
Université de Bordeaux 1
Sciences et Technologies

U.F.R. Mathématiques et Informatique

Master Thesis

Expander Graphs and

Error Correcting Codes

Thesis Advisor Candidate

Prof. Chistine Bachoc José Miguel Pérez Urquidi

Academic Year 2009–2010

Acknowledgments

I am deeply grateful to the people without whom
this work would not have been possible,

to my supervisor, Prof. Christine Bachoc,
for all her time and patience while helping me write this thesis,

to my family, who has always supported
and encouraged me at all times,

to all my friends, for their kind words and shared moments.

Miguel Urquidi

Contents

Introduction 1

1 Graph Theory 7

1.1 Basic Definitions . 7

1.2 Attributes of a Graph . 9

1.3 Graphs Classes . 13

2 Eigenvalues of a Graph 15

2.1 Adjacency Matrix of a Graph . 15

2.2 Matrices Associated to a Graph . 18

2.3 Ramanujan Graphs . 20

3 Expansion of a Graph 25

3.1 Expander Graphs . 26

3.2 Bounds on the Expansion Rate . 26

4 Zig-Zag Products 33

4.1 Replacement Product . 33

4.2 General Zig-Zag Product . 34

4.3 Zig-Zag Product for Bipartite Graphs 35

5 The Margulis Expander Graphs 37

5.1 Margulis Construction . 37

5.2 Margulis as a Family of Expander Graphs 39

6 Coding Theory 43

6.1 Introduction to Coding . 44

6.2 Asymptotic Bounds . 47

7 Codes from Graphs 51

7.1 First Construction . 51

7.2 Second Construction . 56

8 Conclusions 65

Appendix 67

Bibliography 69

Introduction

When asked to list our day to day activities one may mention going to work,

practicing a sport, buying groceries or drinking a cup of coffee with a friend, among

many others. It seems that we fail to include “talking to people” in the list even

though we probably do so as a part of each of the listed activities. Talking to other

people is an everyday activity so frequent and common that we tend to overlook

it, and we may not realize its complexity. Essentially, it is transmitting a message

between two individuals, from a speaker to a listener. Although we talk using words,

the messages that we want to transmit are actually ideas. An idea is difficult to

transmit as it is, that is why an acceptable sequence of words is chosen to represent

the idea, which we call the encoding of the message. Note that the choice of the

encoding is not unique, there are different sentences that could express the same

idea, or we could decide to encode the same idea in a different language, sometimes

we might even resort to screaming instead of words to express pain. It should be

clear from the previous examples that different encodings are not equivalent, and

that some might prove more effective or efficient than others. Upon reception of the

encoded message, it is the turn of the listener to implement the inverse routine, which

is called the decoding, where we transform the words back to ideas and we are able

to understand each other.

The transmission of messages does not pertain only to the speaker and listener,

it is also important the channel through which one is communicating, because if the

channel is noisy it can produce some errors. This noisy channel can be thought of

as the interference produced by the noise from cars, from a crowd, or by speaking

over the phone. A simple solution to this problem is to ask the speaker to repeat

what he said, and hopefully we will understand the second or third time he repeats

it. However, a more efficient approach is to correct the error ourselves, which we do

in daily life, probably without realizing it.

2 Introduction

All the ideas expressed above are intuitively the field of study of Coding Theory, a

rich and active field initiated by Shannon’s work. To solve the noisy channel problem,

he suggested creating a dictionary or code of acceptable words to be transmitted, and

a sense of distance between the words, not far at all from the concept of a real life

dictionary. Then upon reception of an encoded message, if it is in the dictionary it

is accepted, otherwise it has been corrupted by the channel and we try to find the

closest word to it in the dictionary. This is called an error-correcting code. The

principle goal of this work, is to present constructions of good error-correcting codes.

I Cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg.

That was another example of an error-correcting code, our mind checks for the

closest possible words, we do this automatically and it enables us to read the previous

sentence. All along we have been talking about transmitting messages, which are ideas

by the use of words, but the messages could be anything, their nature is arbitrary.

This is one of the reasons why error-correcting codes are important, because they

can be used in numerous different situations. Just to mention a few examples they

are implemented to overcome the lost of data by scratches when reading a CD, to

compensate for interferences over long distances in cell phone calls, to read barcodes

of products, and in all communications between computers over the internet. Once

we embrace the fact that the nature of the messages is arbitrary, we can find error-

correcting codes almost everywhere.

A dictionary has two conflicting desired properties, the distance between its words

and the amount of words in it, the first allows to correct errors, while the second makes

the code more efficient. As mentioned before, our goal is to find good error-correcting

codes, and good codes posses a compromise between the two properties. We are in

fact interested in finding not single good codes but rather families of good codes,

better explained as asymptotically good codes in the last chapter. One can relate a

code to linear algebra by a matrix, called the parity check matrix of the code.

A graph is roughly speaking, a set of points of vertices together with a set of lines

Introduction 3

or edges that join pairs of vertices. As messages in coding theory, the nature of the

vertices and edges of a graph is arbitrary, which renders them very versatile, among

others fields they are present in mathematics, social sciences, computer science, and

statistical physics.

Suppose, for example, that in a graph the vertices represent computers while edges

between them represent that the computers are connected to each other. We would

like the computers to be well connected amongst them, this is the notion of expansion

of a graph, which can be measured in many different ways, one of which is counting

outgoing connections of small subsets. If this was all we could simply consider every

computer to be connected to every other computer, providing a good expansion for

the associated graph. However, if the wiring to establishing the connections between

computers has a high price, we would like to achieve expansion without too many

connections. Based on these observations, and wondering if constructions of graphs

with good expansion can be given for any number of computers, one arrives to the

definition of a family of expander graphs. A family of expander graphs has two

conflicting desired properties, it should be well connected which requires edges, but

at the same time it should have sparse edges. One can also associate a matrix to a

graph, which is called the adjacency matrix of the graph. Studying the eigenvalues of

the matrix one can infer properties about the graph, particularly about its expansion.

Using their associated matrices, we can link the two fields of Coding Theory and

Graph Theory. Furthermore, a proper construction we can match the conflicting

properties of a graph to those of a code, thus finding a good graph leads us to

a good code, in other words, from an explicit family of expander graphs we can

construct explicit error-correcting codes. We provide two distinct constructions of

asymptotically good error correcting codes. The first one utilizes the link between the

fields in a very straightforward fashion, considering the adjacency matrix of certains

graphs as the parity check matrix of the code. The second construction uses a family of

expander graphs and a fixed small code to construct a larger code for each graph in the

family, thus providing asymptotically good error-correcting codes. This construction

was further improved by Gilles Zémor by using a special kind of graph in the family

of expander graphs, the Ramanujan graphs.

4 Introduction

From what has been exposed previously we divide the thesis in 6 chapters. We

give a brief summary of what is done in each one of them.

• Chapter 1. The objective of this chapter is to introduce the reader to most of

the definitions of Graph Theory that will be used in subsequent chapters.

We start by giving the basic definitions of the different types of graphs, such

as directed graph, undirected graph, simple graph, multigraph, finite graph and

infinite graph.

We then introduce several concepts on the field, amongst other paths and

cycles in a graph, neighbors of a vertex, isolated vertices, the degree of a vertex

and degree of a graph. We also introduce some useful notation for the set of

edges between sets, the neighbors of a vertex and neighbors of a set.

Important and common families of graphs are also mentioned, for example

the complete graphs, bipartite graphs and complete bipartite graphs.

• Chapter 2. The main purpose of this chapter is to provide the link between

Graph Theory and Linear Algebra, by defining the associated matrices to a

graph G, particularly its adjacency matrix.

First, we define formally the adjacency matrix of a graph G. Then we

consider its eigenvalues and define them to be its spectrum. We provide a few

minor results involving the eigenvalues, and we prove the Expander Mixing

Lemma.

Then we continue to define other matrices associated to a graph G, such

as its gradient, its divergence and its Laplacian.

• Chapter 3. Here, our goal is to establish the concept of expansion and derive

upper and lower bounds for it.

Again, we introduce the new concepts, which are the expansion h(G) of a

graph G, and a family of expander graphs.

Introduction 5

We then proceed to prove the bounds on the expansion d−λ2

2
6 h(G) 6√

2d (d− λ2). This shows clearly that there is strong relation between the

eigenvalues of the adjacency matrix of a graph and its expansion.

• Chapter 4. This section is dedicated to introduce the constructions of new

graphs from previous graphs.

This is a rather short chapter, introducing the replacement product of two

graphs, the regular zig-zag product and the zig-zag product for bipartite graphs,

which can be used to build families of expander graphs.

• Chapter 5. Finally in this chapter, we provide an explicit construction of ex-

pander graphs, which are due to Margulis and bear the same name.

We start by giving an infinite analog of the Margulis construction. Then

we define formally the family of Margulis graphs. Finally we prove that given

family of graphs is indeed a family of expander graphs.

• Chapter 6. Before we give the constructions of error correcting codes, we must

first introduce Coding Theory and related definitions and concepts. We explain

the noisy channel problem and the solution suggested by Shannon of using a

dictionary of codewords.

We define the Hamming distance between vectors, along with the distance

of a code and its rate. Then, we give a formal definition of what we are after,

a family of asymptotically good codes.

Next, we introduce linear codes and its link to Linear Algebra through the

parity check matrix of a code C. Directly followed by proving some bounds

on the distance and rate of a code, namely the Gilbert-Varshamov and the

Sphere-Packing bounds.

6 Introduction

• Chapter 7. In this chapter we yield two different constructions of asymptotically

good and efficient linear codes, based on the explicit constructions of expander

graphs.

At this point we explain the first, which uses bipartite expander graphs.

The decoding uses a called belief propagation algorithm, which based on the

neighbors of a vertex x of the graph, it flips its related bit in the code if it has

more unsatisfied than satisfied neighbors.

To conclude we provide the second construction, which was presented by

Sipser and Spielman using regular expander graphs, then later improved by

Gilles Zémor by considering the special case of Ramanujan graphs and using a

small variant of the decoding algorithm. The construction uses both bipartite

Ramanujan graphs and a small linear code to build a larger linear code. The

decoding algorithm consists of applying complete decoding of the smaller linear

code induced on the vertices of the Ramanujan graph, alternating between its

left and right sets in each iteration.

Chapter 1

Graph Theory

The objective of this chapter is to provide an introduction to graph theory, es-

tablishing most of the concepts and vocabulary that will be used in the following

chapters, it consists mainly in definitions in the field. Only the basics will be covered

here, more definitions and results will be introduced in later chapters as they are

needed.

Let it be clear that, although it is a vast and interesting area, this work is not

focused in graph theory, rather in it versatility to be applied to other fields, in our case

to build efficient error correcting codes. The reader may consult the books [1, 3] for

more detailed explanations of the concepts introduced in this chapter, or to further

read on the subject.

1.1 Basic Definitions

A graph is intuitively a set of points and set of lines, each of which joins a pair

of points. The points are referred to as vertices, and the lines are also known as

8 Graph Theory

edges. The nature of the vertices and the edges is arbitrary, this is what gives graphs

such versatility. For example, the vertices could represent men or women, and then

the edges the relationships between them; or the vertices could be computers, while

the edges signify that two computers can communicate, which would be a simple

representation of the internet. In our case, vertices may be variables or constraints in

a system, and edges indicating which variables are susceptible to which constraints,

which can be used to construct a code.

We proceed now to give the formal definition of a graph.

Definition 1.1.

A graph G is an ordered pair (V (G), E(G)), which consists of the disjoint sets of

vertices V (G) and edges E(G), together with an incidence function ψG associ-

ating each edge with an unordered pair of not necessarily distinct vertices. When the

context is clear, the sets are simply denoted V = V (G) and E = E(G).

The form the graph has been defined is particularly known as undirected graph,

if the incidence function associates instead ordered pairs of vertices then the graph

would be called directed graph.

The definition is very general, it allows loops and multiple edges. A loop is and

edge associated to a pair {v, v} of vertices, and if several edges are associated to the

same pair of vertices such vertices are said to have multiple edges. A graph allowing

this is commonly known as multigraph, and it is said to be a simple graph if there

are no loops or multiple edges.

This definition also allows for infinite graphs to take place, in which the cardi-

nality of the set of vertices or edges is infinite, if not it is a finite graph. We will

usually consider finite graphs unless otherwise specified.

As we will more often consider simple finite graphs in this work, it is perhaps

better to think of a more simple definition for them.

1.2 Attributes of a Graph 9

Definition 1.2.

An undirected simple (finite) graph G = (V,E) consists of a finite set V of

vertices together with a set E ⊂ V 2 of edges, where E is a set of unordered pairs of

distinct vertices.

Remark 1.3.

Note that a simple undirected graph G can be considered the equivalent of a multi-

edge directed graph H, where V (G) = V (H), and an edge {u, v} ∈ E(G) if and only

if we have both (u, v), (v, u) ∈ E(H).

We might use sometimes the shorter notation uv for an undirected edge. Addi-

tionally, for a directed edge (u, v), we say that the edge exits or starts at u, and

that it enters or ends at v. Taking in consideration Remark 1.3, in an undirected

graph we can consider that edges both exit and enter a given vertex u. Both in a

directed and an undirected graph, for an edge e = (u, v), it is said that the edge is

incident to u and v, that u and v are the endpoints of the edge e, and that u and v

are adjacent to each other.

1.2 Attributes of a Graph

Given two distinct vertices u, v ∈ V , a path from u to v is a sequence of distinct

vertices u,w1, . . . , wn−1, v such that from each vertex there is an edge connecting

it to the next one in the sequence, and the path is said to be of length n. If the

given vertices u, v are equal, then the sequence of vertices is called instead a cycle.

Intuitively, we can walk on the edges from u to v. Now we can introduce the notion

of connectedness.

10 Graph Theory

Definition 1.4.

In a graph G, two vertices u and v are said to be connected if there is a path from

u to v, otherwise, they are disconnected. We say that G is a connected graph if

every pair of distinct vertices are connected, otherwise, it is a disconnected graph.

A vertex is considered isolated if it is not connected to any other vertex in the

graph. This is related to the number of edges associated to the vertex, which we

define now as its degree.

Definition 1.5.

The degree of a vertex v is the number of edges incident to the vertex, with each

loop counted twice, and it is denoted deg(v). The degree of a graph G = (V,E) is

defined as

∆(G) = max
v∈V

deg(v).

Therefore, an isolated vertex is a vertex of degree 0. A graph G such that all its

vertices have the same degree is called a regular graph, and if all its vertices have

the same degree d then it is called a d-regular graph or regular graph of degree d.

At last, a (n,d)-graph is a d-regular graph with n vertices.

The average degree of the vertices of a graph G = (V,E) is denoted degG or simply

deg if the context is clear, thus, explicitly we have

degG · |G| =
∑
v∈G

deg(v).

A subgraph G′ of a graph G = (V,E) is a subset of the vertices V ′ ⊂ V , along

with a subset of the edges E ′ ⊂ E such that for all uv ∈ E ′ we have u, v ∈ V ′. For

any given subset S of the vertices V of a graph G, we define the induced subgraph

GS of G as the graph whose vertex set is V (GS) = S, and whose edge set consists

1.2 Attributes of a Graph 11

of all edges in G whose endpoints are contained in S, i.e. the edge set is E(GS) =

{uv ∈ E : u, v ∈ S}.

For a vertex v, the vertices to which it is associated by an edge are called its

neighbors.

Definition 1.6.

The neighbors of a vertex v of a graph G = (V,E) are defined as

Γ(v) = {u ∈ V : uv ∈ E}.

Analogously, for a subset S ⊂ V , we define the neighbors of the set as

Γ(S) = {u ∈ V \ S : ∃v ∈ S such that uv ∈ E}.

Notice that in a simple graph, the number of neighbors of a vertex v is equal to

its degree, i.e. Γ(v) = deg(v). This notation for neighbors gives us a way to manage

the vertices associated to a vertex, to manage the edges between sets we introduce

the following.

Definition 1.7.

In a graph G = (V,E), for subsets of vertices S, T ⊂ V , we denote the set of edges

from S to T by

E(S, T) = {uv ∈ E : u ∈ S, v ∈ T}.

The edge boundary of a subset S of vertices is ∂S = E(S, S).

Particularly, for a subset S ⊂ V we denote the set E(S, S) simply as E(S). Also

note that in an undirected graph ∂S = ∂S. Observe that with this notation the

induced subgraph GS of a graph G has edge set E(GS) = E(G) ∩ E(S). Finally, we

12 Graph Theory

remark that analogously, the neighbors Γ(S) of a subset S can be thought of as the

vertex boundary of the subset.

We will now establish the concepts of diameter and radius of a graph, but first we

must define a sense of distance. The distance d(u, v) between two vertices u, v of a

graph G is the length of a shortest path joining them, if there is no such path then

we define d(u, v) =∞.

Definition 1.8.

The diameter diam(G) of a graph G = (V,E) is the longest distance between any

two vertices in it,

diam(G) = max
u,v∈V

d(u, v).

While the radius rad(G) of the graph is the minimum distance at which all vertices

may reach a common vertex,

rad(G) = min
u∈V

max
v∈G

d(u, v).

We conclude this chapter by introducing the concept of automorphism of a graph.

Definition 1.9.

An automorphism of a graph G = (V,E) is a permutation π of the vertices such

that uv ∈ E if and only if π(u)π(v) ∈ E.

The automorphisms of a graph reflect its symmetries, if an automorphism π sends

u to v, then these vertices are similar. A graph in which all vertices are similar is

called vertex-transitive, note that in such a graph all permutations of the vertices

define an automorphism. On the other hand, if there are no two similar vertices the

graph is called asymmetric, and it has only the identity as an automorphism. We

remark that the set of automorphisms of G forms a group.

1.3 Graphs Classes 13

1.3 Graphs Classes

In this section we briefly describe some common classes or families of graphs,

which we will often refer to in coming chapters. Actually, we have already mentioned

some classes, such as the class of regular graphs. Now, consider G = (V,E) to be a

graph with |V | = n for the following definitions.

A graph G is called a path graph, if there is a sequence of all its vertices forming

a path, and if so it is denoted as G = Pn.

Analogously, G is a cycle graph, denoted Cn, if all its vertices form a cycle.

The graph G is a complete graph, denoted Kn, if for every u, v ∈ V there exists

an edge connecting them. Notice that it is a (n-1)-regular graph.

If the set of vertices V can be decomposed into two disjoint sets A and B, such

that for every uv ∈ E we have u ∈ A and v ∈ B (or vice versa), then G is known to

be a bipartite graph, and it is denoted as G(A,B,E). The set A is called the left

vertex set, and B the right vertex set. Additionally, if all vertices in A have the same

degree d, then G is said to be a d-left-regular graph.

A particular case of bipartite graphs, if |V | = n + m, |A| = n, |B| = m, and

for every u ∈ A and v ∈ B we have that uv ∈ E, then G is a complete bipartite

graph, denoted Kn,m. Notice that in this case G is a |B|-left-regular graph.

The n-cube Qn is the graph whose vertex set is the set of all n-tuples of 0’s

and 1’s, where there is and edge between two n-tuples if they differ in precisely one

coordinate. We remark that the n-cube has 2n vertices, and it is a n-regular graph.

There is an important family of graphs, which will become vital for us in one of the

constructions of error correcting codes, we are talking about the family of Ramanujan

14 Graph Theory

graphs. However, at this point we are not in no position to even define them, in the

next chapter we will introduce a link between graphs and linear algebra which, among

other benefits, will allow us to define a Ramanujan graph.

Later, we will introduce what will be called a family of expander graphs, which

is an infinite set of graphs satisfying some conditions. The goal of this paper is to

provide constructions of error correcting codes. We will supply two constructions,

both of which rely on families of expander graphs.

Chapter 2

Eigenvalues of a Graph

There is a virtuous way to link graphs to linear algebra, more specifically, we can

relate a graph to a matrix called its adjacency matrix. This is indeed a very useful

approach, since by studying the matrix and its eigenvalues we can infer properties

about the graph. In this chapter we introduce all definitions regarding this connection,

and we give a few results.

2.1 Adjacency Matrix of a Graph

We begin by giving the formal definition of the forementioned adjacency matrix.

Definition 2.1.

Let G be a graph with n vertices, labeled V = {u1, . . . , un} from 1 to n. The

adjacency matrix of G, denoted A(G), is a n× n matrix whose (i, j) entry is the

number of edges in G between ui and uj.

16 Eigenvalues of a Graph

We may refer to the entry (i, j) as the entry (u, v), where u and v are the i-th and

j-th vertices in the labeling. Also, when the context is clear, we denote the matrix

as A = A(G).

This matrix has real entries and is clearly symmetric, hence A has n real eigen-

values, which we denote by λ1 > λ2 > . . . > λn, and we can also associate to it an

orthonormal system of eigenvectors e1, . . . , en with Aei = λei. We refer to the eigen-

values of A(G) as the spectrum of the graph G. As mentioned before, we can deduce

properties of the graph from the eigenvalues of the matrix, here are some examples

for a d-regular graph.

Remark 2.2.

• λ1 = d, and its corresponding eigenvector is e1 = (1/
√
n, . . . , 1/

√
n).

• The graph is connected if and only if λ1 > λ2.

• The graph is bipartite if and only if λ1 = −λn.

We introduce as well a more general definition of adjacency matrix.

Definition 2.3.

Let G = (V,E) be a graph, L,R ⊂ V with |L| = l and |R| = r. The sets-

adjacency matrix between L and R, denoted A(L,R), is a l × r matrix whose

(u, v) entry is the number of edges in G between u and v (where u ∈ L and v ∈ R).

Notice that the adjacency matrix is a particular case of the set-adjacency matrix,

since A(G) = A(V (G), V (G)). This second definition will come in handy in some

cases, especially when working with bipartite graphs.

Given a d-regular graph G with n vertices, we denote λ = λ(G) = max{|λ2|, |λn|}.
Since λ2 > . . . > λn, we have that λ is the largest absolute eigenvalue apart from λ1.

We are now in position to prove the following useful bound.

2.1 Adjacency Matrix of a Graph 17

Lemma 2.4. (Expander Mixing Lemma)

Let G be a d-regular graph with n vertices, then for all S, T ⊂ V we have∣∣∣∣|E(S, T)| − d
|S||T |
n

∣∣∣∣ 6 λ
√
|S||T |.

Proof.

Let 1S and 1T be the characteristic column vectors of S and T, and expand them

in the orthonormal basis of eigenvectors, 1S =
∑

i αivi and 1T =
∑

j βjvj. We obtain

|E(S, T)| = 1t
S A 1T = (

n∑
i=1

αivi) A (
n∑
j=1

βjvj).

This gives
∑

i λi αiβi from the orthogonality of the vectors. Using Remark 2.2 we

have that

α1 =< 1S, e1 >=
|S|√
n
, β1 =

|T |√
n
, and λ1 = d,

where e1 = (1/
√
n, . . . , 1/

√
n). Therefore

|E(S, T)| = d
|S||T |
n

+
n∑
i=2

λi αiβi,

which by definition of λ gives

∣∣∣∣|E(S, T)| − d
|S||T |
n

∣∣∣∣ 6 λ
n∑
i=2

|αiβi|.

Using Cauchy-Schwartz we obtain the result∣∣∣∣|E(S, T)| − d
|S||T |
n

∣∣∣∣ 6 λ ‖α‖ ‖β‖ 6 λ
√
|S||T |.

18 Eigenvalues of a Graph

Notice that the term d |S||T |
n

is the expected number of edges between S and T

in a d-regular graph. The lemma tells us that if λ is small, then so is the difference

between the actual number of edges in the graph G and the expected number of edges

if it was a random graph. The graph is almost random in this sense. The converse of

this Lemma is also true, we state it without proof.

Lemma 2.5. (Converse of the Expander Mixing Lemma)

Let G be a d-regular graph with n vertices. Suppose that for every two disjoint

sets S, T ⊂ V we have ∣∣∣∣|E(S, T)| − d
|S||T |
n

∣∣∣∣ 6 ρ
√
|S||T |,

for some real positive ρ, then λ 6 O(ρ+ ρ log(d
p
)).

Proof.

A proof of the previous Lemma can be found in [2].

2.2 Matrices Associated to a Graph

The classical Laplace operator is defined as ∆(f) = div(grad(f)), we will define

an analogue linked to graphs, the discrete Laplacian, which we will find useful. First

we must define the analogues to the gradient and the divergence, then the form of

the Laplacian will turn up naturally.

Let G = (V,E) be a directed graph, then using the orientation of its edges we

define K to be the V × E incidence matrix of G, whose entries are

2.2 Matrices Associated to a Graph 19

Ku,e =


+1 if the edge e starts at the vertex u,

−1 if the edge e ends at the vertex u,

0 otherwise.

Definition 2.6.

Let f : V → R be a function on the vertices of G, which we view as a row vector

indexed by V . The gradient operator maps f to fK, a vector indexed by E.

Note that it measures the change of f along the edges of the graph, if e is the

directed edge (u, v), then

(fK)e = f(u)− f(v).

One could think of it as a potential difference on the vertices.

Definition 2.7.

Let g : E → R be a function on the edges of G, which we view as a column vector

indexed by E. The divergence operator maps g to Kg, a vector indexed by V .

Considering g as a flow, the evaluation of the divergence at a vertex gives the total

outbound flow

(Kg)v =
∑

e starts at v

ge −
∑

e ends at v

ge.

We want to define the Laplacian for undirected graphs, however, the Laplacian is

defined in terms of matrices that require an oriented graph to be well defined. Hence,

given an undirected graph G we consider the directed graph G2, such that it has the

same vertex set as G1 and its edges are in bijection with those of G, except that

they have some arbitrary orientation assigned. The gradient and divergence matrices

20 Eigenvalues of a Graph

are defined on the auxiliary graph G2, while the Laplacian is defined on the original

graph G. Beforehand, we assert that the Laplacian is independent of the arbitrary

orientation of the edges in G2.

Definition 2.8.

Let f : V → R be a function, the Laplacian of an undirected graph G is the

operator that maps f to KKT f . The matrix L = LG = KKT is called the Laplacian

of the graph.

One can easily observe that L is a |V | × |V | symmetric matrix with

Lu,v =

 −1 if uv ∈ E,

deg(v) if u = v.

Also, from the remark after Definition 2.6 of the gradient, we obtain

fLfT = fKKTfT = ‖fK‖2 =
∑
uv∈E

(f(u)− f(v))2. (2.1)

We can observe from this expression that the discrete Laplacian does not depend on

the direction of the edges used to define the gradient and the divergence.

2.3 Ramanujan Graphs

Now that we have introduced the concept of adjacency matrix and the eigenvalues

of a graph, we can now define a new family of graphs. A Ramanujan graph, named

after Srinivasa Ramanujan, is a regular graph whose difference between the first and

second eigenvalues of its adjacency matrix is almost as large as possible.

2.3 Ramanujan Graphs 21

Definition 2.9.

Let G be a connected d-regular graph with n vertices, and let λ1 > . . . > λn be

the eigenvalues of its adjacency matrix A(G). Whenever there exists λi with |λi| < d,

define

λ(G) = max
|λi|<d

|λi|.

A Ramanujan graph is a d-regular graph for which λ(G) is defined and

λ(G) 6 2
√
d− 1.

We will mention a few easy examples of graphs that satisfy this condition, and

therefore are Ramanujan graphs.

Example 2.10.

• The complete graph K3 has the adjacency matrix

A(K3) =

0 1 1

1 0 1

1 1 0

 ,

and hence its characteristic polynomial is λ3− 3λ− 2. Then, the eigenvalues of

the graph K3 are −1 and 2, which means that λ(K3) = 1. Since K3 is a 2-regular

graph, so d = 2, and we clearly obtain that it satisfies λ(K3) 6 2
√
d− 1.

• In general, the complete graph Kn is an (n− 1)-regular graph, whose character-

istic polynomial is

(λ− d)(λ+ 1)d,

where d = n − 1. Thus λ(Kn) = 1, and we can see that the complete graph

satisfies λ(Kn) 6 2
√
d− 1 as long as d > 2, i.e. for any n > 3.

22 Eigenvalues of a Graph

• Another example of a Ramanujan graph is the complete bipartite graph Kr,r. It

is a r-regular graph whose adjacency matrix has only eigenvalues are r,−r and

0. It can be verified that its characteristic polynomial is

(λ− r)(λ+ r)λ2r−2.

Hence, λ(Kr,r) = 0 for any r > 2 (the graph itself has at least 4 vertices). From

this it is obvious that it satisfies the condition to be a Ramanujan graph.

In the next chapter we will introduce the concept of expansion of a graph, which

briefly explained measures how well connected a graph is. It will then become appar-

ent that Ramanujan graphs have good expansion, it is therefore not strange that our

examples of Ramanujan graphs were the complete graphs, and its bipartite analogous.

As we will later see, it is important to us not only to define families and classes of

graphs, but to provide constructions of elements of the families. It will be particularly

important to have constructions of elements of a family of graphs of constant degree

d and arbitrary size n. Although we have already mention an infinity of Ramanujan

graphs, they are all of strictly increasing degree. Since Ramanujan graphs will be

used in one of the constructions of error correcting codes, we briefly outline one

of the explicit constructions of Ramanujan graphs of some constant degree. The

construction is due to Lubotzky, Phillips and Sarnak [5].

Let p and q be distinct primes with p ≡ q ≡ 1 mod 4, and let u be an integer

such that u2 ≡ −1 mod q. The equation a2 + b2 + c2 + d2 = p is known to have

8(p + 1) solutions, among which there are exactly p + 1 with a > 0 and b, c, d even.

To each such solution v = (a, b, c, d) we associate the matrix

Vv =

(
a+ ub c+ ud

−c+ ud a− ub

)
,

which gives us a total of p + 1 matrices in PGL2(Z/qZ). From this matrices it is

possible to construct a Ramanujan graph G, which is a (p + 1)-regular graph, as

2.3 Ramanujan Graphs 23

seen in [5]. Then, given that there are an infinite number of primes q congruent to 1

modulo 4, we get an infinite family of Ramanujan graphs of constant degree p+ 1.

24 Eigenvalues of a Graph

Chapter 3

Expansion of a Graph

For a given subset of vertices of a graph G, we could wonder about of how well

it connects to the rest of the graph, that is the concept of expansion, and there are

many different ways to measure it. Although there are other, we will mainly focus

on the approach of expansion by edges. Then a family of graphs such that it satisfies

some conditions on our definition of expansion will be called a family of expander

graphs.

In this chapter we start with some formal definitions, then using the associated

matrices of a graph we will derive some important results on expansion, which will

show that the eigenvalues are closely related to expansion, particularly the first two

eigenvalues and its difference which is known as spectral gap.

26 Expansion of a Graph

3.1 Expander Graphs

Definition 3.1.

The edge expansion rate of a graph G = (V,E) is defined as

h(G) = min
{S⊂V :|S|6 |V |

2
}

|∂S|
|S|

.

We may denoted it simply as h if the context is clear. We now introduce the

concept of expander graphs.

Definition 3.2.

A sequence of d-regular graphs {Gi}i∈N of increasing size with i is a family of

expander graphs if there exists a ε > 0 such that h(Gi) > ε for all i.

3.2 Bounds on the Expansion Rate

In this chapter we present a lower and upper bound on the edge expansion rate

h(G) of a graph d-regular graph G, this bounds relate the expansion of the graph to

its eigenvalues. The bounds that we will prove are

d− λ2

2
6 h(G) 6

√
2d (d− λ2), (3.1)

where the spectrum of G is λ1, . . . , λn. Since for d-regular graphs λ1 = d, we observe

that the inequality depends only on the first two eigenvalues of the graph. The

quantity d− λ2 is known as the spectral gap.

3.2 Bounds on the Expansion Rate 27

In order to prove this result we fist prove some lemmas.

Lemma 3.3.

Let G = (V,E) be a simple connected (n, d)-graph. Then we have

d− λ2

2
6 h(G),

where h(G) is the expansion of the graph, and λ2 is its second largest eigenvalue.

Proof.

Let S ⊂ V be a subset such that h(G) = |∂S|/|S| with |S| 6 n/2. Consider the

vector f = |S| 1S − |S| 1S, where 1X denotes the characteristic vector of the set X.

We compute

‖f‖2 =
n∑
i=1

fi = |S|2|S|+ |S|2|S| = |S||S|(|S|+ |S|) = n |S||S|.

Let A = (ai,j) be the adjacency matrix of G, hence

fAfT =
n∑

i,j=1

fiai,jfj =
∑
ij∈E

fifj = 2(|E(S)||S|2 + |E(S)||S|2 − |S||S||∂S|).

Using that G is d-regular we further obtain the equalities

2|E(S)| = d|S| − |∂S|,
2|E(S)| = d|S| − |∂S|.

Finally we clarify that

fAfT = f 2
2λ2 + . . .+ f 2

nλn 6 λ2 ‖f‖2 .

Using all the previous calculations, together with the fact that h(G) = |∂S|/|S| and

|S| > n/2 provides

28 Expansion of a Graph

λ2 >
fAfT

‖f‖2
=
nd|S||S| − n2|∂S|

n|S||S|
= d− n|∂S|

|S||S|
> d− 2h(G),

and solving the inequality for h(G) proves the lemma.

The previous is used to prove the lower bound, while the proof of the upper bound

will be divided in two lemmas, but before we continue we present some notation. We

denote the set {1, 2, . . . , n} as [n]. For a vector v = (v1, . . . , vn), its positive part

v+ consists of replacing its negative entries with zeroes and leaving the rest as it is,

or more clearly v+
j = max{0, vj}. The support of the vector v, denoted supp(v), is

the set of indexes where vj is not zero, explicitly supp(v) = {j ∈ [n] : vj 6= 0}. We

now proceed to prove the two following lemmas.

Lemma 3.4.

Let G = (V,E) be a simple connected (n, d)-graph. Then there exists a function f

such that

fLfT

‖f‖
6 d− λ2,

where L is the Laplacian of the graph, and λ2 is its second largest eigenvalue.

Proof.

Let g be an eigenvector associated to λ2, and let f = g+ and V + = supp(f). We

can assume that V + has at most n/2 vertices (otherwise take −g instead of g and

redefine f and V + accordingly).

Observe that for x ∈ V + we have

(Lf)x = dfx −
∑
y∈V

axyfy = dgx −
∑
y∈V +

axygy

6 dgx −
∑
y∈V

axygy = (Lg)x = (d− λ2)gx,

3.2 Bounds on the Expansion Rate 29

thus (Lf)x 6 (d− λ2)gx. Now we calculate

fLfT =
∑
x∈V

fx(Lf)x 6
∑
x∈V

fx(d− λ2)gx =
∑
x∈V +

g2
x(d− λ2)

= (d− λ2)
∑
x∈V +

g2
x = (d− λ2)

∑
x∈V

f 2
x = (d− λ2) ‖f‖2 ,

and therefore fLfT 6 (d−λ2) ‖f‖2. Solving the inequality for the spectral gap gives

the desired result.

Lemma 3.5.

Let G = (V,E) be a simple connected (n, d)-graph, and let f be the function used

in the proof of the previous lemma. Then f satisfies

h(G)2

2d
6
fLfT

‖f‖2
,

where L is the Laplacian of the graph, h(G) is its edge expansion rate, and λ2 is its

second largest eigenvalue.

Proof.

We define the auxiliary quantity Bf , which depends only on f , as

Bf =
∑
xy∈E

|f 2
x − f 2

y |.

We will estimate its value in two different ways to arrive to the desired inequality.

First, using the Cauchy-Schwartz inequality we get

Bf =
∑
xy∈E

|fx + fy||fx − fy| 6
√∑

xy∈E

(fx + fy)2 ·
√∑

xy∈E

(fx − fy)2. (3.2)

For the left square root we obtain

30 Expansion of a Graph

√∑
xy∈E

(fx + fy)2 =

√∑
xy∈E

(f 2
x + f 2

y + 2fxfy)

6

√
2
∑
xy∈E

(f 2
x + f 2

y) (3.3)

=

√
2d
∑
x∈V

f 2
x =

√
2d ‖f‖ .

While for the right square root, using (2.1), one obtains√∑
xy∈E

(fx − fy)2 = ‖fK‖ . (3.4)

The equations (3.2), (3.3) and (3.4) give the upper bound Bf 6
√

2d ‖f‖ ‖fK‖.

Now, we proceed to estimate Bf in a different way. Before we begin, without loss

of generality, consider the fi’s with the ordering fi+1 6 fi for all 1 6 i 6 n− 1. The

second estimate is

Bf =
∑
xy∈E,
x<y

(f 2
x − f 2

y) =
∑
xy∈E,
x<y

(
y−1∑
i=x

(f 2
i − f 2

i+1)

)

=
n−1∑
i=1

(f 2
i − f 2

i+1) |E([i], [i])| >
∑
i∈V +

i h(G)(f 2
i − f 2

i+1) (3.5)

= h(G)
∑
i∈V +

f 2
i = h(G) ‖f‖2 .

We make an attempt to make more clear the step in line (3.5). We can change

the indexing to V + because if i /∈ V + then fi = 0, and from the assumption fi+1 6 fi

we get that fi+1 = 0 as well. Since |V +| 6 n/2, from the definition of the expansion

rate we obtain h(G) 6 |E([i], [i])|/|[i]|, and using that |[i]| = i gives the the bound

i h(G) at the mentioned step.

3.2 Bounds on the Expansion Rate 31

This implies that h(G) ‖f‖2 6 Bf . This in conjunction with the forementioned

upper bound gives h(G) ‖f‖2 6 Bf 6
√

2d ‖f‖ fLfT , which in turn gives our desired

result.

We restate the equation (3.1) as a theorem bounding the edge expansion rate with

the spectral gap.

Theorem 3.6.

Let G = (V,E) be a simple connected d-regular graph, its edge expansion satisfies

d− λ2

2
6 h(G) 6

√
2d (d− λ2).

Proof.

Lemma 3.3 gives the lower bound, while together Lemma 3.4 and Lemma 3.5 give

the upper bound.

32 Expansion of a Graph

Chapter 4

Zig-Zag Products

This chapter will introduce the different products between graphs, i.e. the different

ways in which we can obtain a new graph from previously known ones. The graphs

constructions in this chapter will be later used to construct families of expander

graphs.

4.1 Replacement Product

The replacement product, denoted by ©r , is an asymmetric binary operation

between graphs. It is the product of an (n,m)-graph G and an (m, d)-graph H,

whose result is a graph with nm vertices and (d+ 1)nmd/2) edges.

Intuitively is the original graph G, except that each vertex is replaced by a copy

of the graph H. We give the formal definition.

Definition 4.1.

The graph G ©r H, called the replacement product between the graphs G and

34 Zig-Zag Products

H, has as vertex set V (G)× V (H), and ((u, i), (v, j)) is in the edge set if (u, v) ∈ G
and (i = j), or if (i, j) ∈ H.

4.2 General Zig-Zag Product

The zig-zag product, denoted by ©z , is an asymmetric binary operation between

graphs. It is the product of an (n,m)-graph G and an (m, d)-graph H, whose result

is an (nm, d2)-graph.

For an intuitive idea one should think of the replacement product between the

graphs G and H, where there will be an edge between the vertices x and y if there

is a path between them that takes an edge in one of the copies of H, followed by an

edge originated from the graph G, and finally one last edge on one of the copies of

H. Hence, perhaps it is better to think of it as a “zig-zag-zig” product, as the edges

of the product correspond to paths of edges on the graphs H −G−H. We give the

formal definition.

Definition 4.2.

The graph G ©z H, called the zig-zag product between the graphs G and H, has

as vertex set V (G)× V (H), and ((u, i), (v, j)) is in the edge set if there are k, l such

that (i, k), (l, j) ∈ H and ekv = elu.

4.3 Zig-Zag Product for Bipartite Graphs 35

4.3 Zig-Zag Product for Bipartite Graphs

Finally we will present a small variation of the zig-zag product, this one is specially

defined for bipartite graphs. This definition is different from the previous one because

the graph does not need to be in general d-regular, as we ask for the condition of

regularity to be satisfied only on one of the sides of the graph. This could in turn

cause, in the standard definition of the zig-zag product, some of the vertices to not

able to do a zig-zag-zig and have neighbors, i.e. there could be isolated vertices in

the resulting product. As far as a definition goes this would not cause any problems,

but having an isolated vertex automatically causes a graph to have an edge expansion

rate of 0, something highly undesirable for our constructions. Intuitively the zig-zag

product for bipartite graph is the same as for general graphs, except that we erase

the isolated vertices from the final product.

Definition 4.3.

For H a d-regular bipartite graph with s vertices on each side, and G an s-regular

bipartite graph with n vertices on each side, the bipartite zig-zag product G ©z H

has vertex set V (G)× V (H)/2, and ((u, i), (v, j)) is in the edge set if (u, v) ∈ V (G),

(i, j) ∈ H and i < j.

An alternative definition is to consider the graph H to be a directed graph.

36 Zig-Zag Products

Chapter 5

The Margulis Expander Graphs

In this chapter we will introduce a new way to construct graphs from algebraic

structures. The first explicit constructions of expander graphs were found from this

approach, namely, the Margulis construction. The Margulis construction will only

define a family of graphs, we will then proceed to sketch a proof that in this family

is in fact a family of expander graphs.

5.1 Margulis Construction

We briefly describe one graph which is an infinite analog of the Margulis construc-

tion.

Example 5.1.

• Let G = (V,E) be the infinite graph with vertex set V = I×I, where I = [0, 1) is

the half-open unitary interval. Define the linear transformations T, S : V → E

as

38 The Margulis Expander Graphs

T (x, y) = (x+ y, y) mod 1, and S(x, y) = (x, x+ y) mod 1.

The neighbors of a vertex (x, y) ∈ V are T (x, y), T−1(x, y), S(x, y), S−1(x, y).

Note that this is an undirected 4-regular graph. Also note that the graph includes

multiple edges and loops (even multiple loops). Consider for example the neighbors

of the vertex (0, 0), which are the same vertex four times. It is a graph in which the

edges are defined by some transformations and its inverses.

Considering the finite-graph case of this example yields the construction given by

Margulis. Further considering infinite different sets of vertices in the construction

gives an infinite amount of graphs, thus a family of graphs. We will later prove that

this graphs form a family of expander graphs.

Definition 5.2.

Let Gn be a family of 8-regular graphs. The vertex set of Gn is Vn = Zn × Zn.

Define the matrices and vectors

T1 =

(
1 2

0 1

)
, T2 =

(
1 0

2 1

)
, e1 =

(
1

0

)
, and e2 =

(
0

1

)
.

The neighbors of a vertex v = (x, y) ∈ V are T1v, T1v + e1, T2v, T2v + e2, and the

corresponding four inverse transformations. All operations are done in Zn, i.e. the

calculations are mod n. This are known as the Margulis graphs.

Note that this is an undirected 8-regular graph, and resembling the previous ex-

ample, it may have multiple edges or loops.

5.2 Margulis as a Family of Expander Graphs 39

5.2 Margulis as a Family of Expander Graphs

In this section we will prove that the family of Margulis graphs forms a family of

expander graphs. This amounts to prove that there exists an ε > 0 such that for all

graphs Gn in the family we have h(Gn) > ε.

The original proof of expansion by Margulis was based on representation theory, it

was existential and did not provide any specific bound on the edge expansion rate h.

A specific bound was derived by Gabber and Galil using harmonic analysis, and later

improved by Jimbo and Marouka using Fourier analysis. We give here a simplified

proof due to Boppana.

Gabber and Gail proved that the graphsGn satisfy λ2 6 5
√

2 < 8 for every positive

integer n. Using Theorem 3.6 it can be then deduced that the defined family forms

a family expander graphs. We will prove a slightly weaker result, that λ2 6 3.65,

but which still suffice for our purposes. The proof is long and ingenious, but before

providing it we state without proof the following Lemma.

Lemma 5.3.

There is a partial order on Z2
n such that for every z inside the diamond, either

Three of the four points T1z, T2z, T
−1
1 z and T−1

2 z are > z and one is < z.

Two of the four points T1z, T2z, T
−1
1 z and T−1

2 z are > z and the other two are

incomparable with z.

Where the diamond is the region comprehended inside the rhombus with corners

(n/2, 0), (0, n/2), (−n/2, 0), and (0,−n/2).

Theorem 5.4.

The graph Gn, as defined by Margulis, satisfies λ2(Gn) 6 δ < 8 for some constant

δ > 0 and for every positive integer n.

40 The Margulis Expander Graphs

Proof.

We will actually prove this result for δ = 3.65 which is greater than 5
√

2, thus a

weaker result.

By the formulas on eigenvalues used in Theorem 3.6, we can change the statement

to functions, such that if f : Z2
n → R satisfies

∑
x∈Z2

nf(x)=0 then

∑
xy∈E

f(x)f(y) 6 δ
∑
x∈V

f(x)2.

Recalling that the neighbors of a vertex x ∈ V are T1x, T1x+ e1, T2x, T2x+ e2 and its

inverses, and that for such inverses there must be a y ∈ V such that the transformation

gives x as a result. Then we can restate the last inequality as

∑
z∈V

f(z) · [f(T1z) + f(T1z + e1) + f(T2z) + f(T2x+ e2)] 6 δ
∑
z∈V

f 2(z).

Let F denote the Fourier transform of f , and w = e
2πi
n a n-th primitive root of

unity. Now, we take the Fourier transform, we use Parseval’s identity and the shift

property, i.e. if g(x) = f(Ax+b) then ĝ(x) = w−<A
−1b,x>f̂((A−1)Tx). Then our claim

is satisfied if for all F : Z2
n → C with F (0, 0) = 0 we have

∣∣∣∣∣∣
∑

z=(z1,z2)∈Z2
n

F (z) · [F (T−1
2 z)(1 + w−z1) + F (T−1

1 z)(1 + w−z2)]

∣∣∣∣∣∣ 6 δ
∑
z∈Z2

n

|F (z)|2.

We define G : Z2
n → R as G = |F |. Using that the new function is non-negative,

the triangle inequality, and the identity |1 +w−t| = 2 |cos(πt
n

)|, we further restate our

claim to non-negative functions G with G(0, 0) = 0 satisfying

∑
z=(z1,z2)∈Z2

n

2G(x) · [G(T−1
2 z)|cos(πz1

n
)|+G(T−1

1 z)|cos(πz2

n
)|] 6 δ

∑
z∈Z2

n

|G(z)|2. (5.1)

5.2 Margulis as a Family of Expander Graphs 41

In what follows, we will bound 2G(z) by using the arithmetic inequality

2ab 6 c a2 + c−1 b2, (5.2)

which holds for any real numbers a, b, c ∈ R with a, b > 0 and c > 0. However, it

is not possible to bound 2G(z) with a fixed value of c in the inequality, for example

γ = 1 gives a bound with a coefficient of 8 and we require δ < 8. Instead we will

consider a variable γ : R2 → R such that γγ−1 = 1 in all its domain. Taking the same

partial ordering used in Lemma 5.3 we define γ to be

γ =


α if (x1, y1) > (x2, y2),

1
α

if (x1, y1) < (x2, y2),

1 otherwise.

It is here that for simplicity we define α = 5/4, and it is this that determines the

bound with δ = 3.65. A different choice of α and a more in depth analysis than what

we are about to do would give the bound with δ = 5
√

2.

One can easily deduce that the way γ has been defined implies γ(x, y) ·γ(y, x) = 1,

for all x, y ∈ Z2
n. From (5.2) we obtain

2 ·G(x)G(y) 6 γ(x, y) ·G2(x) + γ(y, x) ·G2(y),

and applying this in (5.1) one obtains the upper bound

∑
z=(z1,z2)∈Z2

n

|cos(πz1

n
)|·[γ(z, T−1

2 z)G2(z)+γ(T−1
2 z)G2(T−1

2 z)]+|cos(πz2

n
)|·[γ(z, T−1

1 z)G2(z)+γ(T−1
1 z)G2(T−1

1 z)].

Then from the definitions of the transformations we see that z1 is invariant under

T2 and z2 under T1, hence the last equation transforms into

∑
z=(z1,z2)∈Z2

n

G2(z)
[
|cos(πz1

n
)| · [γ(z, T−1

2 z) + γ(T−1
2 z)] + |cos(πz2

n
)| · [γ(z, T−1

1 z) + γ(T−1
1 z)]

]
.

42 The Margulis Expander Graphs

For a given z, proving that the corresponding term in the sum is bounded by αG2(z)

would yield the desired result. Thus, now it suffices to prove

|cos(πz1

n
)| · [γ(z, T−1

2 z) + γ(T−1
2 z)] + |cos(πz2

n
)| · [γ(z, T−1

1 z) + γ(T−1
1 z)] 6

α

2
. (5.3)

We consider the two possible cases.

Outside the diamond. Suppose without loss of generality that we are in the first

quadrant. Since cos(πz2
n

) is decreasing, then |cos(πz1
n

)+ cos(πz2
n

)| has its maximum on

the boundary of the diamond, where cos(πz2
n

) = sin(πz1
n

). Hence, cos(πz1
n

)+cos(πz2
n

) =

cos(πz1
n

) + sin(πz1
n

) 6
√

2. Overestimating γ by 5/4, we obtain the bound needed in

(5.3) outside the diamond.

Inside the diamond. We bound the cosines by 1, and thus it suffices to prove the

inequality

γ(z, T1z) + γ(z, T−1
1 z) + γ(z, T2z) + γ(z, T−1

2 z)+ 6 δ.

Then by Lemma 5.3, if two points are > z and the rest are incomparable, then our

equation is bounded by 3.6. On the other hand, if three points are > z and one is

< z, then it is bounded by 3.65. Therefore, we have obtain again the bound needed

in 5.3 inside the diamond. This concludes the proof of the theorem.

Chapter 6

Coding Theory

In order to effectively exchange information between two individuals, the sender

and the receiver of the messages, one would like to have very clever and efficient

methods for them to communicate. However, due to external factors independent

to the method, there could be differences between the sent message and the one

received. Then, it is further desirable that the method could also detect and correct

these errors, at least up to some extent.

The analysis of transmitting information effectively and efficiently is the field of

study of coding theory, and algorithms able to accomplish what we described are

called error correcting codes. These are very important as they are widely used in

our daily lives, to mention only a few examples, they are used in TV transmissions, in

cell phone calls, and between connected computers over the internet. There are error

correcting codes being implemented even between the user himself and the computer.

In this chapter we introduce the basics of coding theory, giving the definition of

codes in general, their distance and rate, and the special class of linear codes. In the

next chapter we will utilize this concepts and proceed to build codes from graphs.

44 Coding Theory

6.1 Introduction to Coding

Consider the problem of sending information from individual A to individual B

through some medium. The information that we want to transmit is called the

message, while the individuals are the sender and receiver respectively, and the

medium is called noisy channel.

Instead of trying to send the original message, which could be of any nature, it is

convenient to send numeric bits of information in its representation, which is known

as an encoding of the message. Upon reception the inverse is done to retrieve the

original message, known as decoding. We will restrict ourselves to schemes that

transmit the information in n-bit blocks, and we only consider the binary case.

We consider that the noisy channel, through which the data transfer is done,

could cause some error changes in the bits transmitted. To solve this problem and

make sure the receiver can correct the errors, we agree in advance that only a subset,

sometimes called dictionary, of the 2n possible n-bit blocks would be transmitted.

We would then define some sense of distance between the elements of the dictio-

nary. This way upon the reception of an encoded word, if it is in the dictionary we

accept it, otherwise we are detecting there was an error in the transmission, and the

natural error correcting method would be to find the word in the dictionary which is

closest to the one received. This is the approach which was suggested by Shannon.

We formulate this last concepts formally.

Definition 6.1.

A code C is a set of n-bit binary strings, and its elements are called codewords.

The metric used in the code is the Hamming distance.

6.1 Introduction to Coding 45

Definition 6.2.

The Hamming distance between x, y ∈ {0, 1}n, denoted dH , is the number of

coordinates on which x and y differ,

dH(x, y) = |{i : xi 6= yi}|.

We will denote it simply as d(x, y) if the context is clear.

We want two conflicting properties in a code. On one hand, we want codewords

to be distant from each other, this is to ensure that we will be able to perform a

decent error correcting routine. On the other hand, we want many codewords, this is

to increase the efficiency of the code by having more possible transmittable encoded

messages in each n-bit string sent.

In other words, we want distant codewords, but not so distant that the maximum

code size is small. One might intuitively observe how this is related to the conflict-

ing properties of expansion in a graph. This notions are enclosed in the following

definitions.

Definition 6.3.

The distance of a code C ⊂ {0, 1}n, denoted dist(C), is the minimum Hamming

distance between a pair of distinct codewords x, y ∈ C, formally

dist(C) = min
x 6=y∈C

dH(x, y).

The rate of a code C is defined as

rate(C) =
log |C|
n

.

We might sometimes consider instead the relative distance of the code, which

is δ(C) = dist(C)/n.

46 Coding Theory

As mentioned before, our aim is to have codes with both maximized distance and

rate. Our problem has been reduced to finding a good code with the two conflicting

properties. Observe that in practice a code should have efficient coding, decoding,

and error correcting routines. A code with efficient routines is consider to be a good

code, even further a family of codes is asymptotically good if it satisfies the following

basic requirements.

Definition 6.4.

A family of codes Cn ⊂ {0, 1}n is asymptotically good if there exists some fixed

constants d > 0 and r > 0, such that for all n we have both δ(C) > d and rate(C) > r.

The family is called efficient if the encoding and decoding routines can be performed

in polynomial time in n.

The existence of asymptotically good codes can be proved with a probabilistic

argument, however, the search for good efficient codes took over two decades. We will

provide explicit constructions of asymptotically good codes in the next chapter. First

we need to introduce a useful type of codes, those that form linear vector subspaces

of {0, 1}n.

Definition 6.5.

A code C ⊂ {0, 1}n is called a linear code of dimension k and length n, if it is

a k-dimensional vector subspace of {0, 1}n.

Note that a linear code of dimension k has rate k/n. Such codes can be described

concisely by specifying a basis, hence they can be encoded in O(n2) time. We will

later see that with our construction of codes from graphs, we can achieve linear time

O(n) in the decoding. For now, we proceed to define the Hamming weight in the

vector space.

Definition 6.6.

The Hamming weight of x ∈ F n
2 is defined as

6.2 Asymptotic Bounds 47

w(x) = d(x, 0).

Basically, the Hamming weight of a vector is the number of 1’s in it. It is easy

to deduce, by linearity, that the distance of a code equals the smallest weight of a

non-zero codeword.

Since a linear code can be specified by giving a basis for the k-dimensional subspace

C ⊂ F n
2 , we can then view C as the right kernel of

C = {x : HCx = 0},

for some (n−k)×n matrix HC , and where the operations are done in F2. The matrix

HC is called a parity check matrix for C, and we may denote it simply as H if the

context is clear.

6.2 Asymptotic Bounds

The two wanted conflicting properties, the distance and the rate of a code, depend

strongly on each other. We devote this section to stating some of the well known

bounds between them. First we introduce some definitions.

The Hamming ball with center x ∈ F n
2 and radius r is the set

B(x, r) = {y ∈ F n
2 : d(x, y) 6 r}.

Note that its volume, the amount of points inside it, is equal to

v(n, r) =
r∑
i=0

(
n

i

)
.

48 Coding Theory

Now, we prove the Gilbert-Varshamov bound.

Theorem 6.7.

There exists a code of length n, distance at least d and size at least 2n/v(n, d).

The statement also holds in particular for linear codes.

Proof.

Consider the following greedy algorithm, that constructs a code C of length n and

distance at least d.

Initialize with S1 = {0, 1}n and C1 = ∅. Then, at the i-th step pick any point

x ∈ Si, then set Ci+1 = Ci ∪ x, and Si+1 = Si \ B(x, d). We continue this procedure

until Sj is empty for some j.

Since the initial size of S1 is 2n, and at each iteration the size of the following Si

is reduced by at most v(n, d), we obtain

j · v(n, d) = |C| · v(n, d) > 2n,

which implies the wanted bound on the size. Clearly, the code C = Cj has distance

at least d by construction. This provides the result for general codes, we will now

prove it for linear codes.

Since a linear code C of dimension k can be specified by a (n−k)×n parity check

matrix HC , and since its distance is the weight of the smallest non-zero codeword,

then it is not hard to see that the distance of C is the smallest number of columns in

HC whose sum is the zero vector.

We will construct matrix one column at a time, such that at each step there is no

dependent set of fewer than d columns. We can always add a j-th column satisfying

this condition, granted that

d−1∑
i=0

(
j − 1

i

)
< 2n−k,

6.2 Asymptotic Bounds 49

due to the fact that the new column must be different from all possible sums of d− 1

or less columns. The worst case scenario is when we are barely able to add the n-th

column to build the matrix, hence obtaining

d−1∑
i=0

(
n

i

)
> 2n−k.

The resulting code C has dimension at least k and so |C| > 2k, which provides

the bound on the size. The code has distance at least d by construction.

We continue by proving the sphere-packing bound.

Theorem 6.8.

Any code C of length n and distance d satisfies |C| 6 2n/v(n, d/2).

Proof.

For a code C of distance d, from the definition of its distance we observe that all

balls of radius d/2 centered at codewords of C must be disjoint. The bound is then

deduced by dividing the size of the space by the size of each such ball.

50 Coding Theory

Chapter 7

Codes from Graphs

The ultimate goal of this chapter is to explain how to create error correcting codes

from graphs, for which we give two different constructions. The first construction uses

bipartite graphs, and the second one uses regular graphs. The last construction was

further improved by Gilles Zémorby using Ramanujan graphs, his construction is the

one presented here. The codes arising from both these constructions are proved to be

efficient error correcting codes.

7.1 First Construction

We are now in position to explain the connection between graphs and linear codes,

then using expander graphs we will be able to construct good codes. This was one of

the initial motivations for the definition of expanders and their explicit construction.

The construction of codes that will be shown in this chapter is based in bipartite

graphs.

Consider a bipartite graph G = (L,R,E) and its adjacency matrix A = A(L,R).

52 Codes from Graphs

Suppose that |L| = n and |R| = m, and that n > m, then A is a m× n matrix. We

then use A as a parity check matrix to construct a linear code C of length n. The

code constructed via the graph G is denoted as C(G).

As we had explained in Chapter 1, the nature of the vertices of the graph is

arbitrary. In this sense the left vertices of G, which belong to L, can be viewed as

variables, while the right vertices belonging to R are the constraints, all of which

gives rise to the linear vector subspace C.

We will introduce a variant of the concept of expansion for bipartite graphs, this

is based in the vertex expansion.

Definition 7.1.

Let G = (L,R,E) be a bipartite graph, its left vertex expansion ratio is defined

as

L(G, d) = min
{S⊂L : |S|6d}

|Γ(S)|
|S|

.

In other words, every subset of L of size at most d satisfies |Γ(S)| > L(G, d)|S|.
Additionally, note that regardless of d L(G, d) cannot exceed k for a k-left-regular

graph.

As it can be seen in [4], the zig-zag product for bipartite graphs can be used to

construct explicit k-left-regular bipartite graphs G(L,R,E), with constant rate codes

and left vertex expansion rate L(G, d) > .9k for any d > a ·n for some constant a > 0.

In short, we are saying that we can explicitly construct expander bipartite graphs,

in the sense of left vertex expansion rate.

We will first show how these graphs generate linear codes which are asymptotically

good codes, and afterwards we will demonstrate that they are also efficient. We will

show that they can be decoded in polynomial time, and in fact linear time is achieved.

7.1 First Construction 53

We do not worry much about encoding, since it can be done in O(n2) for being

linear codes, and this is already in polynomial time. However, it can be proved that

given the structure provided by the bipartite graphs, coding can also be done in linear

time.

The following two theorems, due to Sipser and Spielman, prove our claims. First,

that the codes from the bipartite graphs are asymptotically good codes, i.e. that the

codes have large distance.

Theorem 7.2.

Let G be a k-left-regular bipartite graph, if L(G, d) > k/2, then dist(C(G)) > d.

Proof.

We claim that for any subset S ⊂ L of size |S| 6 d there exists a unique neighbor to

it in the right vertices, in other words, there is a vertex v ∈ R such that |Γ(x)∩S| = 1.

To prove this consider that |E(S,Γ(S))| = k|S| because the graph is k-left-regular,

but at the same time |Γ(S)| > k|S|/2 because of the left vertex expansion rate

L(G, d) > k/2.

Then for a vertex in Γ(S) the average amount of edges from it to S is strictly

less than 2, and since they all have at least 1 edge being that they are in the set of

neighbors, then there must exist a vertex v ∈ R such that |Γ(S) ∩ S| = 1.

Now, take any x ∈ C(G), and let S ⊂ L be the support of x. We want to prove

that Hx = 0, where H is the m× n parity check matrix of the code C(G). Suppose

that |S| 6 d, then by what we proved previously let v ∈ R be the vertex such that

|Γ(v) ∩ S| = 1, hence the v-th coordinate of Hx is not zero.

In an attempt to make this more clear, we explain it differently. Observe that the

whole v-th row of H has some 0’s and 1’s as entries, but there is only one entry 1

in the set S which is the support of x (this follows because of the unique neighbor

54 Codes from Graphs

result). Thus, the product of the v-th row and the vector x gives 1 as result, and

therefore the entire product Hx 6= 0.

This means that every non-zero codeword x ∈ C(G) has weight greater than d,

and hence the weight of the code is also greater than d.

We prove what is needed to show, that the codes from the bipartite graphs are

efficient, i.e. that the codes can be decoded in polynomial time, in fact, linear time.

Consider the iterative decoding algorithm that upon receiving the input n-bit

string y, as long as there exists a variable such that most of its neighbors constraints

are not satisfied, it changes the entry of said variable. Explained differently, given

x /∈ C, we change its i-th entry granted that the Hamming weights satisfy w(H(x +

ei)) < w(Hx), where H is the parity check matrix of G. This algorithm is known as

the belief propagation algorithm.

Theorem 7.3.

Let G be a k-left-regular bipartite graph in which L(G, d) > 3
4
k. Let y be an n-bit

string whose distance from a codeword x is at most d/2. Then a repeated application to

y of the belief propagation algorithm, will return x after a linear number of iterations.

Proof.

Let y(i) denote the vector obtained after i iterations of the algorithm, and let

y = y(0). Also, let Ai be the set of errors at step i, meaning that

Ai = {v ∈ V (G) : y(i)
v 6= xv}.

Hence, we want to prove that At is empty for t = O(n).

Assume that Ai 6= ∅ and |Ai| 6 d, and consider a partition of Γ(Ai) into sets of

satisfied neighbors Si and unsatisfied neighbors Ui. We will denote them S and U if

it is clear from context. Note that U is the support of Ai y
(i).

7.1 First Construction 55

Clearly |S|+ |U | = |Γ(Ai)|, hence from our assumptions on Ai and the left vertex

expansion rate we obtain

|S|+ |U | > 3

4
k |Ai|. (7.1)

Now we count the edges between Ai and Γ(Ai), which are k|Ai|. We claim that

among them there are at least |U | edges leaving U and at least 2|S| edges leaving S.

For |U | it is clear since being part of the set of neighbors, at least there must be

one edge for each vertex in the set. For |S| we actually prove that there must be an

even number of edges from S to Ai. Note that for a vertex v ∈ S we have that

(Hy(i))v = 0,

because v is in the set of satisfied neighbors. Then given that Ai is the support of

Hy(0) we obtain that

Ai · y(i) = 0,

which implies that there must be an even number of neighbors of v in Ai. Thus, there

are in total at least 2|S| edges leaving S. This gives the inequality

|U |+ 2|S| 6 k |Ai|. (7.2)

Subtracting (7.2) from twice (7.1) gives that |U | > 1
2
k |Ai|. This means that there

is a vertex (entry) of H with more than k/2 unsatisfied neighbors. We change the

entry at that index and this switches all its neighbors from S to U and vice versa, but

because there are more of such neighbors in U we obtain that |H(y(i)+ei)| < |H(y(i))|.

Ultimately, this implies that |U | decreases with every iteration of the belief propa-

gation algorithm. Hence, if the distance from y(i) to x does not exceed d at any time,

then the algorithm will halt at x after a linear number of iterations.

To finish the proof we must show that |Ai| never exceeds d in size. Recall that

|A0| 6 d/2 by assumption, that gives |U0| 6 |Γ(A0)| 6 kd/2, and hence |Ui| 6 kd/2

56 Codes from Graphs

for all i. Notice that after each step, |Ai| increases or decreases in value in at most

1 entry. Therefore, if at some iteration |Al| > d, then there exists j < l such that

|Aj| = d|, thus |Uj| > kd/2, which is a contradiction.

7.2 Second Construction

Sipser and Spielman introduced an explicit family of asymptotically good and

efficient linear codes in [6] and [7], using d-regular expander codes in the construc-

tion. Also, they provided an algorithm to remove a constant fraction of errors in

the received encoded message. In this chapter we discuss a variation of their work,

suggested by Gilles Zémor in [9], that corrects up to 12 times more errors without

compromising the complexity of the algorithms. Gilles Zémor’s improvement on the

error correcting routine comes from the employment of bipartite Ramanujan graphs

rather than general expander graphs.

We proceed to explain the construction of the binary code. Given a d-regular graph

G = (V,E), we will construct a code from it by considering an auxiliary bipartite

graph G′ which is based on the structure of G. Let G′ = (V ∪ E,E ′), where ab ∈ E ′

if and only if a ∈ V , b ∈ E and there exists c ∈ V such that ac = b. Therefore there

exists edges only between the vertices of V and E, additionally, every vertex of V has

exactly d edges to E, i.e. if we consider V to be the left set of the bipartite graph, then

G′ is a d-left-regular graph. Also, notice that every vertex of E is adjacent to exactly

two vertices of V . We set an arbitrary labeling of the vertices of E = {1, . . . , n}, and

for any vertex v ∈ V define v(1), . . . , v(d) to be some ordering of the d vertices of E

which are adjacent to v. Then, let C0 be a linear code of length n0 = d, redundancy

r0, and minimum distance d0.

Finally, we define the new code C ⊂ {0, 1}n as the set of binary vectors x =

7.2 Second Construction 57

(x1, . . . , xn) such that for every vertex v ∈ V we have that the smaller vector

(xv(1), . . . , xv(d)) is a codeword in C0. We use the notation (G,C0) for the code C

constructed from G in this way. We observe that such a code is not unique, the

code obtained depends on the taken ordering of the edges v(1), . . . , v(d) given at each

vertex v.

We have that the dimension of the constructed code C is at least n(1 − 2r0/n0),

where r0 is the redundancy of the code C0. Also, we have that its distance is at least

nδ2
0(1 − ε), where δ0 = d0/n0 is the relative minimum distance of C0 and ε depends

only of d0, d, and λ2(G). Even more, if λ2/d0 → 0, then we get also ε→ 0.

Now, we consider Ramanujan graphs, which are constructive families of graphs,

with arbitrarily number of vertices for fixed degrees, and satisfy λ2 6 2
√
d− 1.

More about Ramanujan graphs can be found in [5]. Hence if we choose our regu-

lar graph G to be a Ramanujan graph, then for a large enough d we obtain that

λ2/d0 6 2
√
d− 1/(d · d0) → 0, thus we can make ε arbitrarily small and acquire

asymptotically good (G,C0)-codes. We will consider only bipartite Ramanujan graphs

in the decoding algorithm for (G,C0), however, this should not be a problem because

there are plenty of known constructions.

For the decoding algorithm, let G = (L,R,E) be a d-regular bipartite graph, and

assume that |L| = |R| = l. This means that the graph has n = dl edges, and therefore

the length of a code (G,C0) would be precisely n. Then, for any vertex v of G the

subset of edges incident to v is

Ev = {v(1), . . . , v(d)}.

In this manner, given that G is bipartite, we obtain two partitions of the edge set

E =
⋃
v∈L

Ev =
⋃
v∈R

Ev.

Let x ∈ {0, 1}n be the received vector. The first iteration of the algorithm consists

58 Codes from Graphs

of applying complete decoding in C0 for the code induced by Ev for every v ∈ L. This

can be done because, since the graph G is bipartite, the subsets of edges Ev for all

v in L are disjoint. Thus, we are replacing the vector (xv(1), . . . , xv(d)) for one of

the closest codewords in C0, this for all vectors v in L. The iteration yields a new

vector, say y, and for the second iteration we apply the same decoding but now for the

partition induced by the set R. Afterwards we continue repeating this whole process,

alternating between the decoding on the partitions induced by L and R.

We remark that this could not be done in the decoding algorithm for general d-

regular graphs, the decoding would be done in all edges of the graphs by an argument

that an edge bit would be changed if at least one of its related vertices thought it

should be changed, more details can be found in [8]. Thus, the disjoint partition of

the edge set is very important, which can additionally allow a parallel decoding at

each step. When replacing for one of the closest codewords in C0 it could be that the

choice is not unique, and at this step we are not concerned on the complexity of the

decoding in C0 since the same small code C0 will be used regardless of the size of the

graph G, hence in this sense the complexity of such decoding is constant. Using the

same argument, from a theoretical point of view one should not worry about finding

a code C0, once can choose the best already known ones.

We are now interested in a sufficient condition for the convergence of the algorithm.

We will prove that, under certain conditions, if the weight of the error vector is less

than αnδ0(δ0/2 − λ2/d)/2 for some α < 1, then the previous decoding routine will

converge to the initial codeword which was originally sent. Before we are able to

prove such a theorem we are in need of proving the following two lemmas, in which

for simplicity the average degree degGS∪T will be denoted as degST .

Lemma 7.4.

Let G = (L,R,E) be a d-regular bipartite graph, with |L| = |R| = l, and let S ⊂ L

and T ⊂ R. Then the average degree degST of the induced subgraph GS∪T satisfies

degST 6
2|S||T |
|S|+ |T |

d

l
+ λ2 −

λ2

l

|S|2 + |T |2

|S|+ |T |
.

7.2 Second Construction 59

Proof.

Let A = A(G) be the 2l × 2l adjacency matrix of the bipartite graph G, and let

XST be the column vector of length 2l such that every coordinate indexed by a vertex

of S or T equals 1 and is 0 otherwise, i.e. XST is the vector 1S + 1T . We can deduce

that

Xt
STAXXT =

∑
v∈S∪T

degGS∪T (v), (7.3)

where degGS∪T (v) refers to the degree of the vertex v within the induced subgraph

GS∪T . Additionally, let j be the all-one vector, and let k = 1L − 1R. Notice that j

and k are eigenvectors of A associated to the eigenvalues d and −d, respectively. We

clearly have j · j = 2l, while k · k = |L|+ |R| = 2l, and j · k = |L| − |R| = 0. At last,

define YST as

YST = XST −
|S|+ |T |

2l
j − |S| − |T |

2l
k.

Observing that XST · j = |S|+ |T | and XST · k = |S| − |T |, it should be simple to

compute from the previous relations that YST is orthogonal to both j and k. Since

the eigenspaces of A are orthogonal we can infer

Xt
STAXST = d

(
|S|+ |T |

2l

)2

j · j − d
(
|S| − |T |

2l

)2

k · k + Y t
STAYST ,

which using the before mentioned relations is reduced to

Xt
STAXST = Y t

STAYST + 2d
|S||T |
l

.

Since YST is orthogonal to j and the eigenspace associated to it is of dimension one

because G is connected, then we obtain that Y t
STAYST 6 λ2 ‖YST‖2, and this together

with equation (7.3) yields

degST (|S|+ |T |) 6 λ2 ‖YST‖2 + 2d
|S||T |
l

, (7.4)

60 Codes from Graphs

where degST is the average degree in the induced subgraph. Now, observe that YST

has |S| coordinates equal to 1− |S|/l, |T | of them equal to 1− |T |/l, l− |S| equal to

−|S|/l, and l − |T | equal to −|T |/l, from which we can derive

‖YST‖2 = |S|+ |T | − |S|
2 + |T |2

l
.

This last equation combined with (7.4) proves the Lemma.

Lemma 7.5.

Suppose that d0 > 3λ2. Let S be a subset of vertices of L, T a subset of vertices

of R, and Y a subset of edges of E. If the following conditions are satisfied

i) |S| 6 αl

(
δ0
2
− λ2

d

)
for some α < 1.

ii) Every edge of Y has one of its endpoints in S.

iii) Every vertex of T is incident to at least d0/2 edges of Y ,

then

|T | 6 1

2− α
|S|.

Proof.

Let W ⊂ Y consist of those edges in Y that have one endpoint in T . Then,

because of condition (ii), W is a subset of the set of edges E(S ∪ T). This implies

that E(S, T) > |W |, and therefore the vertices in GS∪T have an average degree

degST >
2|W |
|S|+ |T |

.

We observe that (iii) implies |T |d0/2 6 |W |, and combined with Lemma 7.4 gives

7.2 Second Construction 61

|T |d0

|S|+ |T |
6

2|W |
|S|+ |T |

6 degST 6
2|S||T |
|S|+ |T |

d

l
+ λ2.

Applying assumption (iii), using that δ0d = δ0n0 = d0, and then solving the

inequality for |T | yields

|T | 6 λ2

d0(1− α) + λ2(2α− 1)
|S|.

Finally, using the initial condition d0 > 3λ2 we obtain

|T | 6 λ2

3λ2(1− α) + λ2(2α− 1)
|S| 6 1

2− α
|S|,

which is what we wanted to prove.

Now that we have proved the previous lemmas we can prove the following theorem

by Gilles Zémor, which gives a sufficient condition on the number of corrupted bits

of the received vector x in order for the decoding routine to converge and return the

original codeword, i.e. the algorithm corrects all reception errors.

Theorem 7.6.

Suppose d0 > 3λ2. If the weight of the error vector of x satisfies

|x| 6 αn · δ0
2

(
δ0
2
− λ2

d

)
(7.5)

for some α < 1, then the decoding algorithm converges to the initial codeword in a

number of steps logarithmic in n.

Proof.

We assume, without loss of generality, that the original uncorrupted codeword is

the zero codeword. We identify the error vector x with the set of erroneous edges

62 Codes from Graphs

X = {i : xi = 1}, i.e. X is the support of x. Let y be the vector obtained after one

iteration of the decoding algorithm, and analogously let Y be its support. Similarly

with z for the next iteration after that, and the set of edges Z.

Notice that for any given vertex v ∈ L, if such a vertex is incident to less than

d0/2 of the corrupted edges in X, then the local decoding in C0 will erase all those

errors, hence Ev ∩ Y = ∅. Therefore, if we make S = {v ∈ L : Ev ∩ Y 6= ∅}, it follows

that

v ∈ S implies |Ev ∩X| > d0/2. (7.6)

Analogously for T ⊂ R such that Ev ∩ Z 6= ∅, we obtain

v ∈ T implies |Ev ∩ Y | > d0/2. (7.7)

We show that S, T and Y satisfy the conditions of Lemma 7.5. From (7.6), since

Ev forms a partition of the edges, we obtain that at least |X| > |S|d0/2, which in

conjunction with (7.5) gives

d0

2
|S| 6 |X| = |x| 6 αn · δ0

2

(
δ0
2
− λ2

d

)
.

Since d0 = δ0n0, n0 = d, and n = dl, the previous inequality implies that |S|
satisfies the first requirement in Lemma 7.5. Then, the second condition on Lemma

7.5 is satisfied by the definition of S, while the third comes directly as a result of (7.7).

All conditions of the Lemma are satisfied and therefore we have |T | 6 1/(2− α)|S|.

Let Xi be the set of erroneous edges after the decoding in step i, and let Si the

set of vertices defined as the set {v ∈ L : Ev ∩ xi+1 6= ∅} if i is even, or as the set

{v ∈ R : Ev ∩ xi+1 6= ∅} if i is odd. With this definitions S = S0 and T = S1, hence

he have already proved that |S1| 6 β|S|, where β = 1/(2− α). This means that

|S1| 6 αβ n

(
δ0
2
− λ2

d

)
,

7.2 Second Construction 63

where clearly α1 = αβ < 1, and so S1 also satisfies condition (i) of Lemma 7.5.

The second and third conditions in the Lemma are always satisfied directly from the

definition of the sets and the corresponding analogous to (7.7). Inductively we obtain

that |Si| 6 βi|S|, and since β < 1 at some point we will obtain Sj = ∅, it is then that

Xi+1 = ∅ and the decoding algorithm will halt.

It is worth noting that in the proof we showed the sets Si decrease in size with each

iteration of the decoding, however, the weight of the error vector does not necessarily

decrease as well. Also, it is only at the first iteration that we require the condition

(7.5) to prove the first requirement of Lemma 7.5, thereafter it is deduced from the

properties of the previous set Si.

64 Codes from Graphs

Chapter 8

Conclusions

We briefly sum up how constructions of error correcting codes has been reached

in this work.

• Firstly we introduced all definitions in Graph Theory that would later be used.

We introduced the link between graphs and linear algebra, which allowed us to

study properties of graphs based on their eigenvalues.

• We then introduced the idea of edge expansion, and from it we defined expander

graphs. Shortly after we proved a lower and upper bound on the edge expansion

rate, which allows us to determine if a family of graphs are expanders based

only on their spectral gap.

• We presented the first expander graphs whose construction was explicit, the

Margulis expander graphs, and we proved that they form indeed a family of

expander graphs.

• We moved on to give an introduction into the field of Coding Theory. We

introduced linear codes, and gave some asymptotic bounds on the rate and

distance of a code.

66 Conclusions

• At this point we proceeded to give two explicit construction of error correcting

codes induced by expander graphs. The first of them based on bipartite ex-

pander graphs, while the second utilized general expander graphs and a small

linear code.

• The second construction was further improved by Gilles Zémor and we presented

his proposal, which took advantage of properties of the Ramanujan graphs.

We gave and proved a sufficient condition for which the decoding algorithm

corrected all errors.

• Noticing that the induced code C = (G,C0) is not unique due to the arbitrary

choice of the ordering of the edges incident to a given vertex v for the small

code C0, one could wonder if a careful choice of the ordering can give rise to

a better code C. One can also wonder if a different structure could be put in

place instead of a linear code.

Appendix

We will very briefly introduce some definitions and mention some results in har-

monic analysis, which are used to further study properties of graphs and their asso-

ciated eigenvalues, this theory will come in handy specially when proving that the

Margulis graphs form a family of expander graphs. Let F be the collection of all

complex functions on a group H, with inner product

< f, g >=
∑
x∈H

f(x)g(x).

A character of a group H is a homomorphism χ : H → C∗, i.e. χ(gh) = χ(g) · χ(h)

for all g, h ∈ H. When H is Abelian we denote its group operation by +.

The discrete Fourier transform of a complex function f is

f̂(x) =< f, χx >=
∑
y∈H

f(y)χx(y).

We can express functions in F as linear combinations of characters.

Theorem 8.1.

Every finite Abelian group H has |H| distinct characters which can be indexed as

χxx∈H . These characters form an orthonormal basis of F . Then every f : H → C
can be uniquely expressed as

f =
∑
x∈H

f̂(x) · χx.

We proceed to mention without proof basic properties of the Fourier transform

for the particular case when the group H is Z2
n.

68 Appendix

Remark 8.2. For f, g ∈ F we have

•
∑
a∈H

f(a) = 0 if and only if f̂(0) = 0.

• < f, g >= 1
n2 < f̂, ĝ >.

• Parseval’s identity

∑
a∈H

|f(a)|2 =
1

n2

∑
a∈H

|f̂(a)|2.

• The inverse formula

f(a) =
1

n2

∑
b∈H

f̂(b) · w−<a,b>.

• If A is a non-singular 2× 2 matrix over Zn, b ∈ H and g(x) = f(Ax+ b), then

ĝ(y) = w−<A
−1b,y>f̂((A−1)Ty).

Bibliography

[1] J.A. Bondy, U.S.R. Murty (2008), Graph Theory. Springer

[2] Y. Bilu, N. Linial. (2006), Lifts, Discrepancy and Nearly Optimal Spectral Gaps.

Combinatorica. Vol 26, Number 5: 495-519

[3] F. Harary (1969), Graph Theory. Addison-Wesley

[4] S. Hoory, N. Linial, A. Wigderson (2006), Expander Graphs and their Applica-

tions. Bulletin of the American Mathematical Society. Vol 43, Number 4: 439-561

[5] A. Lubotsky, R. Phipips, P. Sarnak. (1988), Ramanujan graphs. Combinatorica.

Vol 8, Number 3: 261-277

[6] M. Sipser, D.A. Spielman (1996), Expander Codes. IEEE Transactions on Infor-

mation Theory. Vol 42, Number 6: 1710-1722

[7] D.A. Spielman (1996), Linear-Time Encodable and Decodable Error-Correcting

Codes. IEEE Transactions on Information Theory. Vol 42, Number 6: 1723-1731

[8] D.A. Spielman (1996), Constructing Error-Correcting Codes from Expander

Graphs. IMA Volumes in Mathematics and its Applications. Vol 109.

[9] G. Zémor (2001), On Expander Codes. IEEE Transactions on Information The-

ory. Vol 47, Number 2: 835-837

	Introduction
	Graph Theory
	Basic Definitions
	Attributes of a Graph
	Graphs Classes

	Eigenvalues of a Graph
	Adjacency Matrix of a Graph
	Matrices Associated to a Graph
	Ramanujan Graphs

	Expansion of a Graph
	Expander Graphs
	Bounds on the Expansion Rate

	Zig-Zag Products
	Replacement Product
	General Zig-Zag Product
	Zig-Zag Product for Bipartite Graphs

	The Margulis Expander Graphs
	Margulis Construction
	Margulis as a Family of Expander Graphs

	Coding Theory
	Introduction to Coding
	Asymptotic Bounds

	Codes from Graphs
	First Construction
	Second Construction

	Conclusions
	Appendix
	Bibliography

