.3.19. Let V∗ be a chain complex over a field k of characteristic zero. Let
g∗ := f(V∗) be the free Lie algebra generated by V∗. Then the homological Chevalley-
Eilenberg of g∗ has a quasi-isomorphic description given by

ξ : k ⊕ V∗[−1]→ k ⊕ g∗[−1] ' C≤1
∗ (g∗) ⊂ C∗(g∗)

The verification that ξ is a quasi-isomorphism can be tricky. We refer to [DAGX, Proposition
2.2.7] for a complete proof.
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Cohomological Chevalley-Eilenberg complex

We now introduce the cohomological Chevalley-Eilenberg complex. Let g∗ be a differential
graded Lie algebra. Using example 3.1.21 we can identify

Homdg
k (C∗(g∗), k) ' Homk(C∗(g∗), k)

We set
C∗(g∗) := Homk(C∗(g∗), k)

and we will identify elements λ ∈ Cn(g∗) with the dual space of Symn(g∗[−1]).
We can endow C∗ with a cup-product. Namely, if λ ∈ Cp(g∗) and µ ∈ Cq(g∗) we define

λµ ∈ Cp+q(g∗) via the formula

(λµ)(x1 · · ·xn) :=
∑
S,S′

ε(S, S′)λ(xi1 · · ·xim)µ(xj1 · · ·xjn−m)

where the xi are homogeneous elements of g∗ and the sum is taken over all disjoint sets
S = {i1 < . . . < im} and S′ = {j1 < . . . < jn−m} such that S ∪ S′ = {1, . . . , n} and

|xi1 |+ . . .+ |xim | = p

ε(S, S′) is defined by the formula

ε(S, S′) :=
∏

i∈S′,j∈S,i<j
(−1)|xi||xj |

Lemma 3.3.20. With the multiplication we defined above ,C∗(g∗) becomes a commutative
differential graded algebra.

Proof. This is a simple verification.

Observe that C∗(0) = k. The natural map 0→ g∗ induces therefore an augmentation

C∗(g∗)→ k

which implies that C∗ defines a functor

C∗ : Liedg
k → (CAlgop

k )k/ ' (CAlgaug
k )op

Since we are working over a field, the additivity of Homk(−, k) implies that this functor
preserves quasi-isomorphisms. It follows immediately from Proposition 3.3.17 that also C∗
preserves quasi-isomorphisms. Therefore, it induces a functor of ∞-categories:

C∗ : Liek → (CAlgaug
k )op

Example 3.3.21. let V∗ be a chain complex over a field of characteristic zero. The quasi-
isomorphism of example 3.3.19 induces a quasi isomorphism

C∗(g∗)→ k ⊕ V ∨∗ [1]

Endowing k ⊕ V ∨∗ [1] with the structure of a trivial square-zero extension, we see that the
morphism C∗(g∗) → k ⊕ V ∨∗ [1] is a quasi-isomorphism of commutative differential graded
algebras.

Proposition 3.3.22. Let k be a field of characteristic zero. The functor C∗ : Liek →
(CAlgaug

k )op preserves small colimits.

Proof. See [DAGX, Proposition 2.2.17].



Chapter 4

Formal moduli problems

In this final chapter we adapt the general theory developed in [DAGX] to the case of com-
mutative differential graded algebras. The main result can be described as follows: suppose
we are given a derived stack X : Y → S, where Y is a presentable ∞-category; if we fix a
point η ∈ X(∗), we would like to be able to describe the formal neighbourhood of X at the
point η; reasoning as in Chapter 1, we see that this is equivalent to restrict the stack X to
a well-chosen full subcategory Ysm ⊂ Y of small objects. Such restrictions are called formal
moduli problems; a first important idea is that it should be possible to study the “tangent
complex” TX of such a functor, and that such tangent space should give many informations
about the problem itself: this is formalized in Theorem 4.2.10.

Next, one could observe that the operation of taking the tangent complex

X 7→ TX

commutes with finite limits. It follows then that T (ΩX) ' ΩTX ' TX [1]. Since ΩX is to be
thought as a group object in the category of formal moduli problems, we would expect a Lie
algebra structure in TX [1]. This is a piece of the main theorem of this chapter; the second
part, and probably the most interesting one, is that this Lie algebra structure completely
determines the formal moduli problem X. We will express this by saying that there is
an equivalence of ∞-categories between the category of formal moduli problems and the
category Liek introduced in the previous chapter.

4.1 Formal deformation theory
An elegant exposition of the main topics of formal deformation theory can be found in
[HA, Chapter 8.4]. In this preliminary section we recall the main ideas and state the main
theorems, without going into the technical details of the proofs. We will need such results
later, in order to develop a consistent theory of formal moduli problems.

4.1.1 Derivations
Let k be a field of characteristic zero. Let CAlgk be the category of differential graded
commutative k-algebras, endowed with the monoidal model structure of previous chapter.
Let Vectdg

k be the category of complexes of k-modules. Given A ∈ Ob(CAlgk) and M ∈
Ob(ModA) we can define a new element of CAlgk in the following way: endow the complex
A⊕M with the algebra structure given by

(x,m) · (y, n) := (xy, xn+ (−1)|x||y|ym)

This is the analogue for CAlgk of the square-zero extension defined in Chapter 1. The
construction being obviously functorial, we obtain a functor

FA : ModA → CAlgA

59
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In particular, we obtain F = Fk : Vectdg
k → CAlgk. Observe that if M is a complex of

k-modules, then F (M) = k ⊕M is equipped with a natural projection

k ⊕M → k

which makes F (M) an object of (CAlgk)/k.
Using the canonical equivalence, in the classical context, between derivations and sections

of trivial square-zero extensions, we introduce the following definition (cfr. also [TV08,
Definition 1.2.1.1])

Definition 4.1.1. Let A be a commutative differential graded k-algebra and let M be a
differential graded k-module. A k-derivation of A into M is an element of

Homk(A,F (M))

We will denote the set of derivations by Derk(A,M).

Remark 4.1.2. It is possible to build a more refined version of Derk(A,M), endowing it with
the structure of ∞-category. We won’t pursue this point of view in this mémoire, but the
interested reader can find it in [HA, Chapter 8.4].

The cotangent complex can be introduced in this context as well as we did in the first
chapter. For more details on the construction, we will refer to [TV08, Section 1.2.1] and
[HA, Section 8.3].

Theorem 4.1.3. Let f : A→ B be a morphism between connective commutative differential
graded algebras. If cofib(f) is n-connective for some n ≥ 0, then there is a canonical (2n)-
connective map of B-modules B ⊗A cofib(f)→ LB/A.
Proof. See [HA, Theorem 8.4.3.1].

4.1.2 Small morphisms
Definition 4.1.4. A morphism φ : A′ → A in CAlgk is elementary if there exists an integer
n > 0 and a homotopy pullback diagram

A′ //

φ

��

k

��

A // k ⊕ k[n]

Lemma 4.1.5. A morphism φ : A′ → A in CAlgk is elementary if and only if it satisfies
the following conditions:

1. fib(φ) ' k[n] for some n ≥ 0 in A′-Mod;

2. if n = 0, the map π0fib(φ)⊗π0A′ π0fib(φ)→ π0fib(φ) vanishes.
Proof. Assume first that φ is elementary. Proposition 4.1.9 implies that φ is equivalent to a
map ψ : A′′ → A fitting in a pullback diagram as follows:

A′′

ψ

��

// k ⊕ Cone(k[n− 1])

��

A // k ⊕ k[n]

In particular fib(φ) ' fib(ψ). Since ψ is surjective, it follows that ψ is a fibration in
A′-Mod; the coglueing lemma implies immediately that kerψ is an explicit model for fib(ψ)
in A′-Mod. Standard homological algebra shows then that

kerψ ' ker(k ⊕ Cone(k[n− 1])→ k ⊕ k[n])
' ker(Cone(k[n− 1])→ k[n]) ' k[n− 1]

If moreover kerψ ' k[0] and x ∈ π0 kerψ is a generator, then the algebra structure on
k ⊕ Cone(k[1]) implies that x2 = 0, so that the thesis follows. Conversely, one can use the
equivalence of [HA, Theorem 8.4.1.26] in order to conclude.
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Definition 4.1.6. A morphism φ : A′ → A in (CAlgk)/k is said to be small if it can be
written as a composition of finitely many elementary morphisms. An object A in (CAlgk)/k
is small if the map A→ k is small.

The notion of small object should be thought as a generalization in the derived setting of
the notion of artinian rings. To make precise this statement, consider the following result:

Proposition 4.1.7. An object A in (CAlgk)/k is small if and only if the following condi-
tions are satisfied:

1. the homotopy groups πnA vanish for n < 0 and n� 0;

2. each πnA is finite dimensional over k;

3. π0A is local with maximal ideal m and k → π0A/m is an isomorphism.

Proof. Assume that A is small and factorize the map A→ k as

A = A0 → A1 → · · · → An ' k

where Ai → Ai+1 is a square-zero extension of Ai+1 by k[ni], for some integer ni ≥ 0. We
prove that Ai satisfies the conditions 1. to 3. by descending induction on i, the case i = n
being obvious. If the statement holds for i+ 1, consider the fiber sequence whose existence
is guaranteed by Lemma 4.1.5:

k[ni]→ Ai → Ai+1

The long exact sequence of homotopy groups associated to this fiber sequence implies

πnAi = 0

for n < 0 and n� 0. Finally, being Ai → Ai+1 a square-zero extension, we see that ker(π0φ)
is a square-zero ideal of π0Ai, so that we have an extension

0→ ker(π0φ)→ π0Ai → π0Ai+1 → 0

showing that π0Ai is local artinian as well.
Conversely, assume that A satisfies conditions 1. to 3. We proceed by induction on

dimk π∗A. Let n be the largest integer such that πnA 6= 0; if n = 0, then A ' π0A is
discrete and condition 3. implies that it is an artinian ring with maximal ideal m. In
particular mi = 0 for some integer i ≥ 0. Let i be the minimal integer with this property;
if i = 0, then A ' k and we are done. Otherwise, choose a nonzero element x ∈ mi−1; by
construction x2 = 0, so that

0→ (x)→ A→ A/(x)→ 0

is a square-zero extension. In particular, Lemma 4.1.5 implies that A→ A/(x) is elementary.
Since A/(x) is small by hypothesis, we are done.

Suppose now n > 0 and set M = πnA. Let m ⊂ π0A. Since π0A is artinian, the
condition miM = 0 holds for i � 0; choose the minimal integer i such that mi+1M = 0
and let x ∈ miM be a nonzero element; write M ′ = M/xM . If A′′ := τ≤n−1A denotes the
Postnikov truncation of A, we obtain via [HA, Theorem A.8.4.1.26] (see especially Remark
8.4.1.29 there) a homotopy pullback diagram

A //

��

k

��

A′′ // k ⊕M [n+ 1]

Set
A′ := A′′ ×k⊕M ′[n+1] k

Then A ' A′ ×k⊕k[n+1] k, so that the map A → A′ is elementary. Since A′ is small by
induction, if follows that A is small.
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4.1.3 A spectrum object
Let

F : Vectdg
k → (CAlgk)/k

be the square-zero extension functor introduced at the beginning of this section. It has the
following pleasant property:

Lemma 4.1.8. The functor F : Vectdg
k → (CAlgk)/k preserves pullbacks.

Proof. Let
M01

p
//

q

��

M0

f

��

M1 g
// N

be a pullback square. We want to show that the induced diagram is a pullback in (CAlgk)/k.
Let A→ k be a commutative dg k-algebra that fits into the following diagram

A α0

##

α

##

α1

$$

k ⊕M01 //

��

k ⊕M0

1⊕f
��

k ⊕M1 1⊕g
// k ⊕N

Using Lemma ??, let d0 : A→M0 and d1 : A→M1 be the derivations corresponding to α0
and α1 respectively. Since the square is commutative, we obtain

f ◦ d0 = g ◦ d1

In particular, we obtain a map d : A→M01. The universal property of the pullback allows
to verify immediately that d is a derivation; its corresponding map

α : A→ k ⊕M01

is the (unique) map we were looking for.

Proposition 4.1.9. Let n > 0 be an integer. In (CAlgk)/k the natural map k → k ⊕ k[n]
has a factorization

k
i // k ⊕ Cone(k[n+ 1]) p

// k ⊕ k[n]

where i is a weak equivalence and p is a fibration.

Proof. The map
0→ Cone(k[n+ 1])

is a chain equivalence in Vectdg
k . It follows that the map

k → k ⊕ Cone(k[n+ 1])

is a chain equivalence as well. Moreover, we have a natural map

Cone(k[n+ 1])→ k[n]

which induces a fibration
k ⊕ Cone(k[n+ 1])→ k ⊕ k[n]

Considering k⊕Cone(k[n+ 1]) = F (Cone(k[n+ 1])) as an element in (CAlgk)/k, we obtain
the desired factorization of k → k ⊕ k[n] as

k // k ⊕ Cone(k[n+ 1]) // k ⊕ k[n]

The definitions of fibrations and weak equivalences in (CAlgk)/k imply the thesis.
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Corollary 4.1.10. In (CAlgk)/k, there is a natural isomorphism Ω(k⊕k[n]) ' k⊕k[n+1].

Proof. By definition, Ω(k ⊕ k[n]) is the homotopy pullback of

k // k ⊕ k[n] koo

Since in (CAlgk)k every object is fibrant, the coglueing lemma jointly with Proposition 4.1.9
implies that an explicit model for Ω(k ⊕ k[n]) is given by the pullback of

k ⊕ Cone(k[n+ 1]) p
// k ⊕ k[n] koo

is a model for Ω(k ⊕ k[n]). Since

k[n− 1] //

��

0

��

Cone(k[n+ 1]) // k[n]

is a pullback diagram in Vectdg
k , Lemma 4.1.8 implies immediately that

k ⊕ k[n+ 1] //

��

k

��

k ⊕ Cone(k[n+ 1]) // k ⊕ k[n]

is a pullback in (CAlgk)/k.

We immediately obtain the following result:

Corollary 4.1.11. The sequence {k ⊕ k[n]}n≥0 is a spectrum in (CAlgk)/k.

4.2 Formal moduli problems
In this section we analyze the notion of formal moduli problems. A formal moduli problem
should be thought of as a derived analogue of a deformation functor, in the sense introduced
in Chapter 1. After introducing the definition, we explore the idea of tangent space to a
formal moduli problem and we show that it can be obtained as infinite loop space associated
to a spectrum object. Finally, we introduce the notion of smoothness for a map between
formal moduli problems; we conclude the section showing that every formal moduli problem
has a presentation given by a smooth hypercover.

4.2.1 Definition
Notation 4.2.1. We will denote by S the ∞-category of spaces, that is the ∞-category
associated to sSet with the standard model structure.

We will denote by CAlgsm
k the full subcategory of the ∞-category (CAlgk)/k spanned

by the small objects.

Definition 4.2.2. A formal moduli problem is a functor X : CAlgsm
k → S satisfying the

following conditions:

1. the space X(k) is contractible;

2. if σ is a pullback square:
A′ //

��

B′

φ

��

A // B

where φ is a small morphism, then X(σ) is a pullback diagram in S.
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We will denote the ∞-category of formal moduli problem by Moduli.

Example 4.2.3. Let A be a commutative differential graded algebra. We can define a
functor

Spec(A) : CAlgsm
k → S

setting
Spec(A)(B) := MapCAlgsm

k
(A,B)

Since Spec(A) preserves limits, it follows that Spec(A) is a formal moduli problem. moreover,
this construction produces a functor Spec: (CAlgk)op → Moduli.

Lemma 4.2.4. A morphism f : A → B in CAlgsm
k is small if and only if it induces a

surjection of commutative rings π0A→ π0B.
Proof. Let K := fib(f). Since A and B are connective, K is (−1)-connective; if moreover
π0A → π0B is surjective, then π−1(K) = 0, so that K is connective as well. Moreover,
πn(K) = 0 for k � 0, and πn(K) is always finite dimensional over k. We can therefore
argue by induction on d = dimk π∗(K). If d = 0, then K ' 0 and f is an equivalence,
in particular small. Assume now π∗(K) 6= 0 and let n be the smallest integer such that
πn(K) 6= 0; if m is the maximal ideal of π0(A), then the nilpotent version of Nakayama
lemma implies that

m(πnK) 6= πn(K)
In particular, we can choose a nonzero map of π0(A)-modules φ : πn(K)→ k. Using Theorem
4.1.3 (and shifting everything of −1) one obtains a (2n+ 1)-connective map

K ⊗A B → LB/A[−1]

This produces an isomorphism

πn+1LB/A ' πn(K ⊗A B) ' π0(B)⊗π0(A) πn(K)

The map φ determines then a map πn+1LB/A → k which correspond in turn to a map

LB/A → k[n+ 1]

This map classifies an A-derivation B → B ⊕ k[n+ 1]. Set

B′ := B ×B⊕k[n+1] k

Then the map f factors as a composition

A
f ′
// B′

f ′′
// B

The map f ′′ is elementary, while f ′ is small by induction, so that we are done.

Proposition 4.2.5. Let X : CAlgsm
k → S be a functor. The following conditions are equiv-

alent:
1. X satisfies condition 2. in Definition 4.2.2;

2. if σ is a pullback square as in Definition 4.2.2, where φ is an elementary morphism,
then X(σ) is a pullback square in S;

3. if σ is a pullback square as in Definition 4.2.2 and φ is the map k → k⊕k[n] for some
n > 0, then X(σ) is a pullback square in S.

4. for every pullback diagram σ

A′ //

��

B′

φ

��

A // B

in CAlgsm
k such that the maps π0B

′ → π0B and π0A→ π0B are surjective, the induced
diagram X(σ) is a pullback square.

Proof. The equivalences 1. ⇐⇒ 2. ⇐⇒ 3. are consequence of the dual of Proposition
2.1.49. Moreover, 4. ⇒ 3. is obvious and 1. ⇒ 4. follows from Lemma 4.2.4.
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4.2.2 Tangent complex
Following the analogy with the notion of deformation functor in the classical context, we
give the following definition:

Definition 4.2.6. Let X : CAlgsm
k → S be a formal moduli problem. The tangent space

of X is X(k ⊕ k[0]) = X(k[ε]/(ε2)).

Observe that the tangent space to a formal moduli problem is a space, in the sense of
topological space. It is possible to recover the algebraic structure on this space using the
language of spectra. In fact, we are going to show that each tangent space is an infinite loop
space; this implies that it is equipped with an abelian group structure which is well defined
up to homotopies.

Recall from Proposition 2.4.5 that we can think to the spectrum E = {k ⊕ k[n]}n∈N of
Corollary 4.1.11 as a strongly excisive functor

E : Sfin
∗ → CAlgk

Under this identification we can prove the following result:

Proposition 4.2.7. 1. for every map f : K → K ′ in Sfin
∗ such that π0(f) is surjective,

the induced map E(K)→ E(K ′) is small;

2. for every object K of Sfin
∗ , the object E(K) is small.

Proof. It is clear that 1. implies 2. As for this, observe that we can rewrite f : K → K ′ as
a composition

K = K0 → K1 → · · · → Kn = K ′

where Ki+1 is obtained from Ki by attaching a single cell of dimension ni; moreover, since
π0(f) is surjective, we can assume that ni > 0. We are reduced to show that each E(Ki)→
E(Ki+1) is a small morphism; we have by assumption the following pushout square:

Ki
//

��

∗

��

Ki+1 // Sn

Applying E we obtain a pullback square

E(Ki) //

��

k

��

E(Ki+1) // k ⊕ k[n]

which shows that E(Ki)→ E(Ki+1) is an elementary morphism.

As consequence of this proposition, we can think of E as a functor

E : Sfin
∗ → CAlgsm

k

It makes therefore sense to compose a formal moduli problem X with E.

Proposition 4.2.8. Let X : CAlgsm
k → S be a formal moduli problem. The composite

functor
X ◦ E : Sfin

∗ → S
is strongly excisive.

Proof. By definition, X(E(∗)) = X(k) is weakly contractible. Let

K

��

// K ′

��

L // L′
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be a pushout square in Sfin
∗ . Let K ′+ (resp. L′+) be the union of the connected components

of K ′ (resp. L′) having nonempty intersection with the image of K → K ′ (resp. of L→ L′).
We have obvious retractions K ′ → K ′+ and L′ → L′+; an easy categorical argument shows
that the outer square in the following diagram

K //

��

K ′

��

// K ′+

��

L // L′ // L′+

is a pushout; it follows that also the square on the right is a pushout. Applying X ◦ E we
obtain

X(E(K)) //

��

X(E(K ′))

��

// X(E(K ′+))

��

X(E(L)) // X(E(L′)) // X(E(L′+))

and to check that the square on the left is a pullback it will be sufficient to show that both
the square on the right and the outer square are pullback. In this way we are reduced to
show that

X(E(K)) //

��

X(E(K ′))

��

X(E(L)) // X(E(L′+))

are pullback whenever the map π0(L) → π0(L′) is surjective, and this is a consequence of
the definition of formal moduli problem and Proposition 4.2.7.

Combining Proposition 4.2.8 and Proposition 2.4.5 we conclude that the composition
X ◦ E is a spectrum (in S).

Definition 4.2.9. Let X : CAlgsm
k → S be a formal moduli problem. The tangent complex

of X is defined to be the composite X ◦ E.

Theorem 4.2.10. Let u : X → Y be a map of formal moduli problems. If u induces equiv-
alences of tangent complexes X, then X is an equivalence of formal moduli problems.

Proof. If u is an equivalence, then u◦E : X ◦E → Y ◦E is an equivalence. For the converse,
let A ∈ CAlgsm

k and choose a sequence of elementary morphisms

A = A0 → A1 → · · · → An ' k

in CAlgsm
k . We will show by descending induction on i that the map u(Ai) : X(Ai)→ Y (Ai)

is an equivalence. If i = n, the statement is obvious. Otherwise, we have a diagram

X(Ai) //

u(Ai)
��

X(Ai+1)

u(Ai+1)
��

// X(k ⊕ k[n])

u(En)
��

Y (Ai) // Y (Ai+1) // Y (k ⊕ k[n])

where the rows are fiber sequences. Now, u(En) is an equivalence by hypothesis and u(Ai+1)
is an equivalence by induction. Taking the long exact sequences associated to this diagram,
we obtain that u(Ai) is an equivalence as well.

4.2.3 Smooth morphisms
We finally introduce the notion of smoothness for a map of formal moduli problems.

Proposition 4.2.11. Let X,Y : CAlgsm
k → S be formal moduli problems and let u : X → Y

be a map between them. The following conditions are equivalent:
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1. for every small map φ : A → B in CAlgsm
k , the map u has the RLP with respect to

every map Spec(φ) : Spec(B)→ Spec(A);

2. for every small map φ : A→ B in CAlgsm
k , the natural map

X(A)→ X(B)×Y (B) Y (A) (4.1)

is surjective on connected components;

3. for every elementary map φ : A → B in CAlgsm
k , the induced map (4.1) is surjective

on connected components;

4. for every n > 0 the homotopy fibers of X(k ⊕ k[n])→ Y (k ⊕ k[n]) is connected;

5. the map of spectra X ◦ E → Y ◦ E is connective.
Proof. It follows from the definitions that the elements of π0(X(B)×Y (B) Y (A)) correspond
to commutative squares

Spec(B) //

��

X

��

Spec(A) // Y

The map π0(X(A))→ π0(X(B)×Y (B)Y (A)) sends a morphism Spec(A)→ X to the induced
commutative square. Therefore, the map (4.1) is surjective on π0 if and only if u : X → Y
has the RLP with respect to Spec(B)→ Spec(A). It is therefore clear that 1. is equivalent
to 2..

The implications 2. ⇒ 3. ⇒ 4. are straightforward. Now, let S be the collection of all the
small morphisms in CAlgsm

k such that the induced map (4.1) is surjective on the connected
components. The equivalence of 2. and 1. shows that S is closed under composition and
under pullbacks; the implications 3. ⇒ 2. and 4. ⇒ 3. follow at once.

Finally, the equivalence between 4. and 5. follows from the fact that a map of spectra
E → E′ is connective if and only if Ω∞−nE → Ω∞−nE′ has connected homotopy fibers for
n > 0.

Definition 4.2.12. A map u : X → Y of formal moduli problems is said to be smooth if it
satisfies one of the equivalent condition of Proposition 4.2.11.

4.2.4 Smooth hypercovers
We now turn to the existence of smooth hypercovers for a given formal moduli problem.
Definition 4.2.13. Define Pro(CAlgsm

k ) to be the full subcategory of Fun(CAlgsm
k ,S)op

containing all the corepresentable functors and which is closed under filtered colimits. A
functor X : CAlgsm

k → S is said to be prorepresentable if it belongs to Pro(CAlgsm
k ).

Lemma 4.2.14. Let X : CAlgsm
k → S be a prorepresentable functor. Then X is a formal

moduli problem.
Proof. This follows at once from the fact that filtered colimits in S are left exact. For a
proof of this fact, see [HTT, Proposition 5.3.3.3].

Lemma 4.2.15. Let S be the collection of all morphisms in Moduli of the form Spec(B)→
Spec(A) where A → B is a small morphism in CAlgsm

k . Let f : X → Y be a morphism in
Moduli and suppose that f is a transfinite pushout of morphisms in S. If X is prorepre-
sentable, then Y is prorepresentable.
Proof. The category Pro(CAlgsm

k ) is closed under filtered colimits by definition, so that
we are immediately reduced to prove the following statement: for every small morphism
φ : A→ B in CAlgsm

k and every pushout diagram

Spec(B)

Spec(φ)
��

// X

f

��

Spec(A) // Y
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if X is prorepresentable, then Y is prorepresentable as well. However, we have

X ' lim−→
β

Spec(Bβ)

for some filtered diagram {Bβ}β∈I in (CAlgsm
k )/B . Then

Y ' lim−→
β

Spec(Bβ)
∐

Spec(B)

Spec(A)

However, one has for every formal moduli problem Z:

MapModuli

Spec(Bβ)
∐

Spec(B)

Spec(A), Z

 ' Z(Bβ)×Z(B) Z(A)

=' Z(Bβ ×B A)

It follows by Yoneda lemma that

Spec(Bβ)
∐

Spec(B)

Spec(A) ' Spec(Bβ ×B A)

so that Y is prorepresentable.

We are now ready to show that every formal moduli problem has a smooth presentation
by prorepresentable objects. The result will be a formal consequence of previous lemma and
the small object argument.

Proposition 4.2.16. Let X : CAlgsm
k → S be a formal moduli problem. There exists a

simplicial object X• in Moduli/X with the following properties:

1. each Xn is prorepresentable;

2. for each n ≥ 0 let Mn(X•) denote the n-th matching object of X•. Then the natural
map Xn →Mn(X•) is smooth.

In particular, X is equivalent to the geometric realization |X•| in Fun(CAlgsm
k ,S).

Proof. Let S be the class of morphisms Spec(φ) : Spec(B) → Spec(A) where A and B are
small objects in CAlgk. Let X be an arbitrary formal moduli problem. Since Moduli is
presentable, we can apply Corollary 2.1.73 in order to produce a simplicial object X• in
Moduli/X in such a way that the maps

Xn →Mn(X•)

have the RLP with respect to the maps in S and the maps

Ln(X•)→ Xn

are transfinite pushout of morphisms in S. We claim that this implies that the map
Spec(k) → Xn is a transfinite pushout of morphisms in S. This can be obtained induc-
tively as follows: let P be the full subcategory of ∆n/ spanned by the surjective maps
n → m; observe that P can be viewed as a poset. For every upward-closed subset P0, let
Z(P0) be a colimit of the induced diagram

N(P0)op // N(∆)op X• // Moduli/X
φ
// Moduli

where φ : Moduli/X → Moduli is the forgetful functor. Then Z(∅) ' Spec(k) and Z(P ) '
φ(Xn). If P1 is obtained from P0 by adjoining an element α : n→m, then the induced map
Z(P0) → Z(P1) is a pushout of maps φ(Lm(X•)) → φ(Xm), so that we proved the claim.
At this point, Lemma 4.2.15 implies that each Xn is prorepresentable.

The last statement, follows from the fact that condition 2. implies that X•(A) is a
hypercovering of X(A) for every A in CAlgsm

k .
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4.3 Koszul duality functor
We introduced in section 3.3.3 the functor of ∞-categories

C∗ : Liek → (CAlgaug
k )op

induced by the cohomological Chevalley - Eilenberg complex. Lemma 3.3.13 shows that Liek
is presentable. Since C∗ preserves small colimits by Proposition 3.3.22, the adjoint functor
theorem (Theorem 2.1.71) implies the existence of a right adjoint

D : (CAlgaug
k )op → Liek

The main goal of this section is to prove that this functor D satisfies a number of technical
properties, which will formally imply the main theorem of this mémoire. More specifically,
we will show that there exists a full subcategory C of Liek such that the restriction of D
to C is not too far from being an equivalence. To make the exposition more readable, we
introduce the following definition, to be considered only in this section:

Definition 4.3.1. A differential graded Lie algebra g∗ is said to be good if it is cofibrant
and there exists a graded subspace V∗ ⊆ g∗ such that:

1. for every integer n ∈ Z, the vector space Vn is finite dimensional;

2. Vn = 0 if n ≥ 0;

3. g∗ is a free Lie algebra over V∗.

Remark 4.3.2. Observe that condition 3. in the previous definition doesn’t imply the cofi-
brancy of g∗. In fact, V∗ is not required to be a differential graded subspace, but simply a
graded subspace (otherwise Corollary 3.3.11 would imply the cofibrancy).

Let C be the full subcategory of Liek spanned by those objects that can be represented
by a good differential graded Lie algebra. The main result of this section is the following
theorem:

Theorem 4.3.3. The full subcategory C of Liek satisfies the following properties:

(a) for every object g∗ ∈ C, the unit map g∗ → DC∗g∗ is an equivalence;

(b) for every n ≥ 1, there exists an object g(n)
∗ ∈ C and an equivalence in CAlgaug

k

k ⊕ k[n] ' C∗g(n)
∗

(c) let vn : g(n)
∗ ' D(k ⊕ k[n])→ D(k) ' 0. For every pushout diagram

g
(n)
∗ //

vn

��

g∗

��

0 // g′∗

if g belongs to C, then g′∗ also belongs to C.

A number of computations is needed to prove this result. We encode the most technical in
the following lemma:

Lemma 4.3.4. let g∗ be a differential graded Lie algebra over k. If

1. for every integer n the vector space gn is finite dimensional, and

2. the vector space gn is trivial for n ≥ 0

then the unit map u : g∗ → DC∗(g∗) is an equivalence in Liek.

Proof. See [DAGX, Lemma 2.3.5].
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We are now ready to give the proof of Theorem 4.3.3:

Proof of Theorem 4.3.3. Let g∗ ∈ C. In order to verify condition (a), we can assume without
loss of generality that g∗ is good. Let V∗ be a graded subspace of g∗ realizing the conditions
of Definition 4.3.1. It follows that, as graded vector space, g∗ is a direct summand of the
tensor algebra

T (V∗) :=
⊕
n≥0

V ⊗n∗

In particular, it follows that each gn is finite dimensional and gn ' 0 if n ≥ 0. Condition
(a) follows then from Lemma 4.3.4.

Condition (b) is satisfied taking g
(n)
∗ := f(k[−n − 1]) (cfr. example 3.3.21). We are left

to check condition (c): let n ≤ −2; we have to compute explicitly the homotopy pushout

f(k[n]) α //

v

��

g∗

��

0 // g′∗

A fibrant replacement for v is given by

j : f(k[n])→ f(Dn+1(k))

It follows from the glueing lemma that the pushout

f(k[n])

j

��

α // g∗

j′

��

f(Dn+1(k)) // h∗

is an explicit model for the homotopy pushout we are interested in. Observe that Corollary
3.3.11 implies that j is a cofibration in Liedg

k , so that j′ is a cofibration as well; since g∗ is
cofibrant by hypothesis, h∗ is also cofibrant.

Let V∗ ⊆ g∗ be the subspace realizing the conditions for g∗ to be good, and let y be the
image of a generator of (Dn+1(k))n+1 in hn+1. The graded subspace V ′∗ ⊆ h∗ generated by
V∗ and y realizes h∗ as a good object in Liedg

k .

This theorem implies in a formal way several properties of D:

Proposition 4.3.5. 1. D(k) ' 0;

2. if A∗ ∈ CAlgaug
k is of the form C∗(g∗) with g∗ ∈ C, then the unit map A∗ → C∗D(A∗)

is an equivalence in CAlgaug
k ;

3. if A∗ ∈ CAlgaug
k is small, then D(A∗) ∈ C and A∗ → C∗D(A∗) is an equivalence in

CAlgaug
k ;

4. if σ:
A′∗ //

��

B′∗

φ

��

A∗ // B∗

is a homotopy pullback in CAlgaug
k where A, B and φ are small, then D(σ) is a pushout.

Proof. 1. By adjoint nonsense we have C∗(0) ' k; since 0 ∈ C it follows from condition
(a) of Theorem 4.3.3 that the unit map 0→ DC∗(0) ' D(k) is an equivalence.
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2. Let A∗ = C∗(g∗) with g∗ ∈ C. Then the unit map (in (CAlgaug
k )op)

η : C∗DC∗(g∗)→ A∗ = C∗(g∗)

has a left homotopy inverse induced by the edge ε : g∗ → DC∗(g∗). Since g∗ belongs
to C, condition (a) of Theorem 4.3.3 implies that g∗ → DC∗(g∗) is an equivalence. It
follows that C∗(ε) is an equivalence as well, so that η is forced to be an equivalence.

3. Let A∗ be a small commutative differential graded algebra. Choose a sequence of
elementary morphisms

A∗ = A
(0)
∗ → A

(1)
∗ → · · · → A

(n)
∗ ' k

in CAlgk. We will show that A(i)
∗ ' C∗(h(i)

∗ ) for some h(i)
∗ ∈ C by descending induction

on i. Point (b) will imply immediately that the unit map A
(i)
∗ → C∗D(A(i)

∗ ) is an
equivalence. Moreover, we have the following equivalence in Liek:

D(A(i)
∗ ) ' DC∗(h(i)

∗ ) ' h
(i)
∗

thanks to condition (a) of Theorem 4.3.3, completing the proof of point 3..
If i = n, the assertion follows from point 1. Assume now i < n; since A(i)

∗ → A
(i+1)
∗ is

elementary, there exists an integer n > 0 and a pullback diagram σ:

A
(i)
∗ //

��

k

φ

��

A
(i+1)
∗

ψ
// k ⊕ k[n]

Form the following homotopy pushout τ in Liedg
k :

D(k ⊕ k[n]) //

��

D(A(i+1)
∗ )

��

D(k) // X

The unit transformation for the adjunction induces a morphism of diagrams

ξ : σ → C∗(τ)

in CAlgaug
k . Observe that A(n+1)

∗ belongs to the essential image of C∗|C by the induc-
tive hypothesis, while k and k⊕ k[n] satisfy the same hypothesis because of condition
(b) of Theorem 4.3.3. Since both σ and C∗(τ) are pullback, it follows that ξ is an
equivalence, so that A(i+1)

∗ ' C∗(X). Condition (d) of Theorem 4.3.3 implies that
A

(i+1)
∗ ∈ C.

4. The dual version of Proposition 2.1.49 implies that the class of morphisms φ making
the statement true is closed under composition; we are therefore reduced to deal with
the case where φ is elementary. Again, Proposition 2.1.49 and its dual version, show
that we can limit ourselves to the situation where φ is the map k → k ⊕ k[n]. The
same argument used in point 3. shows that the diagram σ

A′∗

��

// k

��

A∗ // k ⊕ k[n]

is equivalent to a diagram of the form C∗(τ) where τ is a diagram in C which is a
pushout in Liek. It follows that

D(σ) ' DC∗(τ) ' τ

so that we obtain the thesis.
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Corollary 4.3.6. Let j : Liek → Fun(Lieop
k ,S) be the Yoneda embedding. For every g∗ ∈

Liek the composition

CAlgk
D // Lieop

k

j(g∗)
// S

is a formal moduli problem. In particular we obtain a functor

Ψ: Liek → Moduli

In particular, for every differential graded Lie algebra g∗ we obtain a spectrum

Ψ(g∗) ◦ E : Sfin
∗ → S

This construction determines a functor

e : Liek → Sp(S)

Proposition 4.3.7. The functor e preserves small sifted colimits and it reflects equivalences.

Proof. Let θ : Liek → Modk be the forgetful functor. Consider the spectrum S = {k[−n]}n≥0
in (Vectdg

k )op and introduce the other “forgetful” functor

F : Modk → Sp(S)

defined by
F (M∗) = MapVectdg

k
(S(−),M∗) : Sfin

∗ → S

This is strongly excisive, so it defines a spectrum in S. Moreover, since F is a functor between
stable (∞, 1)-categories and since it trivially commutes with finite limits, it follows from [HA,
Proposition 1.1.4.1] that it commutes with finite colimits as well; since every object k[−n] is
compact, it follows also that it commutes with filtered colimits. In conclusion, F commutes
with every colimit (because arbitrary coproducts can be obtained via binary coproducts and
filtered colimits).

Observe also that the functor F is conservative. In fact, we have

MapVectdg
k

(k[−n],M∗) = MapVectdg
k

(k, τ≤0(M∗[n]))

and an explicit model for this mapping space is obtained by applying the Dold-Kan functor
to τ≤0(M∗[n]) and then forgetting the module structure. Since the Dold-Kan functor is
part of a Quillen equivalence, we see that F reflects equivalences (because if F (u) is an
equivalence, then τ≤n(u) is an equivalence for every n ≥ 0, so that u is an equivalence as
well).

Fix a differential graded Lie algebra g∗ representing an object in Liek; we see that a
model for e(g∗) is given by

MapLiedg
k

(D(E), g∗)

However, Theorem 4.3.3.(b) implies that D(E) is the spectrum

{f(k[−n− 1])}n≥0

in Lieop
k . Therefore we have

MapLiedg
k

(D(E), g∗) = MapVectdg
k

(S(−)[−1],Θ(g∗))

It follows that e is given by (F ◦ θ)[−1]. Since θ is trivially conservative, the thesis follows
from Lemma 3.3.13.

Corollary 4.3.8. For every small commutative differential graded algebra A∗ ∈ CAlgsm
k ,

D(A∗) is a compact object in the ∞-category Liek.



4.4 The main theorem 73

Proof. Choose a sequence of elementary morphisms

A = A
(0)
∗ → A

(1)
∗ → · · · → A

(n)
∗ ' k

in CAlgk. We will use descending induction on i in order to show that D(A(i)
∗ is a compact

object in Liek. When i = n, this follows from point 1. of Proposition 4.3.5. Assume now
that i < n and that D(A(i+1)

∗ ) is compact. Since A(i)
∗ → A

(i+1)
∗ is elementary, there exists

an integer n > 0 and a pullback daigram σ:

A
(i)
∗ //

��

k

��

A
(i+1)
∗ // k ⊕ k[n]

in CAlgk. Point 4. of Proposition 4.3.5 implies that D(σ) is a pushout square in Liek. It
will be therefore sufficient to show that D(A(i+1)

∗ ), D(k) and D(k⊕k[n]) are compact object
in Liek; using the inductive hypothesis, we are left to check that D(k ⊕ k[n]) is a compact
object. However, the functor corepresented by D(k ⊕ k[n]) is obtained as the composition

Liek
e // Spectra(S) Ω∞−n // S

Proposition 4.3.7 implies that e commutes with filtered colimits, and the same is true for
the functor Ω∞−n. It follows that D(k ⊕ k[n]) is a compact object in Liek.

4.4 The main theorem
We are ready to prove the main theorem:

Theorem 4.4.1. The functor Ψ: Liek → Moduli is an equivalence of ∞-categories.

Proof. Recall that Ψ is given by the formula

Ψ(g∗)(A∗) := MapLiek(D(A∗), g∗)

This makes clear that Ψ preserves small limits in Liek. Corollary 4.3.8 implies that Ψ
preserves filtered colimits as well, so that it is accessible. The adjoint functor theorem
(Theorem 2.1.71) implies therefore that Ψ has a left adjoint Φ. Using Corollary 2.1.65 we
are reduced to show that

(i) Ψ reflects equivalences;

(ii) the unit transformation u : idModuli → Ψ ◦ Φ is an equivalence.

We begin with (i). Assume that f : g∗ → h∗ is a morphism in Liek and Ψ(f) is an equivalence.
In particular, we obtain for every n ≥ 0 a homotopy equivalence

MapLiek(D(k ⊕ k[n]), g∗) ' Ψ(g∗)(k ⊕ k[n])
' Ψ(h∗)(k ⊕ k[n])
' MapLiek(D(k ⊕ k[n]), h∗)

We deduce that e(f) : e(g∗)→ e(h∗) is an equivalence; Proposition 4.3.7 implies now that f
is an equivalence as well, showing point (i).

Let us turn to the proof of (ii). Let X be a formal moduli problem; if we can show that
the map

θ : X ◦ E → (Ψ ◦ Φ)(X) ◦ E ' e(Φ(X))

is an equivalence of spectra, Theorem 4.2.10 will imply that the unit map u : X → (Ψ ◦
Φ)(X) is an equivalence as well. Choose a simplicial object X• of Moduli/X satisfying
the conditions of Proposition 4.2.16. For every object A ∈ CAlgsm

k , the simplicial space
X•(A) is a hypercovering of X(A), so that the induced map |X•(A)| → X(A) is a homotopy
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equivalence. It follows that X is a colimit for the simplicial diagram X• in Fun(CAlgsm
k ,S)

and hence in Moduli. Similarly, X ◦ E is equivalent to the geometric realization |X• ◦ E|
in the ∞-category of spectra. Since Φ commutes with small colimits and e preserves sifted
colimits, we obtain

e(Φ(X)) ' e(Φ(|X•|)) ' |e(Φ(X•))|

It follows that θ is the geometric realization of a simplicial morphism

θ• : X• ◦ E → e(Φ(X•))

We are therefore reduced to show that each θn is an equivalence. Repeating the argument
above, we see that this is equivalent to show that u induces an equivalenceXn → (Ψ◦Φ)(Xn).
In this way, we are left to check condition (ii) in the case where X is prorepresentable. Since
Φ and Ψ commute with filtered colimits, we can further reduce the analysis to the case
X = Spec(A) for some A ∈ CAlgsm

k . Since

Φ(Spec(A)) = D(A)

we only have to show that for each B ∈ CAlgsm
k the map

MapCAlgk(A,B)→ MapLiek(D(B),D(A)) ' MapCAlgk(A,C∗D(B))

is a homotopy equivalence. However, this follows immediately from point 3. of Proposition
4.3.5.



Appendix A

Simplicial Sets

As general principle, the reader is assumed to be familiar with the theory of simplicial sets. In
this chapter, we collect some of the results which aren’t easy to track in the classical literature
(as [GZ67], [May69] or [GoJa]). In practice, we collect here a number of technical tools which
have been proved very useful in writing down the proofs contained in this mémoire; more
specifically, we will show that the geometric realization reflects colimits (Corollary A.1.3),
we will give sufficient conditions for a set of monomorphisms to be saturated (Propositions
A.2.8 and A.2.6), and we will develop a relative version of the join operation.

A.1 Geometric realization
This section is devoted to prove that the geometric realization reflects colimits. This is an
useful property that allows to prove in an almost straightforward way that certain diagrams
of simplicial sets are pushouts, while a direct argument would require much more work and
combinatorial observations.

We recall, without proving it, the following crucial theorem:

Theorem A.1.1. The geometric realization functor | · | : sSet→ CGHaus commutes with
finite limits and with colimits. Moreover it reflects isomorphisms.

Proof. [GZ67, Ch. III.3].

We can obtain our goal as a direct consequence of the following observation:

Lemma A.1.2. Let C be a cocomplete category and let F : C → D be a functor preserving
colimits. If in addition F reflects isomorphisms, then F reflects colimits.

Proof. Let I be a small category and let G : I→ C be an I-diagram in C. Let η : G→ ∆x be a
natural transformation, where ∆x : I→ C is the constant diagram at an element x ∈ Ob(C);
assume that F (η) : F ◦G→ F ◦∆x = ∆F (x) is a colimit diagram in D. Since C is cocomplete,
let ϕ : G→ ∆y be a colimit diagram for F in C; let f : y → x be the unique map induced by
the universal property of colimits. It follows that F (f) is an isomorphism, so that f was an
isomorphism to begin with.

Corollary A.1.3. The geometric realization functor |·| : sSet→ CGHaus reflects colimits.

Proof. It’s consequence of Theorem A.1.1 and Lemma A.1.2, since sSet is cocomplete.

A.2 The formalism of saturated sets
In this section we develop a flexible theory of anodyne extensions. The theory presented
here is a slight generalization of the classical one (due to P. Gabriel and M. Zisman) and
it is needed in Chapter 2 in order to deal with different classes of fibrations. However, we
limit ourselves in the framework of simplicial sets, avoiding needless generalizations to wider
classes of categories.
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Definition A.2.1. A class of monomorphisms M in sSet is said to be saturated if the
following holds:

1. M contains all the isomorphisms;

2. M is closed under retracts;

3. M is closed under pushouts;

4. M is closed under transfinite compositions.

Lemma A.2.2. The intersection of an arbitrary family of saturated set of monomorphisms
is still saturated.

Proof. This is obvious.

Lemma A.2.3. Let f : K → L be a morphism of simplicial sets and let M be the class of
monomorphisms in sSet having the LLP with respect to f . ThenM is saturated.

Proof. This is a straightforward check. Some detail can be found in [GoJa, Lemma I.4.1].

Corollary A.2.4. Let S be a set of arrows in sSet and letM be the class of monomorphisms
in sSet having the LLP with respect to every arrow in S. ThenM is saturated.

Proof. This is an immediate consequence of previous two lemmas.

Notation A.2.5. Let F : sSet × sSet → sSet be a bifunctor. If f : A → B and g : X → Y
are morphisms of simplicial sets, denote by AF (f, g) the object

F (A, Y )
∐

F (A,X)

F (B,X)

and by F̃ (f, g) the induced morphism

F̃ (f, g) : AF (f, g)→ F (B, Y )

Proposition A.2.6. Let S1, S2 be classes of monomorphisms in sSet and assume that S2
is saturated. Let F : sSet × sSet → sSet be a bifunctor such that for every simplicial set
K the functor F (−,K) commutes with colimits. Let M be the class of monomorphism f

in sSet such that F̃ (f, g) ∈ S2 for every g ∈ S1. Assume that M satisfies the following
property:

(SR) given f : A → B and g : X → Y , the map F (f, Y ) : F (A, Y ) → F (B, Y ) is in S2
whenever f is inM and g is in S1.

ThenM is saturated.

Proof. 1. Isomorphisms. Let f : A → B be an isomorphism and let g : X → Y be a
morphism in S1. Then we have the following pushout diagram:

F (A,X)
F (A,g)

//

F (f,X)
��

F (A, Y ) F (f,Y )

��

F (B,X)
F (f−1,Y )

// F (A, Y )
F (f,Y )

// F (B, Y )

so that AF (f, g) = F (A, Y ) and F̃ (f, g) = F (f, Y ). Since this is an isomorphism and
S2 is saturated, it follows that f ∈M.

2. Retractions. Start with a retraction diagram

C
v //

f

��

A
u //

ϕ

��

C

f

��

D
r
// B

s
// D
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with uv = idC , sr = idD and ϕ ∈ M. For every g : X → Y in S1 it is straightforward
to check that the following is a retraction diagram:

AF (f, g) //

��

AF (ϕ, g) //

��

AF (f, g)

��

F (D,Y ) // F (B, Y ) // F (D,Y )

Since F̃ (ϕ, g) ∈ S2 by hypothesis and since S2 is saturated, we deduce that F̃ (f, g) ∈
S2, so that f ∈M.

3. Pushouts. Consider a pushout square

A

ϕ

��

// C

f

��

B // D

where ϕ ∈ M. For every g : X → Y in S1 we can form the following commutative
diagram (the maps are the ones induced functorially by F ):

F (A,X) //

%%

��

F (B,X)

&&

��

F (C,X) //

��

F (D,X)

��

F (A, Y ) //

%%

AF (ϕ, g)

&&

// F (B, Y )

%%

F (C, Y ) // AF (f, g) // F (D,Y )

By hypothesis the two squares

F (A,X) //

��

F (B,X)

��

F (C,X) // F (D,X)

F (A, Y ) //

��

F (B, Y )

��

F (C, Y ) // F (D,Y )

are pushouts. It follows that the outer square in

F (A,X) //

��

F (A, Y ) //

��

F (C, Y )

��

F (B,X) // AF (ϕ, g) // AF (f, g)

is a pushout. Abstract nonsense shows immediately that also the right square is a
pushout; for the same reason we deduce that

AF (ϕ, g) //

F̃ (ϕ,g)
��

AF (f, g)

F̃ (f,g)
��

F (B, Y ) // F (D,Y )

is a pushout square. Since F̃ (ϕ, g) ∈ S2 and since S2 is saturated, it follows that
F̃ (f, g) ∈ S2, that is f ∈M.
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4. Transfinite composition. Let {fβ : Aβ → Aβ+1}β<λ be a λ-sequence of morphisms in
M and let

inβ : Aβ → Aλ

be the canonical morphisms toward the colimit. For any g : X → Y in S1 we see that

F (fλ, Y ) : F (A0, Y )→ F (Aλ, Y )

is the composition of the sequence

{F (fβ , Y ) : F (Aβ , Y )→ F (Aβ+1, Y )}β<λ

By hypothesis, we have F (fβ , Y ) ∈ S2. Stability of S2 under pushouts implies imme-
diately that the natural maps

AF (inβ , g)→ AF (inβ+1, g)

are in S2. Since the map

F̃ (in0, g) : AF (in0, g)→ F (A∞, Y )

can be written as countable composition of those maps, it follows that F̃ (in0, g) lies in
S2, proving that in0 ∈M.

Lemma A.2.7. In the notations and hypothesis of Proposition A.2.6, if S1 contains the
morphisms ϕY : ∅ → Y for every simplicial set Y and the functor F (A, ∅) = ∅ for every
simplicial set A, thenM satisfies the hypothesis (SR).

Proof. Simply observe that under these hypothesis we have F̃ (f, ϕY ) = F (f, Y ).

The same result holds interchanging the role of the variables of the functor F :

Proposition A.2.8. Let S1, S2 be classes of monomorphisms in sSet and assume that S2
is saturated. Let F : sSet × sSet → sSet be a bifunctor such that for every simplicial set
K the functor F (K,−) commutes with colimits. Let M be the class of monomorphism f

in sSet such that F̃ (g, f) ∈ S2 for every g ∈ S1. Assume that M satisfies the following
property:

(SL) given f : A → B and g : X → Y , the map F (Y, f) : F (Y,A) → F (Y,B) is in S2
whenever f is inM and g is in S1.

ThenM is saturated.

Lemma A.2.9. In the notations and hypothesis of Proposition A.2.8, if S1 contains the
morphisms ϕY : ∅ → Y for every simplicial set Y and the functor F (∅, A) = ∅ for every
simplicial set A, thenM satisfies the hypothesis (SL).

We omit the proofs since they are identical to the previous ones.

A.3 Relative join of simplicial sets
In order to deal efficiently with the combinatoric underlying the whole theory of quasicat-
egories, several technical tools are needed. For example, in Chapter 2 we made an exten-
sive use of fibrations and anodyne extensions; another technical construction that we used
through all the chapter was the join of simplicial sets. This section is devoted to this oper-
ation and to its properties. We actually propose a relative version of the join, generalizing
a little the one given in [HTT]; this is needed in order to deal with ∞-adjunctions because
it produces a neat way to construct ∞-correspondences.



A.3 Relative join of simplicial sets 79

A.3.1 Ideas and motivations
Before plunging into the technical exposition, we want to explain the notion of correspon-
dence in classical category theory, as motivation. In fact, one should think to a relative join
of simplicial sets as an ∞-categorical generalization of this basic construction. The arising
technicalities are due, as usual, to the combinatoric of simplicial sets.

Definition A.3.1. Let C and D be categories. A correspondence from C to D is a functor
F : Cop ×D → Set.

Given a correspondence F from C to D one can define a new category C ?F D in the
following way: the set of objects of this category will be the disjoint union of Ob(C) and
Ob(D). Moreover, we set

HomC?FD(X,Y ) :=


HomC(X,Y ) if X,Y ∈ Ob(C)
HomD(X,Y ) if X,Y ∈ Ob(D)
F (X,Y ) if X ∈ Ob(C) and Y ∈ Ob(D)
∅ otherwise

The composition is defined in the obvious way, using the compositions of C, of D and the
functoriality of F . The new category C ?F D is equipped with a natural functor

p : C ?F D → 1

sending C (as subcategory of C ?F D) into 0, D into 1 and every arrow starting from an object
of C and landing in an object of D to 0 < 1. Conversely, given a category M equipped with
a functor

p : M → 1
in such a way that M{0} ' C and M{1} ' D, then we can define a correspondence from C
to D.

It is the last description that we can easily generalize to the ∞-categorical context.
However, in practice it might be difficult to explicitly define a ∞-correspondence. The
relative join of simplicial set is to be thought as a simplicial equivalent of the first construction
we gave. We will show in fact, that associated to every relative join there is a simplicial
correspondence (which is an ∞-correspondence under reasonable assumptions).

A.3.2 The construction
Notation A.3.2. If J is a linearly ordered finite set and I, I ′ ⊂ J are subsets, we write

I < I ′

to mean that i < i′ for each i ∈ I and each i′ ∈ I ′.
Notation A.3.3. Let K be a simplicial set and let J be a nonempty linearly ordered finite
set. Thinking J as a category, it is isomorphic to the category n ∈∆, where n = #J is the
cardinality of J . We let K(J) := K(n). If, instead, J is empty we define K(J) := {∗}.
Notation A.3.4. Let k, h ∈ N and set n = k + h+ 1. Given a simplicial set S and simplexes
σ ∈ Sk, τ ∈ Sh, we denote by Sσ,τn = Homσ,τ (∆n, S) the set of n-simplexes ω of S such that

ω|{0,...,k} = σ, ω|{k+1,...,n} = τ

If J is a nonempty linearly ordered finite set we will denote by Sσ,tau(J) the set Sσ,τn , where
n = #J .

Let us fix three simplicial sets K,L, S and maps

K
f
// S L

g
oo

We define a new simplicial set Kf ?g L in the following way: given a linearly ordered finite
set J , set:

(Kf ?g L)(J) :=
∐

J=J1tJ2
J1<J2

∐
(σ,τ)∈

K(J1)×K(J2)

Sf(σ),g(τ)(J)
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where, if J1 = ∅ or J2 = ∅ we set Sf(σ),g(τ)(J) := {∗}.
To define the action on maps, fix a morphism ϕ : I → J . If J = J1 t J2 is a partition of

J with J1 < J2, we obtain (functorially) a partition of I = I1 t I2, where

I1 = ϕ−1(J1), I2 = ϕ−1(J2)

Let ϕk : Ik → Jk the induced map for k = 1, 2. For every (σ, τ) ∈ K(J1)× L(J2) write

ϕ∗1σ := (ϕ1)∗K(σ) ∈ K(I1), ϕ∗2τ := (ϕ2)∗L(τ) ∈ L(I2)

Observe that:
f(ϕ∗1σ) = (ϕ1)∗S(f(σ)), g(ϕ∗2τ) = (ϕ2)∗S(g(τ))

Lemma A.3.5. The map ϕ∗S : S(J)→ S(I) restricts to a well defined map

(Sf(σ),g(τ)(J)→ Sf(ϕ∗1σ),g(ϕ∗2τ)(I)

Proof. Denote by ik : Ik → I and by jk : Jk → J the natural inclusions, so that one has

ϕ ◦ ik = jk ◦ ϕk

If ω ∈ Sf(σ),g(τ) then by hypothesis

ω ◦ j1 = f(σ), ω ◦ j2 = g(τ)

It follows that

ϕ∗S(ω) ◦ i1 = ω ◦ ϕ ◦ i1 = ω ◦ j1 ◦ ϕ1

= (ϕ1)∗S(ω ◦ j1) = (ϕ1)∗S(f(σ))

and similarly one obtains
ϕ∗S(ω) ◦ i2 = (ϕ2)∗S(g(τ))

completing the proof of the lemma.

The previous lemma and the universal property of the coproducts imply the existence of
a canonical map

Kf ?g L)(J)→ (Kf ?g K)(I)

It is a standard exercise in classical category theory to show that this assignment is functorial.
As consequence we obtain a well defined simplicial set Kf ?g L.

Definition A.3.6. Given maps of simplicial sets f : K → S, g : L → S, the simplicial set
Kf ?g L is said to be the relative join of K and L with respect to S.

If S = ∆0, then we will denote Kf?g L by K ?L and we will refer to it as the (absolute)
join of K and L.

Notation A.3.7. If the maps f and g are clear from the context, we will write K ?S L to
denote Kf ?g L.

Lemma A.3.8. Given maps of simplicial sets f : K → S, g : L → S there are naturally
induced maps ϕ = ϕf,g : K → K ?S L and ψ = ψf,g : L→ K ?S L and π = πf,g : K ?S L→ S
making the diagram

K
ϕ
//

f
##

K ?S L

π

��

L
ψ
oo

g
{{

S

commutative.
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Proof. For every σ ∈ Kn define

ϕ(σ) := f(σ) ∈ Sf(σ),∗ ⊆
∐

(σ,∗)∈Kn×L(∅)

Sf(σ),∗

It is straightforward to check that this is a morphism of simplicial sets. Naturality in K is
also obvious. In a similar way one can define ψ : L → K ?S L. The definition of π is even
more straightforward: one has inclusions

Sf(σ),g(τ)
n ⊂ Sn

inducing morphisms (K ?S L)n → Sn, which are obviously compatible with face and degen-
eracy maps.

A.3.3 The ∞-categorical properties
To use the relative join in dealing with ∞-categories, it is important to have some stability
condition, guaranteeing that K ?S L is a quasicategory. We propose the following result,
generalizing [HTT, Proposition 1.2.8.3].

Proposition A.3.9. If f : K → S and g : L→ S are inner fibrations of simplicial sets and
S is a quasicategory, then K ?S L is a quasicategory.

Proof. Start with a horn inclusion α : Λni → K ?S L, where 0 < i < n. Since S is a
quasicategory, we can choose a map β : ∆n → S making the diagram

Λni
α //

��

i

��

K ?S L

��

∆n

β
// S

commutative. If α factors through ϕ : K → K ?S L, using the inner fibrancy of f = π ◦ ϕ
we obtain a lifting h : ∆n → K such that

h ◦ i = α, f ◦ h = β

so in particular the lifting exists. We can proceed in a symmetric way if α factors through
ψ : L→ K ?S L.

Assume now that α doesn’t factor through ϕ nor ψ. Then let k be the minimal integer
such that α(k) belongs to the image of L in K ?S L. It follows that α induces morphisms
∆k → K and ∆n−k−1 → L. These morphisms correspond in turn to an n-simplex of
∆n → K ?S L, extending the horn inclusion α.

We introduced the relative join as a tool to produce ∞-correspondences. We show now
that the relative join K?SL comes equipped with a natural morphism K?SL→ ∆1 defining
a simplicial correspondence.

Proposition A.3.10. Let f : K → S and g : L→ S be morphisms of simplicial sets. There
exists a natural morphism p : K ?S L→ ∆1 such that p−1(0) ' f(K) and p−1(1) ' g(L).

Proof. For an n-simplex ω in K?SL we can canonically associate a pair (σ, τ) ∈ K(I)×L(J)
for suitable ordered sets I and J . If I, J 6= ∅, denote by ϕI,J : n→ 1 the unique morphism
such that

ϕ−1
I,J(0) = {0, . . . ,#I}

Let ι1 be the only non-degenerate 1-simplex of ∆1. Define:

p(ω) :=


0 if J = ∅
1 if I = ∅
ϕ∗I,J ι1 otherwise

(where we identify 0, 1 and ι1 with their degeneracies if necessary). It is straightforward to
check that p is a morphism of simplicial sets, as well as the conditions on the fibers.
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A.3.4 The absolute join
Despite being only a particular case of the relative join, the absolute join is perhaps the
more frequent operation used in chapter 2. For this reason, it is convenient to list here some
of its properties.

Before beginning, we specialize the construction of the relative join to the absolute con-
text. If K and L are simplicial sets, K ?L is defined by its value on a finite linearly ordered
set J . The involved formula simplifies as follows:

(K ? L)(J) :=
∐

J=J1tJ2
J1<J2

K(J1)× L(J2)

Proposition A.3.11. If S and S′ are quasicategories, then S?S′ is a quasicategory as well.

Proof. This is an immediate corollary of Proposition A.3.9.

Example A.3.12. Let K,L ∈ sSet and let α : ∆1 → K ? L. This means that α belongs to
one among K1, L1 or K0 × L0. In the first two cases:

dK?Li α = dKi α, dK?Li α = dLi α

while in the last we have α = (x, y), where x ∈ K0 and y ∈ L0, and

dK?L0 α = x, dK?L1 α = y

In particular, we see that if ω : ∆n → K?L is such that ω(m) ∈ K0 then for every k ≤ m we
must have ω(k) ∈ K0: otherwise, we would have a 1-simplex α : ∆1 → K ? L with d0α ∈ L
and d1α ∈ K, which is impossible.

Lemma A.3.13. 1. ? defines a bifunctor sSet× sSet→ sSet;

2. given K ∈ sSet, the functors K ?− : sSet→ sSet and − ?K : sSet→ sSet commute
with colimits;

3. ∆i ?∆j ' ∆i+j+1;

4. ∂∆i ?∆0 ' Λi+1
i+1.

Proof. The first point is straightforward. The second point is an easy consequence of the
cartesian closedness of sSet.



Appendix B

Model categories

Model categories play a key role throughout this whole mémoire. Nevertheless, a full exposi-
tion of the subject is far beyond the purpose of this work. The reader is referred to [DS95] for
a very readable introduction to the subject, and to the books [Hov99] and [Hir03] for a more
complete exposition. This appendix is supposed to collect some of the main results needed
throughout the mémoire; the focus is mainly on existence theorems for model structures.

B.1 Combinatorial model structures
Model categories form an invaluable tool in dealing with higher homotopies, but it is often
technical to check that a given families of morphisms define a model structure; moreover,
it is often hard to get a good understanding of the whole set of fibrations (or cofibrations).
There are, however, classes of model categories which are very well understood. For example,
one usually works with model categories which are cofibrantly generated. Here we recall the
definition:

Definition B.1.1. A cofibrantly generated model category is a model categoryM such that:

1. there exists a set I of maps that permits the small objects argument and such that a
map is a trivial fibration if and only if it has the RLP with respect to all the maps in
I;

2. there exists a set J of maps that permits the small objects argument and such that a
map is a fibration if and only if it has the RLP with respect to all the maps in J .

In a cofibrantly generated model category the functoriality of the factorization follows
immediately from the small object argument. Combinatorial model categories represent a
small variation on this idea: one adds hypotheses on the behaviour of the underlying category
M. Precisely, one gives the following definition:

Definition B.1.2. A combinatorial model category is a cofibrantly generated model category
M which is moreover presentable.

Combinatorial model categories have a number of good properties and are stable under a
lot of categorical operations. The key result in proving such stability results is the following
recognition theorem:

Theorem B.1.3. Let M be a presentable category and let W ⊂ Arr(M) be an accessible
subcategory of Arr(M). Let I be a small set of morphisms inM and assume that

1. W satisfies the two-out-of-three-axiom;

2. the set inj(W ) is contained in W ;

3. the intersection W ∩ cof(I) is closed under pushouts and transfinite composition.

Then C is a combinatorial model category with weak equivalences W , cofibrations cof(I) and
fibrations inj(W ∩ cof(I)).

83
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Proof. See [Bar07, Proposition 1.7].

Theorem B.1.4. Let M be a combinatorial model category and let C be a small category.
Then there exist two combinatorial model structure overMC:

• the projective model structure, where weak equivalences and fibrations are defined ob-
jectwise;

• the injective model structure, where weak equivalences and cofibrations are defined ob-
jectwise.

Proof. See [HTT, Prop. A.2.8.2].

B.2 Existence criteria
B.2.1 Transfer principle
I first learned of the theorem I am going to prove in the article [GS06]. Many different
versions have appeared in the literature, but the argument is essentially due to Quillen. I
am giving here a general enough statement to make it work in many cases of interest for
this mémoire; if the reader is interested in other formulations, he can look at [SS00, Lemma
2.3], [GoJa, Theorem II.6.8], [Hin97, Theorem 2.2.1].

Theorem B.2.1. Let F : C � D : G be an adjoint pair and suppose that C is a cofibrantly
generated model category. Let I and J be chosen sets of generating cofibrations and acyclic
cofibrations, respectively. Define a morphism f : X → Y to be a weak equivalence or a
fibration if G(f) is so. Suppose further that

1. the functor G commutes with sequential colimits;

2. a map in D with the LLP with respect to every fibration is a weak equivalence.

Then D becomes a cofibrantly generated model category. Furthermore the sets {F (i) | i ∈ I}
and {F (j) | j ∈ J} generate the cofibrations and the acyclic cofibrations of D respectively.

Proof. It is straightforward to check axioms MC1. to MC3. The proof of MC4. relies on
MC5., hence we begin by this last one. We will prove that every morphism f : X → Y in
D ca be factored as

X
j
// Z

q
// Y

where j is a cofibration and q is a trivial fibration. The proof is a variation of the small
object argument: we construct inductively a family of objects Zn together with cofibrations
jn : Zn → Zn+1 and maps qn : Zn → Y such that

qn = qn+1 ◦ jn+1

Set Z0 = X, j0 = idX and q0 = f . Define Zn+1 in the following way: let Sn+1 be the set
of triples (ϕ, j, ψ) where j : A → B is a morphism in J and ϕ and ψ are morphisms in C
making the diagram

F (A) ϕ
//

F (j)
��

Zn

qn

��

F (B)
ψ
// Y

commutative. Define now jn+1 : Zn → Zn+1 to be the pushout of the following diagram∐
Sn+1

F (A)

Sn+1F (j)
��

// Zn

jn+1

��∐
Sn+1

F (B) // Zn+1
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A formal adjunction argument shows that each F (j) has to be a cofibration in D; moreover,
the class of cofibration is saturated (because defined as intersection of saturated classes), so
that the morphism jn+1 : Zn → Zn+1 is a cofibration by construction. Finally, the universal
property of pushout produces a map qn+1 : Zn+1 → Y . Set

Z := lim−→
n

Zn

We obtain in this way a factorization of f : X → Y as q ◦ j, where j : X → Z is the inclusion
of Z0 = X into the colimit. This map is a cofibration because cofibrations are saturated.
We are left to show that q is a trivial fibration, i.e. that G(q) is a trivial fibration in C.
Consider the diagram

A

j

��

// G(Z)

G(q)
��

B // G(Y )

Since C is cofibrantly generated, both A and B are small. Since G commutes with sequential
colimits, this lifting problem becomes equivalent to

A

j

��

// G(Zn)

G(qn)
��

B // G(Y )

and a standard adjunction argument shows that this problem is equivalent to

F (A)

F (j)
��

// Zn

qn

��

F (B) // Y

which has solution by construction. In a similar way, but using I instead of J we can prove
that every morphism f : X → Y in D can be factored as q ◦ i where i is a cofibration with
the LLP with respect to every fibration and q is a fibration.

We finally prove MC4. The LLP of cofibrations with respect to trivial fibrations holds
exactly by definition of cofibration. Let f : A→ B be a trivial cofibration and factor it as

A
i−→ C

q−→ B

where i is a cofibration with the LLP with respect to every fibration and q is a fibration.
By hypothesis, i is a trivial cofibration; it follows by MC2. that q is a weak equivalence.
Therefore we can solve the following lifting problem:

A

f

��

i // C

q

��

B

s

>>

B

and so we can express f as a retract of i. It follows that f is has the LLP with respect to
all fibrations.

Remark B.2.2. Keeping track of the cardinals involved in the proof, it is possible to state a
more precise version of Theorem B.2.1. Namely, if we require the category C to be cofibrantly
generated with respect to a cardinal κ, then we will only need to require that the right adjoint
commutes with κ-filtered colimits.

Condition 2. is often hard to verify in practice. We give a standard argument, due to
Quillen, to check in practice when this condition holds:
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Proposition B.2.3. Let F : C � D : G be an adjunction and assume that C has a model
structure. Define a morphism f : X → Y in D to be a weak equivalence or a fibration if
G(f) is so. If

1. every object in D is fibrant, and

2. every object in D has a path object,
then every cofibration with the LLP with respect to every fibration is a weak equivalence.
Proof. Let f : A→ B be a cofibration with the LLp with respect to every fibration; since A
is fibrant by hypothesis, we can choose a retraction r : B → A of f because in the following
diagram

A

f

��

A

��
B //

r

??

∗
the lifting exists by assumption. This expresses f as retract of f ◦ r:

A
f
//

f

��

B

f◦r
��

r // A

f

��

B B B

so that we are reduced to show that f ◦ r is a weak equivalence. Let

B
i // BI

p
// B ×B

be a path object for B. In the commutative diagram

A
f
//

f

��

B
i // BI

p

��

B
(idB ,f◦r)

//

h

66

B ×B

the lifting exists by assumption. Let pk : B × B → B for k = 1, 2 be the two natural
projection; then pk ◦ p is a weak equivalence for the 2 out of 3 axiom, so that

p1 ◦ p ◦ h = idB
implies that h is a weak equivalence. Therefore

p2 ◦ p ◦ h = f ◦ r

implies that f ◦ r is a weak equivalence as well, completing the proof.

Finally, we state a slightly more general version of the previous theorem.

Theorem B.2.4. Let C be a cofibrantly generated model category. Assume that {Fi : D �
C : Gi}i∈I be a family of adjoint functors. Define a morphism f : X → Y in D to be a weak
equivalence or a fibration if Gi(f) is so for every i ∈ I. Suppose further that:

1. every functor Gi commutes with filtered colimits;

2. the functors Gi takes the saturation of the collection of all maps FjA → FjB arising
from maps A→ B in the generating family for the cofibrations of C and elements j ∈ I
to cofibrations of C;

3. a map in D with the LLP with respect to every fibration is a weak equivalence.
Then the weak equivalences and the fibrations we introduced in D define a cofibrantly gener-
ated model structure on D.
Proof. The proof is essentially unchanged. The only part that should be rewritten is the
proof of the factorization axiom, but the needed changes are straightforward. See [GoJa,
Theorem II.6.8] for an outline.
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B.2.2 Categories of monoids
Theorem B.2.5. Let C be a combinatorial monoidal model category. Assume that either
every object of C is cofibrant, or that C is a symmetric monoidal model category which satisfies
the monoid axiom. Defining a morphism f : A→ B in Alg(C) to be a weak equivalence or a
fibration if it is so in C, the category Alg(C) inherits a combinatorial model structure.

Proof. See [SS00, Theorem 4.1]

Proposition B.2.6. Let C be a combinatorial monoidal model category and let I be a small
category such that N(I) is sifted. Assume either that every object of C is cofibrant, or that
C satisfies the following pair of conditions:

1. the monoidal structure on C is symmetric and C satisfies the monoid axiom;

2. the model category C is left proper and the class of cofibrations in C is generated by
cofibrations between cofibrant objects.

Let W be the collection of weak equivalences in Cc and W ′ the collection of weak equivalences
in Alg(C)c. Then the forgetful functor

N(Alg(C)c)[W ′−1]→ N(Cc)[W−1]

preserves N(I)-indexed colimits.

Proof. See [HA, Lemma 4.1.4.13].

B.2.3 Categories of simplicial objects
We now turn to another interesting application of Theorem B.2.1. We fix a category C and
we look for the category of simplicial objects in C. For sake of completeness, we recall the
definition:

Definition B.2.7. Let C be any category. A simplicial object in C is a functor ∆op → C.
The (functorial) category of simplicial objects in C is denoted s C.

The first remarkable observation is that s C is always enriched over sSet. We follow
closely the construction given by Quillen [Qui67, p. II.1.7], but the idea goes back at least
to D. Kan. To build this enrichment we will employ the machinery of ends. We recall here
a basic result:

Lemma B.2.8. Let B be a category with products. Let A be a small category and let
F,G : Aop ×A → B be functors. The following statements hold:

1. if A is a discrete category then∫
A∈A

F (A,A) '
∏
A∈A

F (A)

2. denote by F ×G the functor

F ×G : Aop ×A
(F,G)

// B × B −×−
// B

Then ∫
A∈A

(F ×G)(A,A) '
∫
A∈A

F (A,A)×
∫
A∈A

G(A,A)

Proof. 1. Denote by C the product ∏
A∈A

F (A,A)

and let πA : C → F (A,A) be the canonical projection. Since A is discrete, we see that
{πA : C → F (A,A)}A∈A is a wedge over F . The universal property of the product
shows that this wedge is also a universal wedge.
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2. Recall the construction of the decomposition category of MacLane: if C is a category,
the objects of C§ are Ob(C) t Arr(C); we denote by A§ and f§ objects and arrows of
C when we think of them as objects of C§. Moreover, for each arrow f : A → B in C
we have two arrows A§ → f§ and B§ → f§. Adding the identities of objects makes Cğ

into a category. If H : Cop × C → D is a functor, then we obtain an induced functor
H§ : C§ → D, and H has an end if and only if H§ has limit, in which case the two of
them coincide (cfr. [Mac71, Proposition IX.5.1]).
In our case, we simply observe that (F ×G)§ = F §×G§, so that the lemma is a trivial
consequence of the fact that limits commutes with limits.

Theorem B.2.9. For every category C, the category s C is enriched over sSet.

Proof. Fix two simplicial objects X,Y ∈ Ob(s C) and a simplicial set K : ∆op → Set. We
want to define a bifunctor

M = MX,K,Y : ∆op ×∆→ Set

We define it on objects as:

M(m,n) := Kn ·HomC(Xn, Ym) =
∐
σ∈Kn

HomC(Xn, Ym)

If f : n1 → n2 and g : m1 →m2 are arrows in ∆ we define

M(f, g) : Kn2 ·HomC(Xn2 , Ym2)→ Kn1 ·HomC(Xn1 , Ym1)

to be the natural morphism induced by

f∗K : Kn2 → Kn1 , f∗X : Xn2 → Xn1 , g∗Y : Ym2 → Ym1

Consider the end of the functor M :

Map(X ×K,Y ) :=
∫

n∈∆
M(n,n)

If α : X ′ → X, β : Y → Y ′ and γ : K ′ → K are natural transformation we obtain another
natural transformation

Mα,γ,β : MX,K,Y →MX′,K′,Y ′

The universal property of ends produces now a unique map (cfr. [Mac71, Proposition IX.7.1])

Map(α× γ, β) :
∫

n∈∆
MX,K,Y (n,n)→

∫
n∈∆

MX′,K′,Y ′(n,n)

and the uniqueness shows that this assignment is functorial. We therefore get a well–defined
functor

Map: (s C)op × sSetop × s C → Set

We build the simplicial enrichment using this functor, via the formula:

Homs C(X,Y ; sSet) := Map(X ×∆•, Y )

First of all let us check the formula:

HomsSet(∆0,Homs C(X,Y ; sSet)) = Homs C(X,Y ) (B.1)

For every n ∈ Ob(∆) we can define a morphism

ωn : Homs C(X,Y )→M(n,n) = MX,∆0,Y (n,n)

by
ωn(ϕ) := ϕn
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Let f : n→m be a morphism in ∆. Then the diagram

M(n,n)
M(1,f)

&&

Homs C(X,Y )

ωn

77

ωm
''

M(n,m)

M(m,m)
M(f,1)
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commutes. In fact,

M(1, f)(ωn(ϕ)) = ϕn ◦ f∗Y = f∗X ◦ ϕn = M(f, 1)(ωn(ϕ))

Moreover, if
{ηn : {∗} →M(n,n)}n∈∆

is a wedge over M , the commutativity of the same square of above forces

ηn ◦ f∗Y = f∗X ◦ ηn

which means that {ηn}n∈∆ defines a natural transformation η : X → Y . This is obviously
enough to assert that {ωn}n∈∆ defines a universal wedge from Homs C(X,Y ) to M , that is

Homs C(X,Y ) '
∫

n∈∆
M(n,n)

showing that (B.1) holds.
Now let us define the composition for the simplicially enriched hom-sets. Given simplicial

objects X,Y, Z in s C and any simplicial set K we consider the functor

MX,K,Y ×MY,K,Z : ∆op ×∆→ Set

Since

MX,K,Y (n,m)×MY,K,Z(n,m) ' Kn · (HomC(Xn, Ym)×HomC(Yn, Zm))

we obtain (using composition in C) a dinatural transformation

α : MX,K,Y ×MY,K,Z →MX,K,Z

Lemma B.2.8 shows that this dinatural transformation induces a morphism

Map(X ×K,Y )×Map(Y ×K,Z)→ Map(X ×K,Z)

and the functoriality of this construction yields the desired composition map

Homs C(X,Y ; sSet)×Homs C(Y,Z; sSet)→ Homs C(X,Z; sSet)

The universal properties employed to construct this composition map implies immediately
the associativity; the identity is obviously defined using the identification (B.1), and again the
universal properties appearing in the construction imply that the unit diagram commutes.

Previous theorem is particularly interesting because it doesn’t make use of any assump-
tion on the category C. Adding some hypothesis we obtain an enrichment with better
properties, as tensor and cotensor. The result is the following:

Theorem B.2.10. If C is a category with coproducts, then s C is enriched with tensor over
sSet. If C has limits, then s C is enriched with cotensor over sSet.
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Sketch of the proof. Given a simplicial set K and a simplicial object X ∈ s C, define

(X ⊗K)n :=
∐
σ∈Kn

Xn

If ϕ : n→m is an arrow in ∆, define

ϕ∗X⊗K : (X ⊗K)m → (X ⊗K)n

as the map ∐
σ∈Km

inϕ∗
K

(σ)ϕ
∗
X

This defines a new simplicial object in s C, which realizes the tensor. More details can be
found in [Qui67, Proposition II.1.2].

The second main result concerns, instead, the model structure of s C. First of all recall
the following definitions:

Definition B.2.11. Let C be a category. A morphism f : X → Y is said to be an effective
epimorphism if it has kernel pair and it is the quotient of its kernel pair, that is if the diagram

X ×Y X
p1 //

p2
// X

f
// Y

is a coequalizer.

Definition B.2.12. Let C be a category. An object P ∈ Ob(C) is said to be projective if
f∗ : HomC(P,X)→ HomC(P, Y ) is surjective for every effective epimorphism f : X → Y .

Definition B.2.13. A category C has enough projectives if for each object X there is a
projective object P and an effective epimorphism P → X.

Lemma B.2.14. Let C be any category with pullbacks and let (T, µ, η) be a monad over C.
For any T -algebra (A, h) the map h : T (A)→ A is an effective epimorphism.

Proof. Let (A, h) be an algebra for the monad T . We claim that T (A) is projective in CT and
that h : T (A) → A is an effective epimorphism. First of all, observe that CT has pullbacks.
An arrow is an effective epimorphism if and only if it is a regular epimorphism, and as trivial
consequence we see that every split epimorphism is effective. However, the unit axiom says
that

h ◦ TηA = idA

i.e. h is a split epimorphism.

Theorem B.2.15. Let C be a category with finite limits and enough projectives. Define a
map f in s C to be a fibration (resp. a weak equivalence) if Homs C(P, f ; sSet) is a fibration
(resp. a weak equivalence) for each projective object P . If moreover C satisfies one of the
following extra conditions:

1. every object of s C is fibrant;

2. C is closed under inductive limits and has a set of small projective generators;

then s C has simplicial model structure.

Proof. The original proof can be found in [Qui67, Thm. II.4.4].

In general it is not straightforward to characterize projective objects in a category. As
consequence, the description of fibrations and weak equivalences given in the previous the-
orem might not be as explicit as one would hope. However, whenever there is a set of
projective generators, we can significantly reduce the number of needed checks.
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Proposition B.2.16. Let C be a category with finite limits and a set of projective generators
{Pi}i∈I such that for every object X in C there is an effective epimorphism∐

j∈J
Pij → X

Then a map f : X → Y in s C is a fibration (resp. a weak equivalence) in the sense of
Theorem B.2.15 if and only if Homs C(Pi, f ; sSet) is a fibration (resp. a weak equivalence)
for each index i ∈ I.

Proof. If a map is a fibration (resp. a weak equivalence) then the map Homs C(Pi, f ; sSet)
is a fibration (resp. a weak equivalence) by definition.

Conversely, assume that Homs C(Pi, f ; sSet) is a fibration (resp. a weak equivalence) for
all indexes i ∈ I; let P be any projective object in C. Choose an effective epimorphism

r :
∐
j∈J

Pij → P

Since P is projective, this map has a section s. We obtain in this way a retraction diagram

Homs C(P,X; sSet)

��

//
∏

Homs C(Pi, X; sSet)

��

// Homs C(P,X; sSet)

��

Homs C(P, Y ; sSet) //
∏

Homs C(P, Y ; sSet) // Homs C(P, Y ; sSet)

Since weak equivalences and fibrations of simplicial sets are stable under products, we obtain
that the map Homs C(P, f ; sSet) is a fibration (resp. a weak equivalence).
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