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Introduction

In this thesis we study a paper of Bonsante [12], which is a generalization of a work done by
Mess [21] in 1990 but published just in 2007. Mess studied constant curvature spacetimes in
dimension 2 + 1. Bonsante has generalized the �at case to all dimensions, similar results in
positive curvature are obtained by Scannell in [27].

The interest for spacetimes, that are a particular type of Lorentzian manifolds, i.e mani-
folds endowed with a metric tensor of signature (n, 1), comes from general relativity where they
represent solutions to Einstein's equations. The �at case is a particular solution where gravity
is not taken into account. In the mathematical literature closed (compact without boundary)
�at spacetimes have been mainly studied, see for example [4]. However compact manifolds
are regarded from a physical point of view as unrealistic, indeed they are never causal, this
means that a compact spacetime always contains a closed causal curve. A causal curve is a
curve whose tangent vectors have non-positive norm, it corresponds to the path of an observer
moving at speed less or equal to the one of light. Furthermore there is an important notion
in Lorentzian geometry, that again comes from a physical interest, that is global hyperbolic-
ity, which is incompatible with compactness. Globally hyperbolic spacetimes are spacetimes
admitting a Cauchy hypersurface, that is an hypersurface which is spacelike (the Lorentzian
metric on it restricts to a Riemannian metric) and such that every inextendible causal curve
intersects it exactly in one point. A Cauchy surface is regarded as a set of initial data that
determines, at least locally, the future evolution of the spacetime. From a result of Geroch
[16] a globally hyperbolic spacetime Y with Cauchy surface M decomposes in space and time,
i.e. Y is di�eomorphic to R×M .

Bonsante focuses on globally hyperbolic �at spacetimes Y of dimension n+ 1 that admit a
Cauchy surface di�eomorphic to a compact hyperbolic manifold M . An hyperbolic manifold
is a manifold locally modelled on the hyperbolic space Hn. Actually a classi�cation of �at
globally hyperbolic spacetimes that admit a Cauchy surface that is complete as a Riemannian
manifold is done by T.Barbot in [3] and it turns out that in the compact case the situation
studied by Bonsante is the 'generic' and most interesting case of the classi�cation.

There are two possible approaches in order to describe such spacetimes.

The �rst one is a "cosmological" approach, where time functions are used. Indeed we will
introduce a time function, that is regarded as a "canonical" one in this setting. It is called
cosmological time and roughly speaking it associates to each point of the spacetime the length
of time that this point has been in existence. This function will allow us to study the geometry
of such spacetimes.

On the other hand we have a more "geometric" approach using the language of geomet-
ric structures. Indeed a �at spacetime may be regarded as a manifold locally modelled on
Minkowski space Mn+1 (that is Rn+1 endowed with a bilinear form of signature (n, 1)). Gener-
ally speaking a geometric structure on a manifold is an atlas where the local charts are maps
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INTRODUCTION iii

to open subsets of a model space (for example Minkowski space for �at Lorentzian manifold
and hyperbolic space for hyperbolic manifolds) and the transition maps are equal to the re-
striction of an isometry of the model space. Associated to each �at Lorentzian structure on
a manifold Y there is an important pair of objects (D, ρ), where D : Ỹ → Mn+1 is a local
isometry, called the developing map, from the universal cover of Y to Minkowski space Mn+1

and ρ : π1(Y ) → Iso(Mn+1) is a group homomorphism, called the holonomy morphism, from
the fundamental group of the manifold to the group of isometries of Minkowski space such that
D is ρ-equivariant. This pair determines the �at Lorentzian structure on the manifold Y and
in general both maps are needed in order to describe such structure. However we are going
to see that when Y is a globally hyperbolic �at spacetime with a complete spacelike Cauchy
surface the developing map D becomes injective and hence a global isometry with a subset of
Minkowski space. Hence we can identify the universal cover of Y with some simply connected
region of Minkowski space, namely D(Ỹ ) and the holonomy morphism, that becomes injective,
is su�cient to describe such structure. In fact the developing map gives an isometry between Y
and D(Ỹ )/ρ(π1(Y )). Therefore from this more geometric point of view what becomes impor-
tant are the holonomy groups (the image under the holonomy morphism of the fundamental
group of the manifold) and their action on regions of Minkowski space. So the classi�cation
of such �at spacetimes appears as an extension of Bieberbach's theory about Crystallographic
groups (discrete subgroups of the group of isometries of Rn, with the standard Euclidean struc-
ture, that act freely and have compact fundamental domain) to the Lorentzian context.

What Bonsante proves is that if we �x a compact hyperbolic manifold M and a class, up to
conjugacy, of group homomorphism ρ : π1(M) → Iso(Mn+1), there will be only two maximal
�at Lorentzian structures on R ×M having ρ as holonomy morphism. These two structures
are represented by two globally hyperbolic �at spacetimes Y +

ρ , Y
−
ρ , one future complete and

the other past complete. They are maximal in the sense that all other globally hyperbolic
�at spacetimes with compact spacelike Cauchy surface sharing the same holonomy will embed
isometrically in either Y +

ρ or Y −ρ . The way in [12] Bonsante proceeds in order to construct
Y +
ρ (and in an analogous, time reversed, way Y −ρ ) is to realize it as the quotient of a domain
Dρ of Minkowski space by the image, under the holonomy ρ, of the fundamental group of
M . As we were discussing above from this result we obtain an important corollary about
group actions on Minkowski space. Namely that the image of π1(M) under ρ does not act
freely and properly discontinuously on the whole Minkowski space, in fact it does not act in
such a way on the boundary of the domain Dρ that is associated to ρ. Hence Dρ is the biggest
region of Mn+1 over which the action of the holonomy group is free and properly discontinuous.

The region Dρ of Minkowski space turns out to be what is called a future complete regular
convex domain, i.e a convex proper subset of Mn+1 that is the intersection of the future of
at least two null support planes (a null plane is an a�ne plane where the quadratic form
of Minkowski space restricts to a degenerate form). As an example one can think of the
future cone of the origin. A nice feature of this class of domains is that the cosmological time
function de�ned on them T̃ : Dρ → R+ is regular, this means that it is �nite and it goes
to 0 on every inextendible causal curve. These properties imply in particular (see [2]) that

T̃ is a time function, in the sense that it is increasing on every future directed causal curve.
Indeed Bonsante proves that on Dρ the map T̃ is a C1-submersion and that the level surfaces

S̃a = T̃−1(a) are Cauchy surfaces for Dρ. From the classi�cation of maximal �at globally
hyperbolic spacetimes with compact Cauchy surfaces done by Barbot in [3] one realizes that
the other simply connected maximal globally hyperbolic spacetimes with compact Cauchy
surfaces do not have regular cosmological time, hence the study of regular domains and their
quotients is equivalent to the study of globally hyperbolic �at spacetimes having a compact
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Cauchy surface and regular cosmological time.
Together with the cosmological time, on the domain Dρ are also de�ned two other maps.

A map from Dρ to its boundary r : Dρ → ∂Dρ, called the retraction, whose image is called the
singularity in the past and denoted by Σρ. For a point p ∈ Dρ the point r(p) in the boundary

is characterized as the point such that T̃ (p) = d(r(p), p), where d is the Lorentzian distance
function in Dρ. Since the cosmological time goes to 0 when we approach the initial singularity
we can think of it as the beginning of everything: every particle came into existence at the
initial singularity. It turns out that Σρ is a contractible space. As the name suggests the initial
singularity is generally not smooth, indeed for example in dimension 2 + 1, it is a real tree (see
[8]), that is a metric space where points are joined by a unique arc.

The other important map is a map from the regular domain to the hyperbolic space N :
Dρ → Hn, called the normal �eld. The reason for the name is that N(x) is the normal vector
to the level surface S̃T̃ (x) at x. Using the normal �eld we can associate to each future complete
regular domain a geodesic strati�cation of the hyperbolic space Hn, that for n = 2 is a geodesic
lamination, that in a certain sense parametrizes such domains. A geodesic strati�cation of Hn

is a decomposition of the hyperbolic space in convex subsets that are the convex hull of their
boundary points in such a way that if they intersect then their intersection is contained in a
face of them.

All these functions introduced for Dρ are equivariant for the action of the holonomy group
ρ(π(M)) and hence they induce a regular cosmological time, a retraction on the singularity in
the past and a normal �eld on the quotient Y +

ρ .



Chapter 1

Preliminaries

1.1 Minkowski Space

De�nition 1.1.1. The (n+1)-dimensionalMinkowski spacetime, Mn+1, is the real vector space
Rn+1, with coordinates (x0, . . . , xn), endowed with a non degenerate, symmetric, bilinear form
of signature (n, 1)

η = −dx2
0 + dx2

1 + . . .+ dx2
n.

Using the orthonormal frame
(
ei = ∂

∂xi

)
i=0,...,n

we may identify in a standard way the

tangent space (TxMn+1, ηx) with (Rn+1, 〈·, ·〉) where

〈v, w〉 = −v0w0 + v1w1 + . . .+ vnwn.

De�nition 1.1.2. A non zero tangent vector v is classi�ed as

1. spacelike if η(v, v) > 0

2. timelike if η(v, v) < 0

3. null if η(v, v) = 0.

Remark 1.1.3. Minkowski space is an orientable manifold. Let us put the standard orientation,
for which the canonical basis (e0, . . . , en) is positive oriented. Furthermore we give to it a
time orientation: a timelike tangent vector is said future directed if 〈v, e0〉 < 0 i.e. if we write
v =

∑n
i=0 viei where (e0, . . . , en) is the canonical basis then v is future directed if v0 > 0.

De�nition 1.1.4. We call orthonormal a�ne coordinates a set (y0, . . . , yn) of a�ne coordinates
on Mn+1 such that the frame { ∂

∂yi
} is orthonormal and positive and the vector ∂

∂y0
is future

directed.

Proposition 1.1.5. Two non zero null vectors are orthogonal if and only if they are parallel
i.e. ∃t ∈ R such that v = tw.

Proof. Obviously if ∃t ∈ R such that v = tw then 〈v, w〉 = t 〈w,w〉 = 0. On the other hand if
〈v, w〉 = 0 then v0w0 = v1w1 + . . .+ vnwn hence (v0w0)2 = (v1w1 + . . .+ vnwn)2 ≤ (v2

1 + . . . +
v2
n)(w2

1 + . . . + w2
n) = v2

0w
2
0 where the inequality comes from Cauchy-Schwartz inequality, and

also since we have equality it implies that (v1, . . . , vn) and (w1, . . . , wn) are linearly dependent.
So ∃t ∈ R such that vi = twi i = 1, . . . , n and furthermore v2

0 = t2(w2
1 + . . . + w2

n) = t2w2
0,

hence v0 = ±tw0. If by contradiction v0 = −tw0 then v0w0 = −tw2
0 = −t(w2

1 + . . .+ w2
n) since

w2
0 = w2

1 + . . . + w2
n, on the other hand we have v0w0 = v1w1 + . . . + vnwn = t(w1 + . . . + wn)

hence since, they are non zero, a contradiction. Then we must have v0 = tw0.

1



CHAPTER 1. PRELIMINARIES 2

Proposition 1.1.6. Let v and w be timelike or null vectors and in case they are both null
let them be non parallel. Write v = (v0, . . . , vn) and w = (w0, . . . , wn) with respect to an
orthonormal basis then either

(i) v0w0 > 0 in which case 〈v, w〉 < 0 or

(ii) v0w0 < 0 in which case 〈v, w〉 > 0.

Proof. Suppose v is timelike, then since 〈v, v〉 < 0 and 〈w,w〉 ≤ 0 we have v2
0 > v2

1 + . . . + v2
n

and w2
0 ≥ w2

1 + . . .+ w2
n, thus (v0w0)2 > (v2

1 + . . .+ v2
n)(w2

1 + . . .+ w2
n) ≥ (v1w1 + . . .+ vnwn)2

form Cauchy Schwartz. In case they are both null non parallel vectors we �nd (v0w0)2 ≥
(v2

1 + . . .+v2
n)(w2

1 + . . .+w2
n) > (v1w1 + . . .+vnwn)2, the second strict inequality comes from the

fact that they are linearly independent. Hence in any case we �nd |v0w0| > |v1w1 + . . .+vnwn|.
In particular v0w0 6= 0 and 〈v, w〉 6= 0. Suppose v0w0 > 0 then v0w0 = |v0w0| > |v1w1 + . . . +
vnwn| ≥ v1w1 + . . . + vnwn hence 〈v, w〉 < 0, on the other hand if v0w0 < 0 then 〈v,−w〉 < 0
hence 〈v, w〉 > 0.

Corollary 1.1.7. If a non zero vector is orthogonal to a timelike vector then it is spacelike.

Theorem 1.1.8 (Reverse Cauchy-Schwartz inequality). Let v and w be timelike vectors then

〈v, w〉2 ≥ 〈v, v〉 〈w,w〉

with equality if and only if they are linearly dependent.

Proof. Consider the vector u = av− bw where a = 〈v, w〉 and b = 〈v, v〉. Observe that 〈u, v〉 =
a 〈v, v〉− b 〈v, w〉 = 0. Since v is timelike u is either 0 or spacelike, thus 0 ≤ 〈u, u〉 = a2 〈v, v〉+
b2 〈w,w〉−2ab 〈v, w〉 with equality only if u = 0. Consequently 2ab 〈v, w〉 ≤ a2 〈v, v〉+b2 〈w,w〉
i.e. 2 〈v, v〉 〈v, w〉2 ≤ 〈v, v〉 〈v, w〉2 + 〈v, v〉2 〈w,w〉 and 2 〈v, w〉2 ≥ 〈v, w〉2 + 〈v, v〉 〈w,w〉 so
〈v, w〉2 ≥ 〈v, v〉 〈w,w〉. Equality holds only if u = av − bw = 0 and hence since a 6= 0 this
means that v and w are linearly dependent. Conversely if v and w are linearly dependent then
one is multiple of the other and the equality clearly holds.

Corollary 1.1.9. If v,w are positive (negative) timelike vectors then 〈v, w〉 ≤ ‖v‖‖w‖. With
equality if and only if they are linearly dependent. (Here ‖ · ‖ denotes the Euclidean norm on
Rn+1).

Proof. Consider v, w positive timelike vectors then form the Reverse Cauchy Schwartz in-
equality taking the square roots | 〈v, w〉 | ≥

√
〈v, v〉 〈w,w〉. Notice that it is always true that

〈v, v〉 ≤ ‖v‖2. Hence 〈v, w〉 ≤ ‖v‖‖w‖.

Theorem 1.1.10 (Reverse triangular inequality or Twin Paradox). Let v and w be timelike
vectors with the same time orientation then

τ(v + w) ≥ τ(v) + τ(w)

and equality holds if and only if v and w are linearly dependent. Here

τ(v) =
√
−〈v, v〉.

Proof. By Theorem 1.1.8, 〈v, w〉2 ≥ 〈v, v〉 〈w,w〉 = (−〈v, v〉)(−〈w,w〉) so this implies that
| 〈v, w〉 | ≥

√
−〈v, v〉

√
−〈w,w〉 But 〈v, w〉 < 0 since they have the same time orientation, so

we must have 〈v, w〉 ≤ −
√
−〈v, v〉

√
−〈w,w〉 and therefore −2 〈v, w〉 ≥ 2

√
−〈v, v〉

√
−〈w,w〉.
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Notice that v + w is timelike and we have −〈v + w, v + w〉 = −〈v, v〉 − 2 〈v, w〉 − 〈w,w〉 ≥
− 〈v, v〉+ 2

√
−〈v, v〉

√
−〈w,w〉 − 〈w,w〉, thus

−〈v + w, v + w〉 ≥
(√
−〈v, v〉+

√
−〈w,w〉

)2

√
−〈v + w, v + w〉 ≥

√
−〈v, v〉+

√
−〈w,w〉

τ(v + w) ≥ τ(v) + τ(w)

If the equality holds we obtain −2 〈v, w〉 = 2
√
−〈v, v〉

√
−〈w,w〉 and therefore 〈v, w〉2 =

〈v, v〉 〈w,w〉 so by Theorem 1.1.8 they are linearly dependent.

Remark 1.1.11. The reason for the name is that the situation of the famous twin paradox in
special relativity can be seen as a consequence of the reverse triangular inequality if we see
curves as motion of particles in the universe and length of timelike curves as their proper time.

Lemma 1.1.12. The sum of any �nite number of vectors all of which are timelike or null
and all future directed (past directed) is timelike and future directed (past directed) except when
all of the vectors are null and parallel, in which case the sum is null and future directed (past
directed).

Proof. It is su�cient to prove it for future directed vectors, it is also clear that any sum of
future directed vectors is future directed. Now observe that if v1 and v2 are future directed
timelike or null (not parallel) vectors then 〈v1, v1〉 ≤ 0, 〈v2, v2〉 ≤ 0 and by Proposition 1.1.6
〈v1, v2〉 < 0 so 〈v1 + v2, v1 + v2〉 = 〈v1, v1〉 + 2 〈v1, v2〉 + 〈v2, v2〉 < 0 and therefore v1 + v2 is
timelike. If they are both null and future directed and parallel then the sum is obviously null.
The proof follows by induction.

Corollary 1.1.13. Let v1, . . . , vn be timelike vectors, all with the same orientation, then

τ(v1 + . . .+ vn) ≥ τ(v1) + . . .+ τ(vn)

and equality holds if and only if v1, . . . , vn are all parallel.

Proof. The inequality follows by Theorem 1.1.10 and the previous lemma. Now we show by
induction on n that equality implies that v1, . . . , vn are parallel. For n = 2 this is just Theorem
1.1.10. Thus we may assume that the statement is true for sets of n vectors and consider a
set of n + 1 timelike future directed vectors such that τ(v1 + . . . + vn + vn+1) = τ(v1) + . . . +
τ(vn) + τ(vn+1), since v1 + . . .+ vn is timelike and future directed τ(v1 + . . .+ vn) + τ(vn+1) ≤
τ(v1) + . . .+ τ(vn) + τ(vn+1) we claim that, in fact, equality must hold here. Indeed otherwise
we have τ(v1 + . . . + vn) < τ(v1) + . . . + τ(vn) and hence applying Theorem 1.1.10 again
τ(v1 + . . . + vn−1) < τ(v1) + . . . + τ(vn−1) continuing the process we eventually conclude that
τ(v1) < τ(v1) which is a contradiction and so we have equality and hence τ(v1 + . . . + vn) =
τ(v1) + . . . + τ(vn), now the inductive hypothesis implies that v1, . . . , vn are parallel. Let
v = v1 + . . .+ vn then v is timelike and future directed thus τ(v + vn+1) = τ(v) + τ(vn+1) and
this implies that vn+1 is parallel to v and therefore to all v1, . . . , vn.

Remark 1.1.14. The geodesics in Mn+1 are straight lines L = R~u + x, where ~u, x ∈ Rn+1. We
can classify the geodesics up to isometries as follows:

1. spacelike if ηx(~u, ~u) > 0,

2. timelike if ηx(~u, ~u) < 0,

3. null if ηx(~u, ~u) = 0.
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Remark 1.1.15. A�ne k-planes in Mn+1 are also classi�ed up to isometries by the restriction
of the Lorentzian form to them, let P be a k-plane:

1. P is spacelike if η|P is a �at Riemannian form,

2. P is timelike if η|P is a �at Lorentz form,

3. P is null if η|P is a degenerate form.

Remark 1.1.16. Notice that a k-plane that is spacelike will have no null line, one that is timelike
will have at least two null lines, �nally a null hyperplane will have only one isotropic line.

Remark 1.1.17. Recall that O(n, 1) is the group of linear transformations of Rn+1 that preserve
the inner product 〈·, ·〉.

Theorem 1.1.18. Let Iso(Mn+1) be the group of isometries (i.e. di�eomorphisms preserving
the Lorentzian form) of Minkowski space, then Iso(Mn+1) ∼= Rn+1 o O(n, 1).

Proof. Let f be a di�eomorphism, then we have

∂i(f
∗η)x(∂j, ∂k) = ∂iηf(x)(df(x)∂j, df(x)∂k) =

= ηf(x)(∇∂idf(x)∂j, df(x)∂k) + ηf(x)(df(x)∂j,∇∂idf(x)∂k) =

= ηf(x)(d
2f(x)∂i∂j, df(x)∂k) + ηf(x)(df(x)∂j, d

2f(x)∂i∂k) =

= (f ∗η)x((df(x))−1d2f(x)∂i∂j, ∂k) + (f ∗η)x(∂j, (df(x))−1d2f(x)∂i∂k).

Now if f is an isometry we have that f ∗η = η hence it follows that ∂i(f
∗η)x(∂j, ∂k) =

∂iηx(∂j, ∂k) = 0 and if we permute the roles of i, j, k we �nd that also the following equa-
tions hold

ηx((df(x))−1d2f(x)∂j∂k, ∂i) + (f ∗η)x(∂k, (df(x))−1d2f(x)∂j∂i) = 0

ηx((df(x))−1d2f(x)∂k∂i, ∂j) + (f ∗η)x(∂i, (df(x))−1d2f(x)∂k∂j) = 0.

If we put the previous equations together we obtain ηx((df(x))−1d2f(x)∂i∂j, ∂k) = 0, this
implies d2f(x) = 0. Hence f(x) = f(0) + df(0)x. Since f preserves the Lorentzian form
df(0) should preserve the inner product on the tangent space, this implies that df(0) belongs
to O(n, 1). It follow that the group of isometries is generated by O(n, 1) and the group of
translations Rn+1. Furthermore Rn+1 is a normal subgroup of Iso(Mn+1) since it is the kernel
of the map Iso(Mn+1) 3 f → df(0) ∈ O(n, 1), so Iso(Mn+1) is isomorphic to Rn+1oO(n, 1).

Remark 1.1.19. Notice that O(n, 1) is the stabilizer of 0 in Iso(Mn+1). It is a semisimple Lie

group of dimension n(n−1)
2

. It has the following important subgroups:

1. O+(n, 1) = { linear isometries which preserve time orientation }.
A transformation is said to preserve time orientation if it sends future directed timelike
vectors to future directed timelike vectors. They are called orthochronus transformations.
It is a subgroup of index two of O(n, 1).

2. SO(n, 1) = { linear isometries which preserve the orientation of Mn+1 }.
They are called proper transformations. It is a subgroup of O(n, 1) of index 2.

3. SO+(n, 1) = { linear isometries which preserve both orientation and time-orientation }.
It is a subgroup of index 2 of both O+(n, 1) and SO(n, 1). It is called the Lorentz group.

O(n, 1) is not compact and it has four connected components. The connected component of
the identity is SO+(n, 1) and the set of connected components can be given a group structure
as the quotient O(n, 1)/SO+(n, 1) = {Id, P, T, PT} where P represents a transformation that
reverse the space orientation and preserve the time orientation and T viceversa.
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1.2 Lorentzian Manifolds

De�nition 1.2.1. A Lorentzian (n+1)-manifold is a pair (M, η) where M is a smooth (n +
1)−manifold (we may assume it is metrizable and with a countable basis) and η is a symmetric
non degenerate 2-form of signature (n, 1).

Example 1.2.2. Minkowski (n+1)-dimensional spacetime (Mn+1, η) is a Lorentzian manifold.

De�nition 1.2.3. As for Minkowski space we classify a non zero tangent vector as spacelike,
timelike or null, depending on whether the form evaluate on it is positive, negative or null. We
also call a vector non-spacelike if it is timelike or null.

De�nition 1.2.4. LetM be a connected Lorentzian manifold. A continuous vector �eld X on
it is said to be timelike if η(X(p), X(p)) < 0 for all p ∈ M . In general a Lorentzian manifold
does not necessarily admit a globally de�ned timelike vector �eld, if it does then it is said to
be time-orientable. In this situation the timelike vector �eld X divides all the non-spacelike
vectors in the tangent bundle of M in two connected components. A time orientation is a
choice of one timelike vector �eld.

De�nition 1.2.5. A spacetime is a connected time-orientable Lorentzian manifold equipped
with a time orientation.

For now on, since we will essentially be interested in spacetimes, let (M, η) be a spacetime.

De�nition 1.2.6. A non-spacelike tangent vector v ∈ TpM is said to be future directed if
ηp(X(p), v) < 0 and it is said to be past directed otherwise.

De�nition 1.2.7. A C1 curve is said to be

1. chronological (or timelike) if its tangent vectors are always timelike,

2. causal (or non-spacelike) if its tangent vectors are always non-spacelike.

A causal curve is said to be

3. future directed if its tangent vectors are future directed,

4. past directed if its tangent vectors are past directed.

De�nition 1.2.8. In a spacetimeM we can de�ne the causal structure, i.e. the causal relations
between two points: given p, q ∈M we write

1. p � q and we say p chronologically precedes q if there exists a smooth future directed
chronological curve from p to q,

2. p ≤ q and we say p causally precedes q if there exists a smooth future directed causal
curve from p to q .

Observe that these relations are transitive.

Now given p ∈M we can de�ne

1. the chronological future of p, I+(p) = {q ∈M | p� q},

2. the chronological past of p, I−(p) = {q ∈M | q � p},

3. the causal future of p, J+(p) = {q ∈M | p ≤ q},
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4. the causal past of p, J−(p) = {q ∈M | q ≤ p}.

For general subsets S ⊆M we may de�ne in an analogous way the sets I+(S), I−(S), J+(S), J−(S).
For example I+(S) = {q ∈M | s� q for some s ∈ S} =

⋃
s∈S I

+(s).

Lemma 1.2.9. If p is a point of M the sets I+(p) and I−(p) are open subsets of M .

Proof. [5, Lemma 3.5].

Remark 1.2.10. In general J+(p) and J−(p) are neither open nor closed, but for example in
Minkowski spacetime they are both closed.

De�nition 1.2.11. An (open) subset F ⊆ M is said to be future if F = I+(F ) and past if
F = I−(F ).

Proposition 1.2.12. If F is a future set its topological closure is characterized as F = {p ∈
M | I+(p) ⊆ F}. If P is a past set P = {p ∈M | I−(p) ⊆ P}.

Proof. Suppose p ∈ M such that I+(p) ⊆ F let {qn}n∈N ⊆ I+(p) with qn → p then since
{qn} ⊆ F we have p ∈ F . On the other hand let p ∈ F take any q ∈ I+(p) then p ∈ I−(q)
which is open, and since p ∈ F there exists some z ∈ I−(q) ∩ F , hence z ∈ F and z � q
implies, since F is a future set, q ∈ F so I+(p) ⊆ F .

Corollary 1.2.13. Let F be a future set, its topological boundary has the following character-
ization ∂F = {p ∈ M | p /∈ F and I+(p) ⊆ F}. Let P be a past set then ∂P = {p ∈ M | p /∈
P and I−(p) ⊆ P}.

Remark 1.2.14. In particular, as I+(p) and J+(p) are future sets, we have I+(p) = J+(p) =
{q ∈M | I+(q) ⊆ I+(p)} and ∂I+(p) = {q ∈M | q /∈ I+(p) and I+(q) ⊆ I+(p)}. Similarly for
the past set of a point.

De�nition 1.2.15. Let γ : [a, b)→M be a curve, p is said to be an endpoint of γ corresponding
to t = b if limt→b− γ(t) = p.
If γ is a future (past) directed causal curve with endpoint p corresponding to t = b the point
is called future (past) endpoint of γ. A causal curve is said to be future inextendible if it has
no future endpoint. A causal curve is said to be inextendible if it is both future and past
inextendible.

De�nition 1.2.16. M is said to be chronological if p /∈ I+(p) for all p ∈ M , i.e. M does not
contain any closed timelike curve.

De�nition 1.2.17. M is said to be causal if it contains no pair of distinct points p, q ∈ M
with p ≤ q ≤ p, i.e. M does not contain any closed causal curve.

De�nition 1.2.18. M is said to be strongly causal if around every point there exist arbitrary
small neighborhoods such that no causal curve that leaves one of these neighborhood ever
returns.

De�nition 1.2.19. A Cauchy surface S is an embedded topological hypersurface of M which
every inextendible causal curve intersects exactly once.

Remark 1.2.20. From the point of view of physics a Cauchy surface is regarded as a set of
initial data, that can be integrated a �nite distance in the future and that determines the
future evolution of the spacetime at least locally.

Remark 1.2.21. We can notice that a Cauchy surface is an acausal subset of M, that is: it does
not contain a pair of points joined by a causal curve.
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Example 1.2.22. In the (n+1)-dimensional Minkowski spaceMn+1 every spacelike hyperplane
is a Cauchy surface.

Example 1.2.23. In the (n+ 1)-dimensional Minkowski space Mn+1 let Hn = {(x0, . . . , xn) ∈
Mn+1 | − x2

0 + x2
1 + . . . + x2

n = −1, x0 > 0} be the hyperboloid model of the n-dimensional
hyperbolic space, then Hn is a Cauchy surface for I+(0), but it is not a Cauchy surface for the
whole Minkowski space Mn+1 where it is embedded.

De�nition 1.2.24. Given an achronal set S (no two points of it may be joined by a timelike
curve) the future domain of dependence of S, denoted by D+(S), consists of all the points p
of the spacetime such that every past-directed, inextendible in the past, causal curve from p
intersects S.
The past domain of dependence D−(S) is de�ned in a similar way changing the role of the past
with the future. Finally the domain of dependence of S is D(S) = D+(S) ∪D−(S).

Remark 1.2.25. Notice that the set S is always included in its domain of dependence.

Remark 1.2.26. Notice that if S is an acausal subset of a spacetime M , S is a Cauchy surface
for M if and only if D(S) = M .

Example 1.2.27. In the (n+1)-dimensional Minkowski space Mn+1 let Hn be the hyperboloid
model of the n-dimensional hyperbolic space then D+(Hn) = {(x0, . . . , xn) ∈ Mn+1 | − x2

0 +
x2

1 + . . .+ x2
n ≥ −1, x0 > 0} and D−(Hn) = {(x0, . . . , xn) ∈Mn+1 | 0 ≤ −x2

0 + x2
1 + . . .+ x2

n ≤
−1, x0 > 0} hence D(Hn) = I+(0).

De�nition 1.2.28. A strongly causal spacetime (M, η) is said to be globally hyperbolic if for
all p, q ∈M we have that J+(p) ∩ J−(q) is compact.

Proposition 1.2.29. In a globally hyperbolic spacetime M the causal future (past) of every
point is closed.

Proof. [5, Proposition 3.16].

Proposition 1.2.30. In a globally hyperbolic spacetime J+(K)∩J−(K ′) is compact ∀K,K ′ ⊆
M compact.

Proof. First let us prove that if K is compact then J+(K), and, in an analogous way J−(K),
is closed. Let {qn}n∈N ⊆ J+(K) so qn ∈ J+(pn) with pn ∈ K suppose qn → q, by the
compactness of K from {pn}n we can extract a convergent subsequence pn → p. From a
consequence of Ascoli-Arzela's Theorem [5, Proposition 3.31 ] the sequence of future directed
causal curves {γn} joining pn with qn admits a limiting curve γ passing through p that is still
causal. Since γ is a limiting curve for the γn between pn and qn it will also pass through q hence
q ∈ J+(p) ⊆ J+(K). For any p ∈ K take a point q ∈ I−(p) and notice that J+(p) ⊆ J+(q).
If we consider the open covering of K {I+(q) ∩K}q∈I−(p),p∈K , by compactness we can extract
a �nite subcover {(I+(q1) ∩ K), . . . , (I+(qn) ∩ K)}, hence J+(K) ⊆ ∪ni=1J

+(qi). In the same
way J−(K ′) ⊆

⋃n
j=1 J

−(q′j) hence J+(K) ∩ J−(K ′) ⊆ ∪ni=1 ∪mj=1 (J+(qi) ∩ J−(q′j)). On the
right side we have a �nite union of compact hence a compact set and on the left side we have
the intersection of two closed sets hence a close set. This implies that J+(K) ∩ J−(K ′) is
compact.

Theorem 1.2.31. If S is a Cauchy surface for the spacetime M then there exists a di�eomor-
phism f : M → R× S such that f−1({∗} × S) is a Cauchy surface for M.

Proof. In [16, Property 7] Geroch proves only a topological splitting of M as a product of
the form R × S where S is a Cauchy surface for M . Recently in [11] it has been proved the
smoothness of the splitting M ∼= R× S.
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Remark 1.2.32. Actually what is proved in [11] is that every globally hyperbolic spacetime
decomposes as R × S where S is a smooth spacelike Cauchy hypersurface for M and every
other {∗} × S is a spacelike Cauchy hypersurface of M . So we can deduce that every globally
hyperbolic spacetime contains a smooth spacelike hypersurface.

Remark 1.2.33. While proving the above theorem there is an important side result that is the
following. Let M be a Ck-spacetime and S a Cr-Cauchy surface for M with r ≤ k, then any
further Cr-Cauchy surface for M will be Cr-di�eomorphic to S. This is done in [10, Lemma
2.2. ] or [16, Property 7 ]. Essentially if T is a complete smooth timelike vector �eld on
M let φ be its �ow. Then it can be proved that ψ : R × S → M de�ned as ψ(s, x) = φs(x)
is a Cr-di�eomorphism and that if we write ψ−1(z) = (s(z), ρ(z)) and we let S ′ be another
Cr-Cauchy surface for M the map ρ|S′ : S ′ → S is a Cr-di�eomorphism.

Theorem 1.2.34. A spacetime is globally hyperbolic if and only if it admits a Cauchy surface.

Proof. [16, Theorem 11].

Remark 1.2.35. From Theorem 1.2.31 and Theorem 1.2.34 we can see that a globally hyperbolic
spacetime is never compact.

Remark 1.2.36. Minkowski spacetime is globally hyperbolic. Indeed it admits many Cauchy
surfaces, see Example 1.2.22.

Proposition 1.2.37. If S is a spacelike Cauchy surface for a spacetime M then its lifting S̃
to the isometric universal cover M̃ of M is a Cauchy surface for M̃ . In particular if M is
globally hyperbolic so is M̃ .

Proof. Since M̃ is isometric to M the lifting of S to M̃ is still a spacelike hypersurface. Fur-
thermore if γ̃ is a causal curve in M̃ and π : M̃ → M the covering projection then π(γ̃) is

a causal curve in M hence it intersects S. This implies that γ̃ intersects S̃ and since S̃ is
spacelike it intersects it exactly once. Finally if M is globally hyperbolic by Remark 1.2.32 it
admits a spacelike Cauchy hypersurface, call it S. Then from the previous part S̃ is a Cauchy
hypersurface for M̃ so by Theorem 1.2.34 M̃ is globally hyperbolic.

De�nition 1.2.38. Let M be a globally hyperbolic spacetime and let S be a Cauchy hyper-
surface of it. Then a S-embedding is an isometric embedding f : M →M ′ where M ′ is another
spacetime such that f(S) is a Cauchy hypersurface forM ′. This notion is independent from the
choice of the Cauchy surface, i.e. if S ′ is another Cauchy surface forM then f is a S-embedding
if and only if it is a S ′-embedding. Therefore the map f is called a Cauchy embedding. A glob-
ally hyperbolic manifold is said to be maximal if any Cauchy embedding into another globally
hyperbolic manifold is necessarily surjective.

Example 1.2.39. For instance I+(0) in Mn+1 is a maximal globally hyperbolic spacetime even
if it is embedded in a bigger globally hyperbolic spacetime, namely Mn+1. This is because Hn,
the Cauchy hypersurface for I+(0), is not a Cauchy hypersurface for Mn+1.

Theorem 1.2.40 (Choquet-Bruhat and Geroch). Every globally hyperbolic spacetime M ad-
mits a Cauchy embedding in a maximal globally hyperbolic spacetime. Moreover this maximal
globally hyperbolic extension is unique up to isometries.

Proof. [15, Theorem 3].

De�nition 1.2.41. Let (M, η) a Lorentzian manifold, let γ : I → M a causal curve, the
Lorentzian length of γ is

L(γ) =

∫
I

√
−η(γ̇(t), γ̇(t))dt.
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De�nition 1.2.42. The Lorentzian distance between p, q ∈M is de�ned as follows

d(p, q) =

{
sup{L(γ) | γ is a future directed causal curve from p to q} if p ≤ q

0 if p 6≤ q

Remark 1.2.43. The Lorentzian distance in general Lorentzian manifolds does not satisfy the
properties for being a distance, for instance

1. it needs not be �nite: if p ∈ I+(p)⇒ d(p, p) =∞,

2. it may fail to be non-degenerate: if I+(p) 6= M then if we take q 6= p and q /∈ I+(p) then
d(p, q) = 0,

3. it tends to be non-symmetric: if p 6= q and d(p, q) and d(q, p) are �nite then d(p, q) = 0
or d(q, p) = 0,

4. however it always satis�es the reverse triangular inequality:

p ≤ r ≤ q ⇒ d(p, q) ≥ d(p, r) + d(r, q),

5. when it is �nite it is lower semicontinuous:

if d(p, q) <∞ pn → p, qn → q ⇒ d(p, q) ≤ lim inf
n

d(pn, qn)

see [5, Lemma 4.4].

Theorem 1.2.44. In a globally hyperbolic spacetime (M, η) for any given points p, q ∈M with
q ∈ J+(p) there is a maximal future directed non-spacelike geodesic segment γ from p to q with
L(γ) = d(p, q).

Proof. [5, Theorem 6.1.].

De�nition 1.2.45. Let (M, η) be a spacetime de�ne the cosmological time τ : M → (0,∞] as

τ(p) = sup
q≤p

d(q, p)

We can also write τ(p) = sup{L(c) | c past directed causal curve starting at p}.

Remark 1.2.46. In general spacetimes time functions (i.e. functions that are strictly increasing
on every future directed causal curve) are de�ned in order to permit the decomposition into
space and time, in particular Geroch [16] de�nes a time function for every globally hyperbolic
spacetime in order to prove his theorem for the topological decomposition of the spacetime as
R× S, where S is a Cauchy surface. However the choice of such functions is rather arbitrary.
In [2] the cosmological time function is studied, which can be thought to be a canonical one in
the cosmological setting.

Remark 1.2.47. In general the cosmological time function may not be nice. For instance in
the case of Minkowski space τ ≡ ∞. And also there are some examples where it is �nite but
discontinuous, see [2].

De�nition 1.2.48. The cosmological time function τ on (M, η) is regular if and only if

1. τ(p) <∞ for all p ∈M and

2. τ → 0 on every past inextendible causal curve.
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If τ is regular we call it a canonical cosmological time (CT ).

Theorem 1.2.49. Let (M, η) be a spacetime such that the cosmological time τ is regular, then
the following properties hold

1. (M, η) is globally hyperbolic,

2. τ is a time function, i.e. it is continuous and strictly increasing along future directed
causal curves,

3. for each p ∈M there is a future directed timelike ray γp : (0, τ(p)]→M that realizes the
distance from the "initial singularity" to p, that is, γp is a future directed timelike unit
speed geodesic, which is maximal on each segment (d(γp(t), γp(s)) = t− s for 0 < s < t ≤
τ(p)), such that γp(τ(p)) = p and τ(γp(t)) = t, ∀t ∈ (0, τ(p)],

4. τ is locally Lipschitz ant its �rst and second derivatives exist almost everywhere.

Proof. [2, Theorem 1.2].

Corollary 1.2.50. The level sets of a regular cosmological time Sa = τ−1(a) are future Cauchy
surfaces, i.e. each inextendible causal curve that intersects the future of the surface actually
intersects the surface once.

Proof. [2, Corollary 2.6.].

Example 1.2.51. Consider M2+1 with coordinates (t, x, y), consider the chronological future
of the origin I+(0) = {(t, x, y) ∈ M2+1 | x2 + y2 − t2 < 0, t > 0}. The cosmological time of
I+(0) at p ∈ I+(0) equals the Lorentzian length of the timelike geodesic arc connecting p to 0

τ : I+(0) −→ (0,∞)

p→
√
t2 − x2 − y2.

t

y

x

Figure 1.1: Future of the origin

In this case τ is a smooth submersion and the level surfaces are the upper part of the
hyperboloids

Hn(a) = τ−1(a) = {(t, x, y) ∈M2+1 | x2 + y2 − t2 = −a2, t > 0}.

Example 1.2.52. Consider M2+1 with coordinates (t, x, y), let I+(∆) be the chronological
future of the line ∆ = {x = t = 0}

I+(∆) = {(t, x, y) ∈M2+1 | x2 − t2 < 0, t > 0}.
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∆

Figure 1.2: Future of a spacelike line

The cosmological time of I+(∆) at p = (t, x, y) ∈ I+(∆) equals the Lorentzian length of the
timelike geodesic arc connecting p to (0, 0, y)

τ : I+(∆) −→ (0,∞)

p→
√
t2 − x2.

The level surfaces are

I(∆, a) = τ−1(a) = {(t, x, y) ∈M2+1 | x2 − t2 = −a2, t > 0}.

Remark 1.2.53. The problem of the cosmological time is that in general it has very low regual-
rity: typically C1 but not C2.

Example 1.2.54. For example, using the same notation as in Example 1.2.52, if we �x r ∈ R
and consider the domain U = A∪B∪C where A = I+(0)∩{y ≤ 0}, B = I+(∆)∩{0 ≤ y ≤ r}
and C = I+(0)∩{y ≥ 0}+ r(0, 0, 1), then the cosmological time of the di�erent pieces �ts well
together giving us a regular cosmological time on U but just with a C1-regularity.

A B C

r

Figure 1.3: Future of a spacelike segment

1.3 Hyperbolic Space

De�nition 1.3.1. We will identify the hyperbolic n-space with its hyperboloid model in
Minkowski (n+1)-space. The hyperbolic n-space Hn is

Hn = {x ∈Mn+1 | 〈x, x〉 = −1, x0 > 0},

where as in section 1.1 〈·, ·〉 is the Lorentzian inner product on Mn+1.

Proposition 1.3.2. The pair (Hn, η|Hn), where η in the Lorentzian form on Mn+1, is an
oriented di�erentiable manifold with a natural Riemannian structure.

Proof. Since Hn is the inverse image of a regular value of a di�erentiable function it is a smooth
submanifold of Rn+1. From an easy computation we can see TxHn = x⊥, where the orthogonal
complement is with respect to the Lorentzian inner product on Mn+1. Since x is timelike, its
orthogonal is a spacelike hyperplane, hence the Lorentzian form on Mn+1 restrict to a positive
de�nite form on Hn.
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Remark 1.3.3. What we have de�ned as the hyperbolic space is often referred to as the hy-
perboloid model of hyperbolic space that in the general de�nition is the simply connected
Riemannian manifold with constant sectional curvature equal to −1. There are other possible
models for this space.

Disc model Let us consider the stereographic projection with center −e0, where (e0, . . . , en)
is the standard basis of Rn+1,

φ : {x ∈ Rn+1 | x0 > 0} −→ Rn ∼= {0} × Rn

x→ (x1, . . . , xn)

1 + x0

.

It restricts to a di�eomorphism of Hn with Dn the open unit ball in Rn. We denote by
Dn = {x ∈ Rn | x2

1 + . . . + x2
n < 1} the manifold Dn endowed with the pullback metric,

so that φ becomes an isometry. Namely

(φ−1)∗(η)(x1, . . . , xn) =
4

(1− ‖x‖2)2
(dx2

1 + . . .+ dx2
n).

Here ‖ · ‖ denotes the Euclidean norm on Rn.

Half space model Let Hn
+ = {y ∈ Rn | yn > 0} and let (e1, . . . , en) be the standard basis of

Rn. Consider the following map

ψ : Dn −→ Hn
+

x→ 2
x+ en
‖x+ en‖

− en.

It is a di�eomorphism and we will write Hn
+ to denote the manifold Hn

+ with the pullback
metric

(ψ−1)∗
(

4

1− ‖x‖
(dx2

1 + . . .+ dx2
n)

)
(y1, . . . , yn) =

1

y2
n

(dy2
1 + . . .+ dy2

n).

Remark 1.3.4. If we consider the models of the disc and of the half-space we can see that Hn

has a natural boundary, for instance in the disc model we see it is homeomorphic to Sn−1. Let
us consider the projection π : Mn+1 \{0} → Pn, then π(Hn) is di�eomorphic to the open ball of
all the timelike lines. If we consider its closure the boundary is formed by the set of null lines.
Hence de�ne ∂Hn = {null lines} and de�ne Hn = Hn ∪ ∂Hn. It is the compacti�cation of the
hyperbolic space, and we give it the topology such that the map π|Hn becomes a homeomorphism
onto its image.

Theorem 1.3.5. Let γ : [a, b]→ Hn be a curve then the following are equivalent:

1. γ is a geodesic arc,

2. there exist two Lorentz orthogonal vectors x, y ∈ Rn+1 such that 〈x, x〉 = −1 and 〈y, y〉 = 1
and

γ(t) = (cosh(t− a))x+ (sinh(t− b))y,

3. the curve satis�es the di�erential equation γ′′ − γ = 0.

Proof. [26, Theorem 3.2.4].
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Theorem 1.3.6. A curve γ : R→ Hn is a geodesic line if there are Lorentz orthogonal vectors
x, y ∈ Rn+1 such that 〈x, x〉 = −1 and 〈y, y〉 = 1 and

γ(t) = cosh(t)x+ sinh(t)y.

Proof. [26, Theorem 3.2.5.].

Corollary 1.3.7. The geodesics in Hn are the intersections of Hn with a timelike 2-plane of
Mn+1 passing through the origin.

Proof. [26, Corollary 4, § 3.2.].

Remark 1.3.8. We can see then that Hn is geodesically complete and hence by Hopf-Rinow
theorem complete as a metric space.

Remark 1.3.9. We can also see that given any two distinct points in Hn we have a unique
geodesic containing them.

De�nition 1.3.10. An hyperbolic k-plane is the intersection of Hn with a (k+ 1)-dimensional
timelike linear subspace of Mn+1.

Remark 1.3.11. Hyperbolic k-planes are totally geodesic submanifolds.

Remark 1.3.12. It follows that convex subsets of Hn are intersections of Hn with a convex cone
with apex at 0.

Proposition 1.3.13. The group of isometries of Hn (i.e. di�eomorphism preserving the Rie-
mannian form) is isomorphic to O+(n, 1).

Proof. [26, Corollary 3, § 3.2.].

Corollary 1.3.14. The group of orientation preserving isometries of Hn is isomorphic to
SO+(n, 1).

Remark 1.3.15. Notice that the action of the group of isometries extends to an action on the
whole Hn by homeomorphisms.

De�nition 1.3.16. From the previous remark and from Brower's �xed point Theorem we can
see that every isometry of Hn �xes some point of Hn. The isometry φ ∈ O+(n, 1) is said to be

1. Elliptic if it �xes a point in Hn.
In this case φ has a timelike eigenvector with eigenvalue 1.

2. Parabolic if it �xes no point in Hn and a unique point in ∂Hn.
In this case φ has a unique null eigenvector with eigenvalue 1.

3. Hyperbolic if it �xes no points in Hn and two points in ∂Hn.
In this case φ has two null eigenvectors with eigenvalues λ > 1 and λ−1.

Remark 1.3.17. See [7, Prop. A.5.14] for the proof that these are the only possibilities.

Remark 1.3.18. It can be seen that this classi�cation depends only on the conjugacy class of φ
in the group of isometries.

Remark 1.3.19. When φ is an hyperbolic transformation there exists a unique φ invariant
geodesic in Hn, indeed it is the unique geodesic between the two �xed points of φ. Such a
geodesic is called the axis of φ.
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We now recall some facts about discrete subgroups of Iso(Hn) and their action on Hn since
they will be important in the next section when we will talk about hyperbolic manifolds.

Remark 1.3.20. We can give a topology to Iso(Hn) viewing it as a subset of the set of continuous
self maps C(Hn,Hn) with the compact-open topology.

De�nition 1.3.21. A topological group is discrete if all its points are open.

Remark 1.3.22. A discrete subgroup of Iso(Hn) is a subgroup that is discrete with the induced
topology.

De�nition 1.3.23. A group G acts freely on a space X if the stabilizer of every point is trivial.

De�nition 1.3.24. A group G acts properly discontinuously on a locally compact Hausdor�
topological space X if for every compact subset K of X the set of elements g in G such that
gK ∩K 6= ∅ is �nite.

The importance of discrete subgroups is the following theorem

Theorem 1.3.25. Let X be a �nitely compact metric space (all its closed balls are compact)
then a group Γ of isometries of X is discrete if and only if it acts properly discontinuously on
X.

Proof. [26, Theorem 5.3.5.].

Remark 1.3.26. We remark that the implication Γ acts properly discontinuously on X then Γ
is discrete in the group of isometries of X is always true without the assumption of X being a
metric space.

Proposition 1.3.27. A discrete torsion-free group of isometries of a �nitely compact metric
space X acts freely on X.

Proof. Since Γ is discrete it acts properly discontinuously on X and hence the stabilizer of
every point is �nite. Being Γ torsion-free the stabilizer of every point is trivial.

Theorem 1.3.28. A discrete group of isometries Γ of Hn acts freely on Hn if and only if it is
torsion free.

Proof. [26, Theorem 8.2.1.]

De�nition 1.3.29. A subgroup Γ of Iso(Hn) is called elementary if it has a �nite orbit in Hn.

De�nition 1.3.30. Let Γ be a subgroup of Iso(Hn) then the limit set of Γ is

L(Γ) = {p ∈ ∂Hn | ∃q ∈ Hn and ∃ a sequence {γi}∞i=1 ⊆ Γ such that γiq → p}.

Proposition 1.3.31. If Γ is a discrete torsion-free cocompact subgroup of Iso(Hn) then L(Γ) =
∂Hn

Proof. Let us consider P a fundamental polyhedron for Γ containing 0, then from [26, Theorem
6.6.9], P is compact. Consider any x ∈ ∂Hn and for all n ∈ N consider an euclidean ball centered
at x of radius 1/n, since P is compact and since the euclidean diameter of gP goes to 0 when
we are approaching the boundary of Hn there exists gn ∈ Γ such that gnP is all contained in
B(x, 1/n). Hence Γ · 0 accumulates at x.

Remark 1.3.32. From the previous theorem and from the classi�cation of elementary subgroups
of Iso(Hn) done in [26, § 5.5.] we can conclude that if Γ is a torsion-free discrete cocompact
subgroup of Iso(Hn) then Γ is not elementary.

Remark 1.3.33. Furthermore we can also see that Γ does not leave invariant any m-plane of
Hn with m < n otherwise the limit set of Γ will not be the whole ∂Hn. So �nally from [26,
Corollary 2, § 12.2.] the centralizer of Γ in Iso(Hn) is trivial.



CHAPTER 1. PRELIMINARIES 15

1.4 Geometric Structures

De�nition 1.4.1. A group G acting on a manifold X is said to act analytically if any element
of G that acts as the identity on any non empty open subset of X is the identity of G.
Notice that this implies, in particular, that the action is faithful.

De�nition 1.4.2. Let G be a Lie group acting smoothly, transitively and analytically on a
manifold X, let M be a manifold of the same dimension as X.
A (G,X)-atlas on M is a pair (U ,Φ) where U = {Uα}α∈A is an open covering of M and
Φ = {φα : Uα → Vα ⊆ X}Uα∈U is a collection of coordinate charts (i.e. homeomorphism
to open subsets of X) such that the restriction of φα ◦ φ−1

β to each connected component of
φβ(Uα ∩ Uβ) is the restriction of an element gαβ ∈ G.

De�nition 1.4.3. A (G,X)-structure on M is a maximal (G,X)-atlas on M. A (G,X)-manifold
is a manifold M equipped with a (G,X)-structure.

De�nition 1.4.4. If M and N are two (G,X)-manifolds and f : M → N a di�erentiable map,
then f is a (G,X)-map if for each pair of charts φα : Uα → Vα and ψβ : U ′β → V ′β for M and N
respectively there exists gαβ ∈ G such that

ψβ ◦ f ◦ φ−1
α |Vα∩φα(f−1(U ′β)) = gαβ |Vα∩φα(f−1(U ′β)).

Remark 1.4.5. Notice, in particular, that every (G,X)-map is a local di�eomorphism since G
acts on X as a subgroup of di�eomorphism of X.

Remark 1.4.6. If f : M → N is a local di�eomorphism where M and N are smooth manifolds
then for every (G,X)-structure on N there exists a unique (G,X)-structure on M such that f
becomes a (G,X)-map. It is achieved by pulling back the structure via f .

Example 1.4.7. From Remark 1.4.6 it follows that in particular every covering space (hence
also the universal cover) of a (G,X)-manifold has a natural (G,X)-structure.

Example 1.4.8. If Γ ⊆ G is a discrete subgroup which acts properly discontinuously and
freely on X then X/Γ is a (G,X)-manifold.

Theorem 1.4.9. Let M be a (G,X)-manifold, let M̃ be its universal cover endowed with the
(G,X)-structure such that the covering map becomes a (G,X)-map, then there exists a (G,X)-
morphism

D : M̃ → X

and a group homomorphism
ρ : π1(M)→ G

such that
D ◦ γ = ρ(γ) ◦D ∀γ ∈ π1(M)

Such a pair (D, ρ) is uniquely determined up to the action of G: any other pair has the form
(g ◦D, g ◦ ρ ◦ g−1) for some g ∈ G.

Proof. [18, p. 174-176].

De�nition 1.4.10. The pair (D, ρ) arising from Theorem 1.4.9 is called a development pair.
The map D is called a developing map of M and the group homomorphism is called the
holonomy of the (G,X)-structure.
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Remark 1.4.11. The development pair completely determines the (G,X)-structure on M, in
the sense that the (G,X)-structure on M coincide with the one we get in the following way.
Using the developing map associated to it, that is a local di�eomorphism, we can de�ne a
(G,X)-structure on M̃ and then using the universal cover π : M̃ →M we de�ne the structure
on M .

Remark 1.4.12. Generally the map D is just a local isometry neither injective nor surjective.

De�nition 1.4.13. When D is a covering map then the (G,X)-structure on M is said to be
complete.

Remark 1.4.14. Notice that in case the manifold X is simply connected then if M is a complete
(G,X)-manifold, this implies that D is a global isometry, i.e. a (G,X)-map that is a di�eomor-
phism, so that we can identify X with the universal cover of M. In this situation the holonomy
morphism is injective so that we may identify π1(M) with its image Γ = ρ(π1(M)) in G, by the
equivariance of the map D, Γ acts freely and properly discontinuously on X, hence D induces
an isometry M ∼= X/Γ.

De�nition 1.4.15. An hyperbolic manifold is an (Hn, SO+(n, 1))-manifold.

Remark 1.4.16. Notice that, by the previous remark, a complete hyperbolic manifold will be
isometric to Hn/Γ where Γ is a discrete subgroup of SO+(n, 1) which is isomorphic to π1(M)
via the holonomy morphism.

Remark 1.4.17. Notice that we can endow an hyperbolic manifold with a Riemannian metric
in the following way. Let α be the Riemannian metric on Hn, let M be an hyperbolic manifold
and let (D, ρ) the associated developing pair. Then since D is a local di�eomorphism we can

pull back the metric α on M̃ and de�ne α̃ = D∗α, i.e.

α̃x(v, w) = αD(x) (dD(x)v, dD(x)w)

noticing that this metric is π1(M)-invariant we can conclude that it induces a well de�ned
metric ᾱ on M .

Proposition 1.4.18. An hyperbolic manifold is complete as a Riemannian manifold if and
only if it is (Hn, SO+(n, 1))-complete.

Proof. [26, Theorem. 8.5.7].

Remark 1.4.19. In particular, by Hopf-Rinow theorem, every compact hyperbolic manifold M
will be complete as Riemannian manifold, hence complete as (G,X)-manifold. Hence we may
identify compact hyperbolic manifolds with Hn/Γ where Γ as before is a discrete torsion-free
cocompact subgroup of SO+(n, 1) isomorphic to π1(M).

Proposition 1.4.20. If M is a compact hyperbolic manifold, hence M = Hn/Γ, then all
elements of Γ act on Hn as hyperbolic isometries.

Proof. [7, Lemma B.4.4].

Following [18] we may de�ne for a �xed manifold M a "space of (G,X)-structures" on it.

De�nition 1.4.21. Fix a manifold M and consider the following set

D′(G,X)(M) = {(D, ρ) | ρ ∈ Hom(π1(M), G)

D : M̃ → X ρ-equivariant local di�eomorphism}.
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We can also think of it as

D′(G,X)(M) = {(φ, S) | φ : M → S is a di�eomorphism

S is a (G,X)−manifold}.

Let us put on it the C∞-topology on the maps D and the compact-open topology on the maps
ρ (that in case M is compact, so π1(M) is �nitely generated, it coincides with the topology of
pointwise convergence). We have a natural continuous map

hol′ : D′(G,X)(M)→ Hom(π1(M), G)

that is the projection.

Remark 1.4.22. Notice that the group of homotopically trivial di�eomorphisms Di�eo0(M)
acts on D′(G,X)(M) by pre-composition with (ψ̃, ψ∗) where ψ ∈Di�eo0(M), ψ̃ is its lift to the
universal cover and ψ∗ is the map induced on the fundamental group.
Since ψ is homotopically trivial we have that ψ∗ = id , hence hol′ is invariant under this action.

De�nition 1.4.23. We may consider the quotient, equipped with the quotient topology

D(G,X)(M) = D′(G,X)(M)/Di�eo0(M),

The map hol′ induces a well de�ned continuous map

hol : D(G,X)(M)→ Hom(π1(M), G)

Theorem 1.4.24 (Deformation Theorem or Thurston Theorem). Let M be a compact manifold
then the holonomy map hol is a local homeomorphism.

Proof. [18].

Remark 1.4.25. The group G acts on D′(G,X)(M) as g(D, ρ) = (g ◦ D, gρg−1) and hence on

Hom(π1(M), G) in the same way by conjugacy. The map hol′ is obviously equivariant with
respect to these actions by G.

De�nition 1.4.26. We may de�ne the Teichmuller space (deformation space) of (G,X)-
structures on M to be

T(G,X)(M) = D(G,X)(M)/G

equipped with the quotient topology. Hence hol induces a continuous map

hol : T(G,X)(M)→ Hom(π1(M), G)/G.

De�nition 1.4.27. Another example of (G,X)-manifolds are �at spacetimes. They are, by
de�nition, (Iso(Mn+1),Mn+1)-manifolds.

Remark 1.4.28. Notice that if Y is an oriented �at spacetime (so it is also time oriented) then
it has also a (Iso0(Mn+1),Mn+1)-structure. Where Iso0(Mn+1) ∼= Rn+1 o SO+(n, 1).

Let us specialize to the case, that will be central in our study, where Y is a globally
hyperbolic �at spacetime admitting a Cauchy surface di�eomorphic to a compact hyperbolic
manifold M = Hn/Γ, with Γ a discrete subgroup of SO+(n, 1).

For every group G let
RG = Hom(π1(M), G)/G
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where the action of G is again given by conjugacy.
As we have already pointed out, since Y is globally hyperbolic with Cauchy surfaces di�eo-
morphic to M , it decomposes as Y ∼= R×M and hence π1(Y ) ∼= π1(M). For simplicity let us
set

TLor(M) = { globally hyperbolic �at Lorentzian structures on R×M }/Di�eo0(R×M).

The holonomy map in this case is

hol : TLor(M)→ RIso0(Mn+1).

Let L : Iso0(Mn+1) → SO+(n, 1) be the projection to the linear part Rn+1 o SO+(n, 1) 3
(a,A) 7→ A ∈ SO+(n, 1) then we obtain

L ◦ hol : TLor(M) −→ RSO+(n,1)

[(D, ρ)]→ [L ◦ ρ].

We need the following, very useful lemma about immersed spacelike hypersurfaces in Mn+1.

Proposition 1.4.29. Let S be a connected manifold of dimension n and f : S → Mn+1 a
Cr-immersion for r ≥ 1 such that f ∗(η) is a complete Riemannian metric on S. Then f is an
embedding. Moreover if we �x orthonormal a�ne coordinates (y0, . . . , yn), we get that f(S) is
the graph of a function de�ned over the horizontal plane {y0 = 0}.

Proof. Let f(s) = (i0(s), . . . , in(s)). Consider the canonical projection π : f(S) → {y0 = 0},
namely π(i0(s), . . . , in(s)) = (0, i1(s), . . . , in(s)). Notice that π ◦ f is distance increasing, in the
sense

〈d(π ◦ f)(x)v, d(π ◦ f)(x)v〉 ≥ (f ∗η)(v, v)

In fact given v ∈ TsS let df(s)v = (v0, . . . , vn) then d(π ◦ f)(s)v = (0, v1, . . . , vn), hence
f ∗η(v, v) = 〈d(π ◦ f)(s)v, d(π ◦ f)(s)v〉 − v2

0, and the inequality follows. Hence d(π ◦ f)(s) is
an isomorphism for all s ∈ S. In fact let v 6= w ∈ Ts(S) and assume by contradiction that
d(π ◦ f)(s)v = d(π ◦ f)(s)w. Since f is an immersion we have that df(s)v 6= df(s)w hence
f ∗η(v − w, v − w) > 0. On the other hand from the previous inequality we get

0 = 〈d(π ◦ f)(s)(v − w), d(π ◦ f)(s)(v − w)〉 ≥ f ∗η(v − w, v − w)

hence a contradiction. This implies, since S and {y0 = 0} have the same dimension, that
d(π ◦ f) is an isomorphism, hence π ◦ f is a local Cr-di�eomorphism. An isometric immersion
p : S∗ → S between connected Riemannian manifolds of the same dimension where S∗ is
complete is a covering map. The proof of this fact can be found in [20, IV, Theorem 4.6].
This implies that π ◦ f is a covering map, but {y0 = 0} is simply connected hence π ◦ f is a
Cr-di�eomorphism. Hence f is an embedding and f(S) is the graph of a real valued function
de�ned over {y0 = 0}.

Remark 1.4.30. When S is a spacelike hypersurface of Mn+1, since points on S are not chrono-
logically related, the function ϕ : {y0 = 0} → R that arises from Proposition 1.4.29 such that
S is the graph of ϕ is 1-Lipschitz. Indeed at every point p ∈ S the graph of ϕ lies completely
outside the future and past cone at p otherwise the tangent plane at p to S would be timelike
or null. This implies that ϕ is 1-Lipschitz.

Recall for the following that M = Hn/Γ is a compact hyperbolic manifold.

Lemma 1.4.31. Let ρ : Γ → Iso0(Mn+1) be the holonomy morphism of a globally hyperbolic
�at Lorentzian structure on R×M . Then ρ(Γ) is isomorphic to Γ and it is a discrete subgroup
of Iso0(Mn+1).
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Proof. Let Y be a globally hyperbolic �at spacetime representing the structure on R × M
and let N be a spacelike Cauchy surface for Y . Since Y ∼= R × N ∼= R ×M it follows that
N and M have isomorphic fundamental groups that we shall identify both equal to Γ. Let
D : Ñ → Mn+1 be the restriction of the developing map of Y to the universal cover of N .
From Proposition 1.4.29 it follows that D is an embedding and hence, from the equivariance
of D, that ρ is injective and ρ(Γ) acts properly discontinuously on D(Ñ) since Γ acts properly

discontinuously on Ñ . Hence ρ(Γ) is a discrete subgroup of Iso0(Mn+1).

Lemma 1.4.32. Let Γ′ = ρ(Γ), where ρ is the holonomy morphism ρ : Γ → Iso0(Mn+1) of a
globally hyperbolic �at Lorentzian structure on R×M . Let L : Iso0(Mn+1)→ SO+(n, 1) be the
projection to the linear part then L|Γ′ : Γ′ → L(Γ′) is an isomorphism. Furthermore L(Γ′) is a
discrete subgroup of SO+(n, 1).

Proof. Let T (Γ′) be the kernel of L restricted to Γ′. As in the previous lemma let Y a globally
hyperbolic �at spacetime representing the structure on R×M and let N the spacelike Cauchy
surface of Y with fundamental group identi�ed with Γ. SinceD(Ñ) is spacelike and Γ′-invariant
T (Γ′) must consists of spacelike vectors. Since Γ′ is discrete in Iso(Mn+1) and T (Γ′) is spacelike
it follows that T (Γ′) = Zk for some k ≤ n, see [26, Theorem 5.3.2.]. But Γ′ ∼= Γ = π1(M)
and as we saw in Remark 1.3.32 Γ is not an elementary subgroup of SO+(n, 1) and hence by
[26, Theorem 5.5.11.] Γ has no nontrivial normal subgroups Zk, and so T (Γ′) = 0. Hence
L : Γ′ → L(Γ′) is an isomorphism. Now we want to show that L(Γ′) is discrete is SO+(n, 1).
Suppose it is not and let L(Γ′) be its closure in SO(n, 1). By a Theorem of Auslander [25,
Theorem 8.24 ] the identity component of the closure L(Γ′)0 is solvable. Then from [26,

Theorem 5.5.10. ] L(Γ′)0 is elementary. From the classi�cation of elementary groups done in

[26, § 5.5 ] we see that L(Γ′)0 either �xes a point in Hn or one or two points in ∂Hn, call F the

set of points �xed by L(Γ′)0. Since L(Γ′)0 is a normal subgroup of L(Γ′) it follows that L(Γ′)
normalizes it, then L(Γ′) leaves F invariant. In the �rst case L(Γ′) would be conjugate to a
subgroup of O(n) (see [26, Theorem 5.5.1.]) in the second case, up to �nite index, it would be
conjugate to the stabilizer in SO+(n, 1) of a point at in�nity which is isomorphic to the group
of orientation preserving similarities of Rn−1 by [26, Theorem 4.4.4.]. Both these groups are
amenable, see [13, Theorem 2.1.3]. Hence also Γ′ would be contained in an amenable group.
As Γ′ is discrete, by Tits' Theorem (see [13, Theorem 2.1.4.]) it implies that Γ′ is virtually
solvable. Contradicting the hypothesis that Γ′ ∼= Γ cannot be virtually solvable otherwise Γ
would be elementary.

Lemma 1.4.33. LetM and N be hyperbolic n-manifolds such thatM is compact, N is complete
and π1(M) ∼= π1(N) then N is compact as well.

Proof. The �rst observation is that M and N are aspherical, i.e. πi(M) = πi(N) = 0 for all
i > 1. This follows from the long exact sequence of homotopy groups associated to a �bration
which implies that πi(M) ∼= πi(N) ∼= πi(Hn) for i > 1 and then from Hadamar-Cartan Theorem
we know that Hn is di�eomorphic to Rn hence contractible, hence πi(Hn) = 0 for all i ≥ 1.
Now a Theorem of Hurewicz ([19, Proposition 4.30.]) implies that since π1(M) ∼= π1(N) and
M and N are aspherical then they are homotopy equivalent, hence in particular they have
isomorphic n-th homology group Hn(M ;Z) ∼= Hn(N ;Z). Hence if we assume by contradiction
that N is not compact this implies ([19, Proposition 3.29.]) Hn(N ;Z) = 0. On the other
hand since M is compact and connected we have Hn(M ;Z) ∼= H0(M ;Z) = Z and we get a
contradiction.

Proposition 1.4.34. For n ≥ 3 the image of the holonomy map

hol : TLor(M)→ RIso0(Mn+1)

is contained in R(Γ) = {[ρ] ∈ RIso0(Mn+1) | L ◦ ρ(γ) = γ ∀γ ∈ Γ}.
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Proof. From Lemma 1.4.31 and Lemma 1.4.32 we know that every linear part of the holonomy
morphism of a �at globally hyperbolic spacetime di�eomorphic to R×M is faithful with discrete
image. Hence L ◦ ρ : π1(M) → SO+(n, 1) is an isomorphism onto its image L(ρ(π1(M))),
i.e. L(ρ(π1(M))) ∼= π1(M) = Γ. Notice that from Lemma 1.4.33 we have that Hn/L(ρ(π1(M)))
is a compact hyperbolic manifold hence for n ≥ 3 Mostow Rigidity Theorem [26, Theorem
11.8.5] implies that L(ρ(π1(M))) coincide with Γ up to conjugacy.

Proposition 1.4.35. R(Γ) is naturally identi�ed with H1(Γ,Rn+1).

Proof. Let ρ be a representation of Γ into Iso(Mn+1) whose linear part is the identity, then
ρ(γ) = γ + τγ ∈ Γ n Rn+1. Since ρ is a group homomorphism we have αβ + ταβ = ρ(αβ) =
ρ(α)ρ(β) = ρ(α)(β + τβ) = αβ + ατβ + τα for all α, β ∈ Γ. Hence ταβ = ατβ + τα, this
implies that (τγ)γ∈Γ ∈ Z1(Γ,Rn+1). Conversely the assignment Γ → Iso(Mn+1) γ → τγ + γ is
a group homomorphism for the same equality as before. Hence we have a bijection between
Z1(Γ,Rn+1) and the group homomorphisms Γ → Iso(Mn+1) whose linear part is the identity.
Now if ρ, ρ′ are two such representations and f ∈ Iso0(Mn+1) and ρ′(γ) = fρ(γ)f−1 we have
L(ρ′(γ)) = γ = L(f) ◦ γ ◦L(f)−1. This implies that the linear part of f commutes with Γ, but
the centralizer of Γ in SO+(n, 1) is trivial (see Remark 1.3.33), hence f is just a translation by
a vector v ∈ Rn+1. So ρ′(γ)(v) = γv + τ ′γ = f ◦ ρ(γ) ◦ f−1(v) = f(ρ(γ)(0)) = τγ + v, we obtain
τ ′γ − τγ = v − γv. Hence their di�erence is a coboundary. Conversely if (τγ)γ∈Γ and (τ ′γ)γ∈Γ

are such that τ ′γ − τγ = γv − v for some v ∈ Rn+1 the associated group homomorphisms are
conjugated by f = (id, v) for the same equality as before. Hence we obtain an identi�cation
between R(Γ) and Z1(Γ,Rn+1)/B1(Γ,Rn+1) = H1(Γ,Rn+1).

Remark 1.4.36. Using this identi�cation we shall denote by ρτ the group homomorphism asso-
ciated to τ ∈ H1(Γ,Rn+1) and by Γτ its image in Iso0(Mn+1).

Example 1.4.37. One of the simplest example of �at spacetime with Cauchy surface homeo-
morphic to a compact manifold M ∼= Hn/Γ is obtained as follows. Notice that Γ acts properly
discontinuously and freely on the whole I+(0), the future cone at 0. To see why it is su�cient
to prove that the action is properly discontinuous since Γ is torsion free. Let K be a compact
subset of I+(0) and consider C = (J+(K)∪J−(K))∩Hn, notice that since I+(0) is the domain
of dependence of Hn we have that Γ(K) = {γ ∈ Γ | γK ∩K 6= ∅} is contained in Γ(C) which
is �nite since C is compact and the action of Γ on Hn is properly discontinuous, hence this
implies that also Γ(K) is �nite. We can then consider the manifold C+(M) = I+(0)/Γ, it is
called the Minkowskian cone over M or the Minkowskian suspension of M. We have seen that
I+(0) has canonical cosmological time T̃

T̃ : I+(0)→ R+

p→ d(0, p)

every level surface is T̃−1(a) = Hn(a) = {x ∈ I+(0) | − x2
0 + x2

1 + . . . + x2
n = −a2}. So I+(0)

is globally hyperbolic with Cauchy surfaces Hn(a). Notice that all the Cauchy surfaces in a
globally hyperbolic spacetime are di�eomorphic by Remark 1.2.33, hence Hn(a) ∼= Hn(1) = Hn.

Since T̃ is Γ-invariant, indeed Γ is acting by isometries, it induces a canonical cosmological
time on C+(M) where the level surfaces will be Hn(a)/Γ ∼= Hn/Γ = M . Hence C+(M) is a
globally hyperbolic �at spacetime with Cauchy surfaces di�eomorphic to M.
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Main Theorem

Now we state the main theorem of the paper of Bonsante [12] of which we are going to explain
and articulate the proof in the following sections.
The �rst part of the theorem about the construction of a future complete �at spacetime as-
sociated to any a�ne deformation of Γ is a generalization of what was done by Mess [21,
Proposition 3 ] in dimension 2 + 1. The second part of the theorem where it is proved that the
spacetime thus constructed has canonical cosmological time and where this function is used in
order to recover some information about the geometry of the �at spacetime is related to a work
of Benedetti and Guadagnini [6], where the role of the cosmological time function is emphasized.

Let us �x M a compact hyperbolic manifold, and Γ a discrete torsion-free cocompact
subgroup of SO+(n, 1) such that M = Hn/Γ. Recall that we have identi�ed the space R(Γ) of
group homomorphisms up to conjugacy Γ → Iso(Mn+1) whose linear part that is the identity
with H1(Γ,Rn+1) and for a �xed [τ ] ∈ H1(Γ,Rn+1) we denote by ρτ : Γ→ Iso(Mn+1) the group
homomorphsim associated to τ , i.e ρτ (γ) = γ + τγ and by Γτ the image of Γ under ρτ . By
TLor(M) we mean the Teichmuller space of globally hyperbolic �at Lorentzian structures on
R+ ×M up to homotopically trivial di�eomorphisms.

Theorem 1. For every [τ ] ∈ H1(Γ,R) there exists a unique [Yτ ] ∈ TLor(M) represented by a
maximal globally hyperbolic future complete spacetime Yτ that admits a developing pair (D, ρ)
where

D : Ỹτ →Mn+1

and
ρ : π1(M)→ Iso(Mn+1)

such that

1. ρ = ρτ ,

2. the developing map is a global isometry onto its image Dτ that is a future complete regular
convex proper domain of Mn+1,

3. the action of Γτ = ρ(π1(M)) over Dτ is free and properly discontinuous so that it induces
an isometry between Yτ and Dτ/Γτ ,

4. the spacetime Dτ has a canonical cosmological time T̃ : Dτ → R+ that is a C1-submersion
and such that its level surfaces S̃a = T̃−1(a) are Cauchy surfaces for Dτ and can be de-
scribed as the graph of a proper C1 convex function de�ned over the horizontal hyperplane
{y0 = 0},

21
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5. the map T̃ is Γτ -invariant and induces a canonical cosmological time T on Yτ , that is a
proper C1-submersion and such that every level surface Sa = S̃a/Γτ is C1-di�eomorphic
to M ,

6. for every p ∈ Dτ there exists a unique point r(p) ∈ ∂Dτ ∩ I−(p) such that T̃ (p) =
d(p, r(p)). The map r : Dτ → ∂Dτ is continuous and the image Στ = r(Dτ ) is called
singularity in the past. Στ is spacelike arc-connected, contractible and Γτ -invariant, since
the map r is Γτ -equivariant.

The map

R(Γ)→ TLor(M)

[ρτ ]→ [Yτ ]

is a continuous section of the holonomy map.
The same statement holds if we replace future with past and denote Y −τ and D−τ the correspond-
ing spacetimes.
Every globally hyperbolic �at spacetime with compact spacelike Cauchy surface and holonomy
morphism ρτ is di�eomorphic to R+ ×M and isometrically embeds either in Yτ or Y −τ .

2.1 Construction of Dτ
For now on we �x Γ torsion-free discrete cocompact subgroup of SO+(n, 1) and M = Hn/Γ.
We also �x [τ ] ∈ H1(Γ,Rn+1), and denote by Γτ the image of Γ under the holonomy morphism
ρτ associated to τ . For γ ∈ Γ we denote by γτ ∈ Γτ the isometry of Minkowski space γτ (x) =
γ(x) + τγ.

Remark 2.1.1. Note that the assumptions on Γ imply that the action of Γ on Hn is free and
properly discontinuous so that M = Hn/Γ is a compact hyperbolic manifold.

De�nition 2.1.2. A closed connected spacelike hypersurface S of Minkowski space Mn+1

is said to be future convex if I+(S) is a convex set and S = ∂I+(S). It is said to be
future strictly convex if moreover I+(S) is strictly convex. We can give the same de�nition,
time reversed, for past convex and past strictly convex.

Example 2.1.3. The hyperbolic space Hn ⊆Mn+1 is a spacelike future strictly convex hyper-
surface of Mn+1.

The following theorem is the starting point of all the construction needed in order to
prove Theorem 1. We will show that for every �xed τ ∈ Z1(Γ,Rn+1) there exists a spacelike
hypersurface inMn+1 that is Γτ -invariant, and such that the Γτ -action on it is free and properly
discontinuous so that the quotient is di�eomorphic to M .

Theorem 2.1.4. For a �xed τ ∈ Z1(Γ,Rn+1) there exists a C∞-embedded spacelike hypersur-

face F̃τ of Mn+1 that is future strictly convex and Γτ -invariant such that the quotient F̃τ/Γτ is
di�eomorphic to M.

Proof. Consider the �at Lorentzian spacetime N0 =
[

1
2
, 3

2

]
×M . The Lorentzian structure on it

can be de�ned using the inclusionN0 ⊆ C+(M) ∼= R+×M (see Example 1.4.37 for the de�nition

of C+(M)). Its universal cover can be identi�ed with Ñ0 = {x ∈ Mn+1 | x ∈ I+(0), d(0, x) ∈[
1
2
, 3

2

]
}. Notice that Hn ⊆ Ñ0. The developing pair associated to the �at Lorentzian structure

onN0 is the inclusion of Ñ0 inMn+1 and the holonomy morphism associated to 0 ∈ Z1(Γ,Rn+1).
From the Deformation Theorem 1.4.24 and by our identi�cation of the holonomy morphisms
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with the cocycles in Z1(Γ,Rn+1) we can �nd a neighborhood U ′ of 0 ∈ Z1(Γ,Rn+1) such that
for all σ ∈ U ′ there exists a �at Lorentzian structure on N0 with holonomy morphism ρσ, that
has developing map close in the C∞-topology to the inclusion of Ñ0 in Mn+1. So we may see
it as a C∞-map

dev′ : U ′ × Ñ0 →Mn+1

such that for all σ ∈ U ′ dev′σ = dev′(σ, ·) is the developing map associated to ρσ and dev′0 =
id|Ñ0

. Since dev′σ is close to the identity in the C∞ topology, by de�nition they are uniformly

close on every compact subset of Ñ0. We may take a relatively compact covering of Ñ0 and
project it to N0, by compactness of M we may extract a �nite covering and via the universal
covering map �nd a �nite covering of Hn. Hence if we choose σ su�ciently small dev′σ(Hn) will
be uniformly close to Hn hence it will still be a future convex spacelike hypersurface. Now �x a
bounded neighborhood U of 0 ∈ Z1(Γ,Rn+1) containing τ , then there exists a constant K > 0
such that KU ′ ⊃ U , �x such a constant and consider the map

dev : U × Ñ0 −→Mn+1

(σ, x)→ Kdev′(σ/K, x).

Then devσ = dev(σ, ·) is a developing map whose holonomy morphism is ρσ since dev(σ, γx) =
Kdev′(σ/K, γx) = K(ρσ/K(γ)dev′(σ/K, x)) = ρσ(γ)dev(σ, x) for all γ ∈ Γ. And for all σ ∈ U
devσ(Hn) = Kdev′σ/K(Hn) is a future strictly convex spacelike hypersurface that is Γσ-invariant.

So let F̃τ = devτ (Hn) as we just said it is a future strictly convex spacelike hypersurface
that is Γτ -invariant. Since Hn is complete when we restrict devτ to it by Proposition 1.4.29
devτ becomes a di�eomorphism to its image, so the action of Γτ on F̃τ is free and properly
discontinuous, since it is so for the action of Γ on Hn, and �nally the developing map devτ
induces a di�eomorphism F̃τ/Γτ ∼= M .

Remark 2.1.5. In the same way as in the previous proposition we can obtain a Γτ -invariant
past strictly convex spacelike hypersurface F̃−τ = dev(Hn

−) such that F̃−τ /Γτ
∼= M . Where Hn

−
denotes the lower part of the hyperboloid, Hn

− = {x ∈Mn+1 | 〈x, x〉 = −1, x0 < 0}.
Remark 2.1.6. Notice that when S is a Γτ -invariant spacelike hypersurface of Mn+1 such that
the Γτ -action on it is free and properly discontinuous and such that S/Γτ is compact then S is
a complete Riemannian manifold. In fact if we consider the canonical projection π : S → S/Γτ
it is a covering map and a local isometry hence if S/Γτ is compact it is complete by Hopf-Rinow
theorem hence S is also complete since π is a local isometry, see [20, IV, Theorem 4.6 ].

Remark 2.1.7. Notice that since Γτ acts properly discontinuously on F̃τ then it is a discrete
subgroup of Iso0(Mn+1). Also since it is isomorphic to Γ it is torsion-free.

We have seen in De�nition 1.2.24 that the domain of dependence of an achronal set S in
a spacetime is de�ned as the set of points such that every inextendible causal curve passing
through them intersects S. After showing some properties that hold for domains of dependence
of spacelike hypersurfaces in Minkowski space we are going to see that if F̃ is a Γτ -invariant
complete spacelike hypersurface such that the Γτ -action on it is free and properly discontinuous
then the same holds for its domain of dependence.

Proposition 2.1.8. Let S be a spacelike hypersurface of Mn+1 then the domain of dependence
D(S) of S is open.

Proof. Let p be a point in D(S), choose a causal direction δ through p. From the de�nition of
D(S) there exits q ∈ {p + Rδ} ∩ S. Notice that every submanifold of Rn+1 is always locally
the graph of a function ϕ hence in particular since S is a spacelike hypersurface it follows that
it is locally the graph of a Lipschitz function. Then there exist U a neighboorhood of p and
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V a neigborhood of δ in the set of causal directions inside the projective space such that any
line with direction in V starting from a point in U will cut S. When δ varies it gives an open
covering of the set of causal direction that is compact (homeomorphic to a closed ball). Take a
�nite cover V1, . . . , Vk then every point in the neighborhood of p, de�ned as U1 ∩ · · · ∩ Uk, will
stay in D(S).

Proposition 2.1.9. If S is a complete spacelike hypersurface of Mn+1 then a point p ∈ Mn+1

lies in D(S) if and only if each null line which passes through p intersects S.

Proof. From Proposition 1.4.29 we know that S is the graph of a function ϕ : {y0 = 0} → R,
hence consider p ∈Mn+1, and assume p ∈ I+(S) (in case p ∈ I−(S) we can reason in the same,
time reversed way) is such that every null line that passes through it intersects S, when we
consider the intersection of the null cone at p with S and we project it onto {y0 = 0} it will
be the boundary of a region B, homeomorphic to a n-dimensional ball. This region B is the
projection of J−(p)∩S onto {y0 = 0}. So J−(p)∩S will be the image under ϕ of B and hence
all the inextendible causal curve that passes through p will intersect S.

Proposition 2.1.10. Let F̃ be a complete spacelike C1-hypersurface and suppose there exist a
point p /∈ D(F̃ ), �x a null vector v such that p+ Rv does not intersect F̃ . Then the null plane

P = p+ v⊥ does not intersect F̃ .

Proof. Notice that the existence of the null vector v such that p + Rv does not intersect F̃ is
guaranteed by Proposition 2.1.9. Suppose the intersection S := P ∩ F̃ is not empty. If x is
a point in the intersection, the tangent plane at x to P is null and the tangent plane at x to
F̃ is spacelike, hence the intersection is transverse, it follows that S is an (n− 1)-dimensional

closed submanifold of F̃ and so it is complete. Fix orthonormal a�ne coordinates (y0, . . . , yn)
such that p is the origin and P = {y0 = y1}, so that the null vector v becomes (1, 1, 0, . . . , 0).
Consider the projection

π : S −→ {y0 = y1 = 0}
(y0, . . . , yn)→ (0, 0, y2, . . . , yn)

As in the proof of Proposition 1.4.29 we can argue that π is a C1-di�eomorphism. Thus there
exists s ∈ R such that q = (s, s, 0, . . . , 0) belongs to S and hence to F̃ . But q lies in p + Rv
and this is a contradiction.

Corollary 2.1.11. Let F̃ be a complete spacelike hypersurface then the domain of dependence
D(F̃ ) is a convex set. Moreover for every point p that does not belong to D(F̃ ) a null support
hyperplane through p exists.

Proof. In order to conclude that D(F̃ ) is convex it is enough to prove that its closure is convex
and this reduces to prove (see [9, Proposition 11.5.4.]) that through each boundary point

there exists a support hyperplane (i.e. an hyperplane P such that D(F̃ ) is all contained in

one of the two closed half spaces bounded by P ). Notice that from Proposition 2.1.8 D(F̃ ) is

open hence if p is a boundary point of D(F̃ ) then p /∈ D(F̃ ). Furthermore if p /∈ D(F̃ ) from

Propostion 2.1.9 there exists a null direction v such that p+ Rv does not intersect F̃ . Finally
from Proposition 2.1.10 this implies that the hyperplane P = p+v⊥ does not intersect F̃ hence

a fortiori it does not intersect D(F̃ ). Hence P is a support hyperplane for D(F̃ ).

We now investigate more closely some properties of the domain of dependence of complete
Γτ -invariant spacelike hypersurfaces. They will be useful in the following chapter in order
to show that the domain of dependence of a Γτ -invariant future convex complete spacelike
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hypersurface is what is called a future complete regular convex domain. Notice that from
general facts about convex sets that can be found in [9, Proposition 11.5.5.] each closed convex
set is the intersection of its supporting half spaces (the half spaces containing it bounded by
the supporting hyperplanes through the boundary points).

Corollary 2.1.12. Let F̃ be a complete Γτ -invariant spacelike hypersurface and suppose D(F̃ )
is not the whole Mn+1 then either:

D(F̃ ) =
⋂

Pnull plane, P∩F̃=∅

I+(P )

or
D(F̃ ) =

⋂
Pnull plane, P∩F̃=∅

I−(P )

thus D(F̃ ) is either a future or a past set.

Proof. We want to show that D(F̃ ) is contained either in the future or in the past of its null
support planes. Suppose by contradiction that there exist two null support planes P and Q of
D(F̃ ) such that D(F̃ ) ⊆ I−(P ) ∩ I+(Q). First suppose P and Q are not parallel, then there
exists a timelike support plane R. Indeed since P and Q are not parallel, let w1 and w2 be their
null directions and let us take them so that one is future directed and the other past directed,
then we can see that their sum is a spacelike vector. Let R = p + (w1 + w2)⊥ be a timelike

plane with p ∈ P ∩ Q, then for every x ∈ D(F̃ ) we have 〈x,w1 + w1〉 = 〈x,w1〉 + 〈x,w2〉 ≤
〈p, w1〉 + 〈p, w2〉 = 〈p, w1 + w2〉, hence R is a support plane for D(F̃ ). Fix orthonormal a�ne

coordinates (y0, . . . , yn) such that R = {yn = 0}. We know from Proposition 1.4.29 that F̃ is

the graph of a function de�ned over {y0 = 0}. Then F̃ ∩ R 6= ∅ and this is a contradiction.
Now suppose we cannot chose non-parallel null supporting hyperplanes, then all null support
hyperplanes are parallel. Let v be the null direction that is orthogonal to all the null support
hyperplanes and let [v] the corresponding point in ∂Hn. Since Γτ acts on F̃ and the null support

hyperplanes are p+ v⊥ for p /∈ D(F̃ ) such that p+ Rv does not intersect F̃ then Γτ permutes
the null supporting hyperplanes and hence Γ · [v] should be the unique null vector orthogonal
to all of them, i.e. Γ · [v] = [v]. But if all elements of Γ would have a common �xed point in ∂Hn

then Γ would be elementary contradicting Remark 1.3.32 about discrete cocompact subgroups
of SO+(n, 1).

Proposition 2.1.13. Let F̃ be a complete Γτ -invariant spacelike hypersurface such that the
Γτ -action on it is free and properly discontinuous, then Γτ acts on D(F̃ ) freely and properly

discontinuously, moreover D(F̃ )/Γτ is di�eomorphic to R+ × F̃ /Γτ .

Proof. Since F̃ is Γτ -invariant it is easy to see that also D(F̃ ) is Γτ -invariant. Furthermore

since Γτ is torsion-free, in order to conclude that the action on D(F̃ ) is free it is su�cient

to prove that the action is properly discontinuous. Take K ⊆ D(F̃ ) a compact subset and
consider Γ(K) = {γ ∈ Γ | γτ (K) ∩ K 6= ∅}. We want to show it is �nite. Consider the

set C = (J+(K) ∪ J−(K)) ∩ F̃ . We want to show it is compact. Since F̃ is complete it
is enough to say that this intersection is closed and bounded. We have already said that
when K is compact J−(K) and J+(K) are closed in a globally hyperbolic manifold, see the

proof of Proposition 1.2.30, hence the intersection with F̃ is closed in F̃ . Furthermore it is
bounded by the intersection of all the light rays starting at points in K with F̃ . In addition
γτ (C) = (J+(γτ (K))∪J−(γτ (K)))∩ F̃ . Hence Γ(K) is contained in Γ(C), but since the action

of Γτ on F̃ is properly discontinuous Γ(C) is �nite. So we have proved that the action of Γτ
on D(F̃ ) is properly discontinuous. Finally from Remark 1.2.26, noticing that F̃ is an acausal
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subset of Mn+1, it follows that F̃ is a Cauchy surface for D(F̃ ). This implies that F̃ /Γτ is a

Cauchy surface for D(F̃ )/Γτ . In fact every causal curve c in D(F̃ )/Γτ intersects F̃ /Γτ since

its lift c̃ to D(F̃ ) intersects F̃ . Moreover F̃ /Γτ is spacelike so a causal curve could intersect it
more than once only if it would be a closed causal curve. But then it would lift to a causal
path that intersects more than once F̃ that being spacelike is not possible. Finally from the
decomposition of a globally hyperbolic spacetime we have D(F̃ )/Γτ ∼= R+ × F̃ /Γτ .

Remark 2.1.14. Let F̃ be a future convex spacelike hypersurface then D(F̃ ) is future complete.

In fact suppose there exists a future directed geodesic γ : [a, b]→ D(F̃ ) that cannot be de�ned

on the whole [a,∞) then there exists t0 > b such that γ(t0) /∈ D(F̃ ). But γ may be extended

in the past until it reaches F̃ since it passes through points in D(F̃ ), hence this contradicts

the fact that F̃ is future convex.

In Theorem 2.1.4 we have constructed F̃τ for every τ ∈ Z1(Γ,Rn+1) and we have seen that

it is a future strictly convex Γτ -invariant spacelike hypersurface such that the quotient F̃τ/Γτ
is di�eomorphic to M . Recall that this implies from Remark 2.1.6 that F̃τ is complete. Let us
denote Dτ the domain of dependence of the hypersurface F̃τ . From Remark 2.1.14 we also know
that Dτ is future complete and from Corollary 2.1.11 we know it is a convex set. Furthermore
from Proposition 2.1.13 Dτ = D(F̃ ) is a Γτ -invariant set such that the action of Γτ on it is
still free and properly discontinuous and such that Dτ/Γτ ∼= R+ ×M . If we denote by Yτ the
quotient Dτ/Γτ it is a future complete globally hyperbolic �at spacetime with Cauchy surfaces
di�eomorphic to M . So we have constructed a family of globally hyperbolic �at spacetimes
parametrized by all possible holonomies ρ : π1(M) → Iso(Mn+1) of globally hyperbolic �at
Lorentzian structures on R×M .

Remark 2.1.15. Let us denote by D−τ = D(F̃−τ ), in the same way as for Dτ , it will be a past
complete convex domain of Mn+1.

In the �nal part we want to show that Dτ is not the whole Mn+1. In fact this is a necessary
condition in order to have regular cosmological time (indeed Mn+1 does not). Actually we will
see in the next section that this is also a su�cient condition.

First let us prove a very useful lemma about proper convex subsets of Mn+1.

Lemma 2.1.16. Let Ω be a proper convex set of Mn+1. If we �x set of orthonormal a�ne
coordinates (y0, . . . , yn) then Ω is a future convex set if and only if ∂Ω is the graph of a 1-
Lipschitz convex function de�ned over {y0 = 0}.

Proof. If ∂Ω is the graph of a 1-Lipschitz convex function de�ned over {y0 = 0} then Ω is a
convex set and since from the Lipschitz condition ∂Ω is achronal we can see that Ω = I+(∂Ω)
hence it is a future set. On the other hand if we prove that π : ∂Ω → {y0 = 0} is an
homeomorphism then ∂Ω will be the graph of a function de�ned over {y0 = 0}. Since Ω is
convex its boundary is a topological manifold hence it is su�cient to prove that π is bijective.
Since Ω is a future set ∂Ω = ∂I+(Ω) is an achronal set, hence the projection is injective. It
remains to show that given (a1, . . . , an) there exists a0 such that (a0, a1, . . . , an) ∈ ∂Ω. Fix p ∈
∂Ω then there exist a+

0 and a−0 such that (a+
0 , a1, . . . , an) ∈ I+(p) and (a−0 , a1, . . . , an) ∈ I−(p).

Since I+(p) ⊆ Ω and I−(p) ∩ Ω = ∅ there exists a0 such that (a0, a1, . . . , an) ∈ ∂Ω. Hence ∂Ω
is the graph of a function f de�ned over {y0 = 0} and since Ω is convex f is convex and since
two points on ∂Ω are not chronologically related f is 1-Lipschitz.

We now state some properties about Γτ -invariant future convex sets. A future convex set
is a set that is both convex and future (see De�nition 1.2.11).
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Lemma 2.1.17. Let Ω be a Γτ -invariant proper future convex set, then for every u ∈ Hn there
exists a plane P = p+ u⊥ such that Ω ⊆ I+(P ).

Proof. Since Ω is a proper convex set there exists a support plane for Ω in Mn+1. Let

K = {v ∈Mn+1 | v is orthogonal to some support planes for Ω},

since if v is orthogonal to some support planes so is λv, for λ ∈ R, K is a convex cone with
apex at 0. Notice that Ω is future convex hence future complete, so the vectors in K are not
spacelike, this is equivalent to say that Ω does not admit a timelike support plane. In fact
suppose by contradiction that Ω ⊆ I+(P ) with P timelike support plane, let us �x a set of
orthonormal a�ne coordinates (y0, . . . , yn) such that P = {yn = 0} then from Lemma 2.1.16
∂Ω is the graph of a 1-Lipschitz function de�ned over {y0 = 0} hence we see that P cannot
be a support plane for Ω. So the projection PK of K in Pn is contained in Hn. On the other
hand since Ω is Γτ -invariant, K is Γ-invariant, hence PK is a Γ-invariant convex subset of Hn.
It follows that since K is non empty it should contain the whole Hn, since otherwise the limit
set of Γ would be contained in PK ∩ ∂Hn, contradicting the fact that when Γ is co-compact its
limit set is ∂Hn, see Proposition 1.3.31.

Lemma 2.1.18. Let Ω be a Γτ -invariant proper future convex set then each timelike coordinate
on ∂Ω is proper.

Proof. From Lemma 2.1.16 if we �x orthonormal a�ne coordinates (y0, . . . , yn) then ∂Ω is the
graph of ϕ : {y0 = 0} → R. Hence if we show that ϕ is a proper function the statement follows.
It is su�cient to show that

KC = {x ∈ {y0 = 0} | ϕ(x) ≤ C}

is compact for every C ∈ R. Since ϕ is a convex function KC is a closed convex subset of
{y0 = 0}. Suppose by contradiction that it is not bounded, then there exists x̄ ∈ {y0 = 0}
and a vector w ∈ {y0 = 0}, that we can suppose unitary 〈w,w〉 = 1, such that the ray
x̄ + R≥0w is all contained in KC . Let v = ∂

∂y0
, it is a future directed timelike vector such

that 〈v, v〉 = −1 orthogonal to w and let u =
√

2v + w, then u is timelike future directed and
〈u, u〉 = −1. Then from Lemma 2.1.17 there exists a spacelike support plane for Ω orthogonal
to u, hence there exists M ∈ R such that 〈p, u〉 ≤ M for all p ∈ ∂Ω. On the other hand
consider pt = (x̄+ tw) + ϕ(x̄+ tw)v we have that pt ∈ ∂Ω and

〈pt, u〉 = −
√

2ϕ(x̄+ tw) + 〈x̄+ tw, x̄+ tw〉

≥ −
√

2C + 〈x̄+ tw, x̄+ tw〉

Since 〈x̄+ tw, x̄+ tw〉 → +∞ we have a contradiction.

Proposition 2.1.19. Let Ω a Γτ -invariant future complete convex proper subset of Mn+1.
Then there exists a null support plane for Ω.

Proof. Take p ∈ ∂Ω and v ∈ Hn such that P = p + v⊥ is a support plane for Ω at p. Recall
that since Ω is a future convex set, if we �x orthonormal a�ne coordinates (y0, . . . , yn), its
boundary can be described as the graph of a convex function over the hyperplane {y0 = 0} so
that for a �xed p ∈ ∂Ω and v ∈ Hn there exists a unique support plane at p for Ω orthogonal
to v. Now for a �xed γ ∈ Γ consider the sequence of support planes Pk = γkτ (P ). If this
sequence does not escape to in�nity then there is a convergent subsequence which converges
to a support plane Q. The normal direction of Q is the limit of the normal directions of the
Pk's that are γ

k(v). In the projective space the sequence [γk(v)] tends to a null vector, hence
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Q will be a null support plane. Thus we have to prove that Pk does not escape to in�nity. Set
vk = |

〈
v, γkv

〉
|−1γk(v), we know that vk converges to an attractor eigenvector of γ in Mn+1.

On the other hand we have

Pk =
{
x ∈Mn+1 | 〈x, vk〉 =

〈
γkτ p, vk

〉}
.

Thus the sequence Pk does not escape to in�nity if and only if the coe�cients Ck =
〈
γkτ p, vk

〉
are bounded. Since the sequence {vk} has compact closure it is su�cient to show that C ′k =〈
γkτ p− p, vk

〉
are bounded. For α ∈ Γ set z(α) = ατ (p) − p, we can see that z is a cocycle.

Thus we have

C ′k =

∣∣∣∣∣
〈
z(γk), γkv

〉
〈γkv, v〉

∣∣∣∣∣ =

∣∣∣∣∣
〈
γ−kz(γk), v

〉
〈γkv, v〉

∣∣∣∣∣ =

∣∣∣∣∣
〈
z(γ−k), v

〉
〈γkv, v〉

∣∣∣∣∣ .
For the last equality notice that γ−kz(γk) = γ−k(γkτ p−p) = p+γ−kτγk−γ−kp = p−τγ−k−γ−kp =
−(γ−kp− p). Now let λ > 1 be the maximum eigenvalue of γ. Then we have ‖γ−1(x)‖ ≤ λ‖x‖
for every x ∈ Rn+1, where ‖ · ‖ denotes the Euclidean norm. Since

z(γ−k) = −
k∑
i=1

γ−i(z(γ))

it follows that ‖z(γ−k)‖ ≤ Kλk for some K > 0. Thus we have∣∣〈z(γ−k), v
〉∣∣ ≤ K ′λk.

On the other hand v can be decomposed as follows v = x+ +x−+x0 where x+ is an eigenvector
for the eigenvalue λ, x− is an eigenvector for λ−1 and x0 is orthogonal to both x+ and x−.
Since v is a future directed timelike vector it turns out that x+ and x− are future directed null
vectors. Thus 〈

γkv, v
〉

= (λk + λ−k)
〈
x+, x−

〉
+
〈
x0, γkx0

〉
.

Now notice that Span(x+, x−)⊥ is Γ-invariant and spacelike. Hence
〈
x0, γkx0

〉
≤ 〈x0, x0〉 so

that there exists M > 0 such that
∣∣〈γkv, v〉∣∣ > Mλk. Thus |C ′k| ≤ K ′/M and this concludes

the proof.

We can �nally prove that the domain of dependence of any Γτ -invariant future convex
spacelike hypersurface is not the whole Mn+1 and in particular that Dτ is a proper subset of
Mn+1.

Proposition 2.1.20. Let F̃ be a Γτ -invariant future convex spacelike hypersurface then D(F̃ ) 6=
Mn+1.

Proof. Take Ω to be I+(F̃ ). Then it is a Γτ -invariant future complete convex proper subset of

Mn+1. From Proposition 2.1.19 this implies that there exists P a null support plane for I+(F̃ ).

In particular P ∩ F̃ = ∅. Hence D(F̃ ) 6= Mn+1 since points on P do not belong to D(F̃ ).

2.2 Cosmological Time

We are going to de�ne a class of domains that admits regular cosmological time.

De�nition 2.2.1. Let Ω ⊆Mn+1 be a non empty convex open subset, then we say that Ω is a
future complete regular domain if it is the intersection of the future of at least two non-parallel
null support planes.
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Example 2.2.2. Examples of future complete regular domains are the future of a point I+(p),
the future of a spacelike line I+(∆) and the future of a spacelike segment I+(Σ) as in Examples
1.2.51, 1.2.52 and 1.2.54.

Remark 2.2.3. The condition that there are at least two non-parallel null support planes guar-
antees that Ω is neither the whole Mn+1 nor the future of just one null plane. In fact these
domains do not have regular cosmological time, indeed the cosmological time for them is con-
stantly equal to +∞.

Remark 2.2.4. On the other hand future complete regular convex domains admit a spacelike
support hyperplane, and this condition ensure that the cosmological time function is regular, see
the following Theorem 2.2.8. To see why the existence of at least two non-parallel null support
planes P,Q guarantees the existence of a spacelike support plane let R be the intersection of P
and Q. Since P and Q are not parallel their intersection is an (n−1)-dimensional submanifold
that is spacelike. Write P = Rw1⊕R and Q = Rw2⊕R where w1, w2 are null vectors. Now take
a spacelike direction v orthogonal to R, the hyperplane R⊕ Rv will be a spacelike supporting
hyperplane for Ω.

Remark 2.2.5. Let F̃ be a Γτ -invariant future convex complete spacelike hypersurface, from
Proposition 2.1.20 we know that D(F̃ ) 6= Mn+1, then we have seen in Proposition 2.1.12 that

D(F̃ ) is the intersection of the future of its null support planes, and from Lemma 2.1.17 we

see that there exists at least one spacelike support plane, hence D(F̃ ) cannot be the future of

just one null support plane. So D(F̃ ) is a future complete regular domain. In particular Dτ is
so.

Remark 2.2.6. As the name suggests a future complete regular domain Ω is complete in the
future. This means that the domain of de�nition of any future directed timelike or null geodesic
γ : [a, b]→ Ω can be extended to all [a,∞).

In fact in order to have regular cosmological time it is su�cient to be a future complete
convex set with at least one spacelike support hyperplane. Notice that a future complete
regular domain satis�es these hypothesis.

Remark 2.2.7. Notice that if A is a future complete convex set with at least one spacelike
support hyperplane then in particular it is a future set hence its boundary S = ∂A is an
achronal set and all its support hyperplanes are spacelike or null from Proposition 2.1.16.

Theorem 2.2.8. Let A be a future complete convex subset of Mn+1 and S = ∂A, suppose
that A admits a spacelike support plane. Then for every p ∈ A there exists a unique point
r(p) ∈ S which maximizes the Lorentzian distance from p in A ∩ J−(p). Moreover the map
A 3 p 7→ r(p) ∈ S is continuous, we call it the retraction.
The point r = r(p) can be characterized as the unique point in S such that the plane r+(p−r)⊥
is a support plane for A.
The cosmological time for A is expressed by the formula

T (p) =
√
−〈p− r(p), p− r(p)〉.

T is a concave C1-function.
The Lorentzian gradient of T is given by

∇L(T )(p) = − 1

T (p)
(p− r(p)).

Proof. Since A is convex the Lorentzian distance in A is just the restriction of the Lorentzian
distance in Mn+1. In fact if p and q belong to J−(p) ∩ A then we have that

d(p, q) = sup{L(γ) | γ causal curve between p and q}
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and since A is convex −→pq is contained in A and we know that
√
−〈p− q, p− q〉 maximizes the

distance among all causal curves between p and q in Mn+1. Hence d(p, q) =
√
−〈p− q, p− q〉

for all p ∈ A, q ∈ J−(q) ∩ A. Let us �x p ∈ A and a spacelike support plane P of A. Since
J−(p) ∩ J+(P ) is compact and J−(p) ∩A ⊆ J−(p) ∩ J+(P ) there exists a point r ∈ A ∩ J−(p)
which maximizes the Lorentzian distance from p. From the de�nition r should lie in the
boundary S of A. Now we want to show that r is unique. Assume it is not and that r′ ∈ S
di�erent from r is another point such that d(p, r) = d(p, r′) maximal. De�ne H−(p, α) = {q ∈
I−(p) | d(p, q) = α}, it is a past convex spacelike hypersurface. The segment (r, r′) is contained
in I−(H−(p, d(p, r))), hence d(p, s) > d(p, r) for all s ∈ (r, r′). On the other hand (r, r′) ⊆ A,
and this contradicts the choice of r.
We have to prove that the map p 7→ r(p) is continuous. Let {pk} ⊆ A be such that pk → p,
set rk = r(pk). First we want to show that {rk} is bounded. Notice that for a �xed q ∈ I+(p),
there exists k0 such that pk ∈ J−(q) for every k ≥ k0 so rk ∈ J−(q) ∩ S for k ≥ k0. Since
J−(q) ∩ S is compact, it is su�cient to prove that if rk → r then r = r(p). If q ∈ A then we
have, by the de�nition of rk,

〈pk − rk, pk − rk〉 ≤ 〈pk − q, pk − q〉 .

By passing to the limit we obtain that r maximizes the Lorentzian distance.
Take p ∈ A and Pp = r(p) + (p − r(p))⊥, we claim that it is a support plane for A. Notice
that Pp is the tangent plane of H−(p, d(p, r)) at r(p). Suppose by contradiction there exists
q ∈ A ∩ I−(Pp). We have, since A is convex, (q, r) ⊆ A. On the other hand there exists
q′ ∈ (q, r) ∩ I−(H−(p, d(p, r))). Then d(p, q′) > d(p, r) and this is a contradiction. Conversely,
let s ∈ A such that P = s+ (p− s)⊥ is a support plane for A. We want to show that s = r(p).
First we want to show that s ∈ I−(p). Assume by contradiction that s is not in the past
of p then either p − s is a null vector or s ∈ I+(p) (the support plane can only be null or
spacelike). In the �rst case the support plane contains p hence it coincide with p + (s − p)⊥,
this implies that p ∈ S and p = r(p) = s. In the second case since p ∈ I+(r(p)) we get that
s ∈ I+(r(p)) contradicting the fact the points on the boundary of A are not chronologically
related. So P is the tangent plane of H−(p, d(p, s)) at s, hence if by contradiction s 6= r(p) then
d(p, r(p)) > d(p, s) implies r(p) ∈ I−(H−(p, d(p, s))) contradicting the fact that P is a support
plane for A. Hence s = r(p).
Now we want to show that the cosmological time T is C1. We shall use the following fact from
elementary analysis.

Let Ω ⊆ RN be an open set and f : Ω → R a continuous function. Suppose there exist
f1, f2 : Ω→ R such that

1. f1 ≤ f ≤ f2,

2. f1(x0) = f2(x0) = f(x0) and

3. f1, f2 are C1 and df1(x0) = df2(x0)

then f is di�erentiable in x0 and df(x0) = df1(x0).

Let us �x p ∈ A, r = r(p) and orthonormal a�ne coordinates (y0, . . . , yn) such that r(p) is
the origin and Pp is the plane {y0 = 0}, so p = (µ, 0, . . . , 0) where µ = T (p). Consider the
di�erentiable functions f1f2 : A→ R,

f1(y) = y2
0 −

n∑
i=1

y2
i and

f2(y) = y2
0,
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then f1 ≤ T 2 ≤ f2 and f1(p) = T 2(p) = f2(p). Moreover ∇Lf1(p) = −2µ ∂
∂y0

= ∇Lf2(p). Hence

T 2 is di�erentiable at p and ∇L(T 2)(p) = −2(p− r). Thus T is di�erentiable at p and

∇L(T )(p) = − 1

T (p)
(p− r(p))

Finally we will show that T is concave. Let us set ϕ(p) = −T (p)2 = 〈p− r(p), p− r(p)〉, then
we have to prove that

−ϕ(tp+ (1− t)q) ≥
(
t
√
−ϕ(p) + (1− t)

√
−ϕ(p)

)2

for all p, q ∈ A, t ∈ [0, 1]. Since rt := tr(p) + (1− t)r(q) ∈ A we have by de�nition of r that

−ϕ(tp+ (1− t)q) ≥ −〈(tp+ (1− t)q)− rt, (tp+ (1− t)q)− rt〉

= −〈t(p− r(p)) + (1− t)(q − r(q)), t(p− r(p)) + (1− t)(q − r(q))〉

= −(t2ϕ(p) + (1− t)2ϕ(q) + 2t(1− t) 〈p− r(p), q − r(q)〉)

Since p−r(p) and q−r(q) are future directed timelike vectors, we have, by the reverse Cauchy-
Schwartz inequality 1.1.8, 〈p− r(p), q − r(q)〉 ≤ −

√
ϕ(p)ϕ(q), so

−ϕ(tp+ (1− t)q) ≥ (t2(−ϕ(p)) + (1− t)2(−ϕ(q)) + 2t(1− t)
√
ϕ(p)ϕ(q))

=
(
t
√
−ϕ(p) + (1− t)

√
−ϕ(q)

)2

.

Corollary 2.2.9. Let A be a future complete convex subset of Mn+1 that admits a spacelike
support plane then the cosmological time is regular, i.e it goes to 0 on every inextendible past
directed causal curve.

Proof. We want to prove that for all {pk}k∈N ⊆ A such that pk → p ∈ ∂A then limk→∞ T (pk) =
0. This implies that if γ : (a,∞) → A is a inextendible past directed causal curve, then
limt→a γ(t) ∈ ∂A and hence limt→a T (γ(t)) = 0. Fix q ∈ I+(p), then, as we have argued
in Theorem 2.2.8 pk ∈ J−(q) for all k � 0. Hence rk = r(pk) ∈ J−(q) ∩ S for k � 0,
where S = ∂A. Since J−(q) ∩ S is compact we can deduce that {rk} is bounded, so up to
passing to a subsequence we can conclude that rk → r. Since pk − rk is a timelike vector, the
limit p − r is non-spacelike. On the other hand S is an achronal set, so p − r is null. Since
T (pk)

2 = −〈pk − rk, pk − rk〉 we have that limk→∞ T
2(pk) = −〈p− r, p− r〉 = 0.

Proposition 2.2.10. With the notation as in Theorem 2.2.8, set S̃a = T−1(a) for a > 0. Then

S̃a is a future convex spacelike hypersurface and TpS̃a = (p− r(p))⊥ for all p ∈ S̃a.
Furthermore I+(S̃a) =

⋃
b>a S̃b, and let ra : I+(S̃a) → S̃a be the retraction and Ta : I+(S̃a) →

R+ be the cosmological time, then we have

ra(p) = S̃a ∩ [p, r(p)]

Ta(p) = T (p)− a.

Proof. Notice that S̃a is a future convex hypersurface since T is a concave function, indeed take
p, q ∈ I+(S̃a) then both T (p) and T (q) are greater than a hence T (t(p)+(1−t)q) ≥ tT (p)+(1−
t)T (q) > a so tT (p) + (1− t)T (q) ∈ I+(S̃a). Furthermore since TpS̃a = ∇LT (p)⊥ = (p− r(p))⊥,
and p− r(p) is timelike, S̃a is a spacelike hypersurface. Notice that I

+(S̃a) is a future complete
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convex subset of Mn+1 that admits a spacelike support plane, namely TpS̃a with p ∈ S̃a, hence
Theorem 2.2.8 applies and we can de�ne for I+(S̃a) the retraction ra and the cosmological

time Ta that is regular. Obviously ra(p) = S̃a ∩ [p, r(p)] since ra(p) ∈ S̃a is the point such

that ra(p) + (p − ra(p))⊥ is a support plane for I+(S̃a) hence p − ra(p) is a scalar multiple of
p − r(p) and then by de�nition r(p) = r(ra(p)). Finally since p, ra(p) and r(p) are collinear
T (p) = Ta(p) + a.

Let A be a future complete convex domain of Mn+1 that admits a spacelike support plane,
we have seen that it is provided with a map r : A → ∂A called the retraction, we denote
its image by ΣA = r(A) and we call it the singularity in the past. The following is a useful
characterization of points in the singularity in the past.

Corollary 2.2.11. Let A be a future complete convex domain which has a spacelike support
plane. Then r0 ∈ ΣA if and only if there exists a timelike vector v such that the plane r0 + v⊥

is a spacelike support plane for A. Moreover

r−1(r0) = {r0 + v | r0 + v⊥is a support plane for A}.

Proof. By Theorem 2.2.8 if r0 = r(p) then r0 + (p − r(p))⊥ is a spacelike support plane for
A. Conversely if r0 + v⊥ is a support plane for A, then pλ = r0 + λv ∈ A for λ > 0 and then
r(r0 + λv) = r0, again by Theorem 2.2.8.

Remark 2.2.12. The map r : A → ΣA continuously extends to a retraction r : A ∪ ΣA → ΣA.
This map is a deformation retraction where rt(p) = t(p − r(p)) + r(p) gives the homotopy
between i ◦ r and idA∪ΣA , where i : ΣA → A ∪ ΣA. Since A ∪ ΣA is convex hence contractible
so is ΣA.

There is another map de�ned on A that will be useful for the study of future complete
regular domains.

De�nition 2.2.13. De�ne the normal �eld on A to be the map

N : A −→ Hn

p→ p− r(p)
T (p)

.

Notice that it coincides, up to sign with the Lorentzian gradient of T, hence if S̃a = T−1(a)

then N|S̃a is the normal �eld on S̃a.

Notice that the following identity holds:

p = r(p) + T (p)N(p) for all p ∈ A.

We call r(p) the singularity part of p and T (p)N(p) the hyperbolic part.

Here are inequalities that come from the fact that r(p) + N(p)⊥ with p ∈ A is a support
plane for A.

Corollary 2.2.14. With the above notation we have that

〈N(p), r(q)− r(p)〉 ≤ 0,

〈q, p− r(p)〉 < 〈r(p), p− r(p)〉 ,
〈T (p)N(p)− T (q)N(q), r(p)− r(q)〉 ≥ 0

for all p, q ∈ A.
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Proof. Notice that for all p ∈ A, r(p) + N(p)⊥ is a support plane for A, hence, for all q ∈ A
we have 〈q,N(p)〉 ≤ 〈r(p), N(p)〉, hence the �rst inequality follows. Writing N(p) = (p −
r(p))(T (p))−1 we get 〈q, p− r(p)〉 ≤ 〈r(p), p− r(p)〉. The equality holds if and only if q belongs
to the plane r(p) +N(p)⊥ hence only if it would belong to the boundary of A, but this is not
the case, being A open, so we get a strict inequality.
Instead, again from 〈q,N(p)〉 ≤ 〈r(p), N(p)〉 we get 〈r(q), p− r(p)〉 ≤ 〈r(p), p− r(p)〉 hence
〈p− r(p), r(p)− r(q)〉 ≥ 0 hence 〈(p− r(p))− (q − r(q)), r(p)− r(q)〉 ≥ 0. This proves the
third inequality.

Now le us go back to Ω future complete regular domain. Theorem 2.2.8 applies in this
situation and let us set

• T : Ω→ R+ the cosmological time on Ω and S̃a = T−1(a);

• r : Ω→ ∂Ω the retraction onto the singularity in the past Σ = r(Ω);

• N : Ω→ Hn the normal �eld.

Lemma 2.2.15. The hypersurface S̃a is a Cauchy surface for Ω, moreover Ω is the domain of
dependence of S̃a.

Proof. Notice that, being S̃a a spacelike hypersurface, it is an acausal subset of Mn+1, hence
it is enough to show that D(S̃a) = Ω in order to conclude that S̃a is a Cauchy surface for Ω.

Let p ∈ D(S̃a) then every inextendible causal curve passing through p intersects S̃a. Consider a

past directed inextendible timelike curve through p, it will intersect S̃a ⊆ Ω in a point q. But Ω
is a future complete regular domain hence if q ∈ Ω and p is in the future of q then p ∈ Ω. So, we
have D(S̃a) ⊆ Ω. Now let p ∈ Ω and v be a future directed non-spacelike vector. By de�nition
T (p + λv)2 ≥ −〈p+ λv − r(p), p+ λv − r(p)〉, so there exists λ > 0 such that T (p + λv) > a.
On the other hand there exists µ < 0 such that p+ µv ∈ ∂Ω, then limt→µ T (p+ tv) = 0, since
by Corollary 2.2.9, T goes to 0 on every inextendible past directed causal curve. So there exists
λ′ ∈ R such that T (p+ λ′v) = a, thus Ω ⊆ D(S̃a).

Lemma 2.2.16. If c : [0, 1] → S̃a is a Lipschitz path then the paths N(t) = N(c(t)) and

r(t) = r(c(t)) are di�erentiable almost everywhere and we have that Ṅ(t) and ṙ(t) lie in Tc(t)S̃a,

so they are spacelike. Moreover
〈
Ṅ(t), ṙ(t)

〉
≥ 0 almost everywhere.

Proof. In order to prove the �rst claim it is su�cient to prove that N : S̃a → Hn and r : S̃a → Σ
are locally Lipschitz with respect to the Euclidean distance dE on Mn+1. Furthermore since
for p ∈ S̃a we have the decomposition p = r(p) + aN(p), it is su�cient to prove the claim for

N . Fix a compact subset K ⊆ S̃a and let H = N(K) ⊆ Hn. Since H is compact there exists
a constant C ∈ R such that dE(x, y) = ‖x − y‖ ≤ C

√
〈x− y, x− y〉 for all x, y ∈ H. On the

other hand we have for p, q ∈ S̃a

〈p− q, p− q〉 = a2 〈N(p)−N(q), N(p)−N(q)〉+

+2a 〈N(p)−N(q), r(p)− r(q)〉+ 〈r(p)− r(q), r(p)− r(q)〉

and then by Corollary 2.2.14 we have that 〈N(p)−N(q), r(p)− r(q)〉 ≥ 0 and furthermore
being Σ ⊆ ∂Ω achronal, since Ω is a future complete regular domain, no two points on it are
chronologically related hence 〈r(p)− r(q), r(p)− r(q)〉 ≥ 0 and we get√

〈N(p)−N(q), N(p)−N(q)〉 ≤ 1

a

√
〈p− q, p− q〉
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for all p, q ∈ S̃a. Since 〈p− q, p− q〉 ≤ ‖p− q‖2 we can deduce that ‖N(p)−N(q)‖ ≤ C
a
‖p− q‖

for all p, q ∈ K. Finally notice that N(t) is a path in Hn so Ṅ(t) ∈ TN(t)Hn = Tc(t)S̃a. Where

the last equality is because of Proposition 2.2.10. Since ċ(t) = ṙ(t) + aṄ(t) then ṙ(t) ∈ Tc(t)S̃a
almost everywhere. Finally again by Corollary 2.2.14 we have that

〈N(t+ h)−N(t), r(t+ h)− r(t)〉 ≥ 0

thus
〈
Ṅ(t), ṙ(t)

〉
≥ 0.

Lemma 2.2.17. Let Ω a future complete regular domain, then the level surfaces S̃a = T−1(a)
of the cosmological time de�ned on Ω are complete.

Proof. Since S̃a is Riemannian all completness notions are equivalent. Let t 7→ c(t) be an

incomplete geodesic in S̃a de�ned on [0, t∞) parametrized by unit length. Since from Lemma

2.2.16 N is 1
a
-Lipschitz on S̃a it follows that the path N(c(t)) has �nite length in Hn hence

there exists v ∈ Hn limit point of N(c(t)). Let us �x (y0, . . . , yn) orthonormal a�ne coordinates
such that v = (1, 0, . . . , 0). Since also the orthogonal projection of the geodesic c to the plane
{y0 = 0} has �nite length for the usual Euclidean metric it follows that the projection has a
limit point c∞ in {y0 = 0}. Since ∂Ω is the graph of a convex function de�ned over {y0 = 0}
the vertical line above c∞ intersects Ω. Since S̃a is a Cauchy surface for Ω the vertical line
starting in c∞ must intersect S̃a in a unique point p∞. Then the geodesic can be completed on
[0, t∞] by c(t∞) = p∞.

Remark 2.2.18. When Ω is a Γτ -invariant future complete regular domain then T is a Γτ -
invariant function, hence S̃a are Γτ -invariant future convex spacelike hypersurfaces. Moreover
r and N are Γτ -equivariant in the sense :

r ◦ γτ = γτ ◦ r and

N ◦ γτ = γ ◦N.

Thus Σ is also a Γτ -invariant subset of ∂Ω. From Lemma 2.2.15 it follows that S̃a/Γτ are

Cauchy surfaces for Ω/Γτ . In particular when Ω = Dτ = D(F̃τ ) we have that S̃a/Γτ is C1-

di�eomorphic to F̃τ/Γτ ∼= M , since two Cauchy surfaces are always di�eomorphic, see Remark
1.2.33.

Remark 2.2.19. We have seen that given a Γτ -invariant future convex complete spacelike hy-
persurface its domain of dependence is a Γτ -invariant future complete regular domain. On the
other hand given a Γτ -invariant future complete regular domain Ω the level surfaces of the
cosmological time are Γτ -invariant future convex complete spacelike hypersurfaces and Ω is the
domain of dependence of them. So we have that Γτ -invariant future complete regular domains
are domains of dependence of Γτ -invariant future convex complete spacelike hypersurfaces.

Now for Ω future complete regular convex domain we can give a another characterization
of the points in the singularity in the past. First we need two lemmas.

Lemma 2.2.20. Let Ω be a future complete regular convex domain then for all p ∈ ∂Ω there
exists a null vector v such that p+ R+v ⊆ ∂Ω. Furthermore

Ω =
⋂
{I+(p+ v⊥) | p ∈ ∂Ω and v is a null vector such that p+ R+v ⊆ ∂Ω}.
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Proof. Fix p ∈ ∂Ω then since Ω is a future complete regular convex domain it is the intersection
of the future of its null support planes, therefore there exists a null vector v such that p + v⊥

is a support plane for Ω. From I+(p+R+v) ⊆ I+(p) ⊆ Ω and from the characterization of the
boundary of a future set we have p+R+v ⊆ ∂Ω. Conversely suppose that the ray R = p+R+v
is contained in ∂Ω, then from Han-Banach Theorem [9, Théorème 11.4.1] there exists an
hyperplane P such that Ω and R are contained in the opposite closed half-spaces bounded by
P . Since then P is a support hyperplane for Ω it is not timelike, and also since R is contained
in ∂Ω then it is contained in P . It follows that P is parallel to v so that P = p+ v⊥.

Lemma 2.2.21. Let V be a �nite dimensional vector space and G ⊆ V ∗ a subset of the dual
space. Consider the convex set K = {v ∈ V | g(v) ≤ Cg ∀ g ∈ G}. Suppose the following
properties hold:

1. if g ∈ G and λ > 0 then λg ∈ G and Cλg = λCg,

2. if gn → g and Cgn → C then g ∈ G and Cg ≤ C,

then for all v ∈ ∂K the set Gv = {g ∈ G | g(v) = Cg} is not empty. Moreover the plane v+P
is a support hyperplane for K in v if and only if P = kerh with h in the convex hull of Gv.

Proof. If v ∈ ∂K, let B 1
n
(v) a ball of radius 1

n
around v, then ∀ n ∈ N there exists wn ∈ B 1

n
(v)

such that wn /∈ K and there exists w′n ∈ B 1
n
(v) that belongs to K, hence there exists gn ∈ G

such that gn(w′n) ≤ Cgn and gn(wn) > Cgn . This implies that there exists xn ∈ B 1
n
(v) such that

gn(xn) = Cgn . By property 1 after rescaling gn we may assume the gn lie in a compact. Hence
we may extract a convergent subsequence gn → g, then Cgn = gn(xn) → g(v) hence g ∈ G by
Property 2 and Cg ≤ g(v), on the other hand if g ∈ G we have g(v) ≤ Cg hence g(v) = Cg and
g ∈ Gv. So Gv is not empty. For the second part of the statement obviously if P = kerh with h
in the convex hull of Gv then v+P is a support hyperplane for K at v. Conversely let v+P be
a support plane for K at v. Notice that the dual of K, K∗ = {h ∈ V ∗ | h(v) ≤ Ch ∀v ∈ K} is
a closed convex and bounded set (actually it is bounded in the projectivization of V ∗ i.e. after
rescaling the h to have unit norm), hence it is the convex hull of its extreme points. Notice
furthermore that the elements in Gv are the extreme points of K∗ [9, Théorème 11.6.8], hence
if v + kerh is a support hyperplane for K then h ∈ K∗ and it is in the convex hull of Gv.

Proposition 2.2.22. Let Ω be a future complete regular domain, then a point p ∈ ∂Ω lies in
Σ if and only if there are at least two future directed null rays contained in ∂Ω starting from p.
Moreover if p ∈ Σ then r−1(p) is the intersection of Ω with the convex hull of the null rays
contained in ∂Ω and starting from p.

Proof. From Corollary 2.2.11 a point p ∈ ∂Ω is in the singularity in the past if and only if there
exists a spacelike support plane for Ω at p. Since Ω is a future complete regular convex domain
there always exists a null support plane for Ω at p, this implies that p ∈ ∂Ω admits a spacelike
support plane if and only if there are at least two null support planes at p. Furthermore if v1, v2

are two future directed null vectors such that p+ v⊥1 and p+ v⊥2 are support planes for Ω then
Lemma 2.2.20 implies that p+R+v1 and p+R+v2 are future directed null rays contained in ∂Ω.
Hence the �rst part of the proposition follows. Now let L be the family of null future directed
vectors that are orthogonal to some null support planes for Ω. If v ∈ L and Cv = supr∈Ω 〈v, r〉
then from Lemma 2.2.20 we have that Ω = {x ∈ Mn+1 | 〈x, v〉 ≤ Cv ∀ v ∈ L}. Let p ∈ Σ and
let L(p) be the set of null future directed vectors v at p such that p + v⊥ is a support plane
for Ω. From Corollary 2.2.11 we know that r−1(p) = {p+ v | p+ v⊥ is a support plane for Ω}.
From Lemma 2.2.21 if v is a future directed non-spacelike vector such that p+ v⊥ is a support
hyperplane for Ω in p then v belongs to the convex hull of L(p). Then we get that r−1(p) is
the intersection of Ω with the convex hull of p+L(p). Finally notice that v ∈ L(p) if and only
if p+ R+v is a null ray contained in ∂Ω.
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Using the characterization of Proposition 2.2.22 for the points belonging to the singularity
in the past we are going to associate to each such point an ideal convex set (a convex set that
is the convex hull of its boundary points) in Hn. This will be used in the last chapter where
we will talk about geodesic strati�cations of Hn.

De�nition 2.2.23. For p ∈ Σ let us de�ne a subset of Hn

F(p) = N(r−1(p)).

Corollary 2.2.24. Let p ∈ Σ and let L(p) be the set of future directed null vectors at p such
that p + v⊥ is a support plane for Ω at p. Denote by L̂(p) = {[v] ∈ ∂Hn | v ∈ L(p)}. Then
F(p) is the convex hull in Hn of L̂(p)

De�nition 2.2.25. Given two convex sets C,C ′ in Hn we say that an hyperplane P separates
C from C ′ if C and C ′ are contained in the opposite half-spaces bounded by P .

Proposition 2.2.26. Let Ω be a future complete regular domain. For every p, q ∈ Σ the
plane (p − q)⊥ separates F(p) from F(q). The segment [p, q] is contained in Σ if and only if
F(p) ∩ F(q) 6= ∅. In this case for all r ∈ (p, q) we have

F(r) = F(p) ∩ (p− q)⊥ = F(q) ∩ (p− q)⊥ = F(p) ∩ F(q).

Proof. From the inequalities in Corollary 2.2.14 we have that 〈tv, p− q〉 ≤ 〈sw, p− q〉 for all
t, s ∈ R+ and v ∈ F(p), w ∈ F(q). This implies that 〈v, p− q〉 ≤ 0 and 〈w, p− q〉 ≥ 0. This
shows that (p − q)⊥ separates F(p) from F(q). Suppose now that F(p) ∩ F(q) 6= ∅, then
F(p) ∩ F(q) ⊂ (p − q)⊥. Let v ∈ F(p) ∩ F(q) and let Pv be the unique support hyperplane
orthogonal to v which intersects ∂Ω. Then Pv passes through p and q, but since Pv is a support
plane for Ω this implies [p, q] ⊆ ∂Ω. Since Pv is a spacelike plane which passes through all
r ∈ (p, q) by the characterization of the points in the singularity in the past of Corollary 2.2.11
we have that [p, q] ⊆ Σ and F(p)∩F(q) ⊆ F(r). Conversely suppose [p, q] ⊆ Σ, take r ∈ (p, q)
and v ∈ F(r) then since (p−r)⊥ separates F(p) from F(r) we have 〈v, p− r〉 ≤ 0 and similarly
〈v, r − q〉 ≥ 0. But since p − r and r − q have the same direction we have 〈v, p− r〉 = 0 and
〈v, r − q〉 = 0, hence v ∈ F(p) ∩ F(q). In order to conclude the proof we need to show that
F(r) ⊇ F(p) ∩ (p− q)⊥. We know that F(p) ∩ (p− q)⊥ is the convex hull of L̂(p) ∩ (p− q)⊥,
thus it is su�cient to show that L(r) ⊇ L(p) ∩ (p− q)⊥. Fix v ∈ L(p) ∩ (p− q)⊥ and consider
the plane P = p + v⊥, then the intersection of this plane with Ω includes the ray p + R+v
and hence the segment [p, q]. Since this intersection is convex we have that the ray r + R+v is
contained in P ∩ Ω and thus v ∈ L(r) from Lemma 2.2.20.

Here is a nice property of regular domains with surjective normal �eld.

Lemma 2.2.27. Let Ω be a future complete regular domain of Mn+1 such that the normal �eld
N : Ω→ Hn is surjective, then the restriction of N to the level surfaces S̃a is a proper map.

Proof. Suppose by contradiction that {pn}n∈N is a divergent sequence in S̃a such that N(pn)→
x ∈ Hn. Since N is surjective there exists p′∞ ∈ Ω such that N(p′∞) = x. But, in fact, taking

p∞ = p′∞−(T (p′∞)−a)x we have that there exists p∞ ∈ S̃a such that N(p∞) = x. Consider the
sequence of segments Rn = [p∞, pn]. Since the sequence {Rn/‖Rn‖} is bounded, up to passing
to a subsequence it converges to some direction w, and, since the sequence {pn}n diverges, the
sequence of segments Rn converges, up to passing to a subsequence, to a ray R = p∞ + R≥0w.

Now since the planes pn+N(pn)⊥ and p∞+x⊥∞ are supporting planes of I+(S̃a) (see Proposition
2.2.10) the Euclidean angle between Rn and p∞ + x⊥∞ is less than π/2 and we can see that the
Euclidean angle between Rn and p∞ + x⊥∞ is less than the Euclidean angle between p∞ + x⊥∞
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and pn + N(pn)⊥. But since N(pn)⊥ → x⊥∞ we can deduce that R is contained in the plane

p∞+x⊥∞, hence R ⊆ N−1(x∞) and 〈w, x∞〉 = 0. Since p∞+x⊥∞ is a supporting plane of I+(S̃a)

and since R ⊆ I+(S̃a) we have that R ⊆ S̃a = ∂I+(S̃a), hence the direction of R is spacelike.

Now take y ∈ Hn such that 〈w, y〉 > 0 and q ∈ S̃a such that N(q) = y. This implies that q+y⊥

is a support plane for I+(S̃a), hence for all r ∈ I+(S̃a) we have 〈r, y〉 ≤ C for some constant
C > 0, but 〈p∞ + tw, y〉 → ∞ as t→∞, hence we get a contradiction.

Remark 2.2.28. We remark that the regular domain Dτ has surjective normal �eld by Lemma
2.1.17. And, in fact, N is surjective when restricted to each level surface S̃a.

Now as a consequence of the study of future complete regular domains we get that the
action of the a�ne deformation Γτ of Γ on ∂Dτ is not free and properly discontinuous; in
particular it is not free and properly discontinuous on the whole Mn+1. First we need a lemma.

Lemma 2.2.29. Let Ω be a future complete regular domain. Suppose Σ is closed in ∂Ω, then
the retraction r : Ω → Σ extends to a deformation retraction r̄ : Ω → Σ. Furthermore every
point of ∂Ω \ Σ belongs to a unique null ray contained in ∂Ω with starting point in Σ.

Proof. Consider a sequence of elements {xn}n∈N ⊆ Ω such that xn → p ∈ ∂Ω \ Σ. Then the
sequence {r(xn)}n ⊆ Σ converges to some r that belongs to Σ since Σ is closed in ∂Ω. De�ne
r̄(p) := r. By de�nition this is a continuous extension of r : Ω→ Σ. The sequence of timelike
vectors xn− r(xn) converges to p− r. Hence p− r is either a null or timelike vector, but, since
∂Ω is an achronal set, p−r is a null vector. Furthermore since the planes r(xn)+(xn−r(xn))⊥

are supporting planes of Ω so is r + (p − r)⊥. This implies that r + R≥0(p − r) is a null ray
contained in ∂Ω.

In the setting of the previous lemma, in order to prove next proposition, we have to explain,
when Σ is a closed subset of ∂Ω, how to construct the boundary of X := ∂Ω and how to give
to X := X ∪ ∂X the structure of manifold with boundary. From Lemma 2.1.16 we know that
X is the graph of a convex Lipschitz function ϕ. From the previous lemma it follows that at all
points in X \ Σ there is exactly one supporting hyperplane for Ω, this implies that the points
in X \Σ correspond to the set of points where ϕ is di�erentiable, hence X \Σ is a C1-manifold.
Also from the previous lemma X \ Σ is foliated by null rays with starting points in Σ. For
p ∈ X \ Σ let R(p) be the null ray of the foliation which passes through p. As we saw the
retraction on X is de�ned as follows r(p) = p if p ∈ Σ and r(p) is the initial point of R(p) if
p ∈ X \ Σ. We hence de�ne

∂X := {R | R is a ray of the foliation }

Let us de�ne a topology on X = X ∪ ∂X such that it agrees with the natural topology on
X and such that it makes X a topological manifold with boundary ∂X. Let R ∈ ∂X and
�x a C1-embedded closed (n− 1)-ball D which intersects the foliation transversely and passes
through R and de�ne

U(D,R) = {p ∈ X \ Σ | R(p) ∩ int(D) 6= ∅ separates p from r(p)}∪

∪{S ∈ ∂X | S ∩ intD 6= ∅}

We consider the topology on X that agrees with the natural topology on X and such that for
every R ∈ ∂X has U(D,R) as fundamental system of neighborhoods. With this topology X is
a Hausdor� space. Indeed if p ∈ X and R = R(p) ∈ ∂X it is su�cient to take D such that p
and r(p) are on the same side of D so that p /∈ U(D,R) and we can separate p and R.
Now we want to construct an atlas for X. For p ∈ X \ Σ let v(p) be a future directed null
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vector tangent to R(p) such that y0(v(p)) = 1, where y0 is the timelike coordinate of an a�ne
orthonormal coordinate system of Mn+1. For all D closed (n− 1)-ball as above de�ne the map
µD : D × (0,∞]→ U(D,R) de�ned as follows

µD(x, t) =

{
x+ tv(x) if t <∞
R(x) if t =∞

These maps are local charts that make X a manifold with boundary. Now the retraction
r : X → Σ uniquely extends to a retraction r : X → Σ, where if R ∈ ∂X then r(R) is the
starting point of the ray. This retraction is a proper map. In fact suppose we have a divergent
sequence {pn}n ⊆ X \Σ and suppose that r(pn)→ r(p) ∈ Σ, for some p ∈ Ω. Since each r(pn)
is the starting point of a null ray of the foliation r(p) will be as well the starting point of a
null ray of the foliation, call it R. Then since r(pn) tends to r(p) and {pn} diverges, for every
embedded (n− 1)-ball D that passes through R we have pn ∈ U(D,R) for in�nitely many pn.
But then µ−1

D (pn)→ (R ∩D,∞). Hence pn → R ∈ X.

Proposition 2.2.30. The action of Γτ on ∂Dτ is not free and properly discontinuous. Hence
the a�ne group Γτ does not act freely and properly discontinuously on the whole Mn+1.

Proof. Suppose by contradiction that Γτ acts on ∂Dτ freely and properly discontinuously. Set

X = ∂Dτ , M ′ = X/Γτ , K = Σ/Γτ

and r̂ : Dτ/Γτ → K be the surjective map which is induced by the retraction r : Dτ → Σ.

Notice that if p ∈ Dτ and r(p) ∈ Σ then r(p) + N(p) ∈ S̃1 and r(r(p) + N(p)) = r(p), hence

Σ = r(S̃1). Since S̃1/Γτ is compact, being homeomorphic to M we have that K is compact.
Since M ′ is an Hausdor� space K is closed in M ′ and hence Σ is closed in ∂Dτ . Thus we can
construct the boundary ∂X ofX as above. The action of Γτ on X uniquely extends to an action
on X. The map r : X → Σ is Γτ -equivariant hence the action of Γτ on X is free and properly
discontinuous. Indeed if K ⊆ X is a compact subset then Γτ (K) = {γτ ∈ Γτ | γτK ∩K 6= ∅}
is contained in Γτ (r(K)) which is �nite since r(K) is compact. Then we can construct the

manifold with boundaryM
′
= X/Γτ of whichM

′ is the interior. Since the retraction r : X → Σ

is a Γτ -equivariant map and a proper map it induces a proper map r̄ : M
′ → K. Since K is

compact M
′
is a compact manifold with boundary. Furthermore r̄ : M

′ → K is a deformation
retraction so

Hn(K) ∼= Hn(M
′
).

Now by Lefschetz duality [19, Theorem 3.43.] we have that

Hn(M
′
) ∼= H0(M

′
, ∂M

′
) = 0.

On the other hand we have Yτ = Dτ/Γτ and Y τ = Dτ/Γτ . The map r : Dτ → Σ induces a
deformation retraction Y τ → K, so

Hn(K) ∼= Hn(Y τ ) ∼= Hn(Yτ ).

For the last isomorphism see [17, XI, Théorème 3.7.]. But we know that Yτ ∼= R ×M hence
Hn(Yτ ) ∼= Hn(M) = Z. Hence a contradiction.

As a consequence we get that the domain of dependence of any Γτ -invariant complete
spacelike hypersurface, such that the action on it is free and properly discontinuous, is a future
(or past) complete regular convex domain.
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Corollary 2.2.31. If F̃ is a Γτ -invariant complete spacelike hypersurface such that the Γτ -
action on it is free and properly discontinuous then D(F̃ ) is a regular domain, either future or
past complete.

Proof. If F̃ is a complete spacelike hypersurface such that the Γτ -action on it is free and
properly discontinuous then from Proposition 2.1.13 the Γτ -action on D(F̃ ) is as well free and

properly discontinuous, hence D(F̃ ) is not the whole Mn+1. By Corollary 2.1.12 D(F̃ ) is the
intersection of either the future or the past of its null support planes. By lemma 2.1.17 we
know that D(F̃ ) admits a spacelike support plane, hence this condition ensures that D(F̃ ) is
the intersection of the future or the past of at least two null support planes, hence it is a regular
domain.

2.3 Uniqueness of the domain of dependence

In this section we want to show that Dτ = D(F̃τ ) (and respectively D−τ = D(F̃−τ )), the regular
domain we have associated to each τ ∈ Z1(Γ,Rn+1), is the unique Γτ -invariant future (past)
complete regular domain. This will allow us to deduce that any Γτ -invariant complete spacelike
hypersurface is contained in either Dτ or D−τ and it is indeed a Cauchy surface of it. Finally
we will show that Yτ = Dτ/Γτ and Y −τ = D−τ /Γτ are the only maximal globally hyperbolic �at
spacetimes with compact spacelike Cauchy surface and holonomy group Γτ .

Theorem 2.3.1. Dτ is the unique Γτ -invariant future complete regular domain.

Proof. For the proof see [12, Theorem 5.1.]. We shall just brie�y summarize the principal
arguments. Given a Γτ -invariant future complete regular domain Ω, we want to show that
Ω = Dτ . Let TΩ be the regular cosmological time associated to Ω and T the one associated
to Dτ . Furthermore for a > 0 let S̃Ω

a = T−1
Ω (a) and S̃a = T−1(a) be the level surfaces of

TΩ and T respectively. Hence by Lemma 2.2.15 we have Ω = D(S̃Ω
a ) and Dτ = D(S̃a). It is

su�cient then to prove that S̃a ⊆ Ω and S̃Ω
a ⊆ Dτ for a su�ciently large. Because then this

implies that Dτ ⊆ Ω since if p ∈ Dτ take any inextendible causal curve passing through p,
since Dτ = D(S̃a) this curve will intersect S̃a in a unique point q, but since S̃a ⊆ Ω for a >> 0

we have q ∈ Ω = D(S̃Ω
a ) hence this curve should also intersect S̃Ω

a , this implies that p ∈ Ω.
Analogously Ω ⊆ Dτ . Now the proof is declined in four steps.

1. The �rst step shows that Ω∩Dτ 6= ∅. This follows from the fact that they are both future
complete and hence if p ∈ Ω and q ∈ Dτ then I+(p) ∩ I+(q) ⊆ Ω ∩Dτ . Then notice that
intersection of the future of two points in Mn+1 is not empty.

2. In the second step let us �x a point p0 ∈ Ω∩Dτ and call C the closure of the convex hull
of the Γτ orbit of p0, then we claim that C is a future complete convex set.
From a general lemma about closed convex sets in Mn+1 [12, Lemma 5.2.] this reduces
to prove that the interior of C is not empty, C is not of the form {x ∈ Mn+1 | α1 ≤
〈x, v〉 ≤ α2} for some v non-spacelike vector and that C has not a timelike support
hyperplane. In order to say that the interior of C is not empty this is equivalent to say
that the dimension of C is n+ 1 [9, Proposition 11.2.7 ], so supposing by contradiction
that dimC = k < n + 1 we would get that Γτ leaves invariant the k-plane P that is the
a�ne hull of C, hence Γ leaves invariant the tangent plane of P contradicting the fact
that if Γ is cocompact then from Remark 1.3.33 we know that Γ does not leave invariant
any hyperplane of Hn. In order to exclude the other case what is used is that Γ is a
cocompact subgroup of SO+(n, 1) therefore all its elements are hyperbolic isometries of
the hyperbolic space hence they have an attractor null eigenvector and a repulsive one
and that, as already mentioned, the limit set of Γ is the whole ∂Hn.
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3. If we call ∆ = ∂C then the third step shows that ∆/Γτ is compact. In order to do so
we notice that being ∆ the boundary of a Γτ -invariant convex set then it is Γτ -invariant

as well and a topological manifold. Moreover if T (p0) = a0 then ∆ ⊆ I+(S̃a0). If
r : Dτ → ∂Dτ is the retraction map, then we can de�ne a Γτ -equivariant map

f : ∆ −→ S̃a0

p→ r(p) +
a0

T (p)
(p− r(p))

that induces a map f̄ : ∆/Γτ → S̃a0/Γτ that turns out to be an homeomorphism, hence
∆/Γτ ∼= M is compact.

4. The �nal step shows that if a > supq∈∆ TΩ(q) ∨ supq∈∆ T (q) then S̃Ω
a ⊆ Dτ and S̃a ⊆ Ω.

For this we notice that T : ∆ → R and TΩ : ∆ → R are Γτ -equivariant map and since
∆/Γτ is compact there exists a > 0 such that T (x) < a and TΩ(x) < a for all x ∈ ∆.

Finally in order to conclude we have to show that S̃a and S̃Ω
a are contained in C. Let

y ∈ Dτ and suppose y /∈ C and y ∈ I−(∆) then there exists y′ ∈ ∆ ∩ I+(y), so we have

T (y) < T (y′) < a. It follows that S̃a ⊆ C. Analogously S̃Ω
a ⊆ C. Hence S̃a ⊆ Ω and

S̃Ω
a ⊆ Dτ .

Remark 2.3.2. The same theorem holds replacing Dτ with D−τ and future complete with past
complete.

Corollary 2.3.3. If τ and σ are elements of Z1(Γ,Rn+1) that di�er by a coboundary then Dτ
and Dσ di�er by a translation. Moreover D−τ = −(D−τ ).

Proof. Suppose τγ − σγ = γ(x) − x for some x ∈ Rn+1. Then Dτ + x is a Γσ-invariant future
complete regular domain, hence the statement follows by the unicity of Dσ. On the other hand
−(D−τ ) is a future complete regular domain that is invariant under the action of Γ−τ .

Using the previous corollary we can notice that Yτ and Yσ are isometric if and only if τ
and σ di�er by a coboundary. In fact if f : Yτ → Yσ is an isometry, let f̃ : Dτ → Dσ be a
lift of f , then γσ ◦ f̃ = f̃ ◦ γτ and this implies that σ and τ di�er by a coboundary. So the
isometric class of the globally hyperbolic �at spacetime Yτ depends only on the cohomology
class [τ ] ∈ H1(Γ,Rn+1). Hence we have a well de�ned map

H1(Γ,Rn+1)→ TLor(M)

[τ ]→ [Yτ ]

Also notice that since D0 = D(Hn) = I+(0), then Y0 is the Minkowskian cone C+(M). Fur-
thermore a time-orientation reversing isometry between Y−τ and Y

−
τ exists.

Now we can prove that every Γτ -invariant complete spacelike hypersurface, over which the
action is free and properly discontinuous, is contained in either Dτ or D−τ and it is a Cauchy
surface of it.

Remark 2.3.4. We recall that the degree of a map is de�ned as follows (see [17, XIV, 8. ]).
Let M and N two compact, connected, oriented without boundary di�erentiable manifolds of
dimension n, and let f : M → N a continuous map between them. Notice that f induces a
group homomorphism between the highest cohomology groups of M and N , f ∗ : Hn(M) →
Hn(N). Furthermore since M and N are compact oriented manifold we have that Hn(M) ∼=
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Hn(N) ∼= Z and a generator for them is represented by the fundamental class of the manifold
[M ] and [N ]. Hence there exists a number, called the degree of f , denoted by deg(f), such that
f ∗([M ]) = deg(f)[N ]. It is an homotopy invariant. A degree 1 map is a map that induce the
identity map on the level of the highest cohomology groups.

Corollary 2.3.5. Let F̃ be a Γτ -invariant complete spacelike hypersurface on which the action
of Γτ is free and properly discontinuous then F̃ is contained in either Dτ or D−τ . In particular

every timelike coordinate on F̃ is proper. Furthermore F̃ /Γτ is di�eomorphic to M and the

Gauss map induces on F̃ /Γτ a map N̄ : F̃ /Γτ →M which has degree 1.

Proof. From Corollary 2.2.31 we know that D(F̃ ), the domain of dependence of F̃ , is a Γτ -
invariant either future or past complete regular domain. Hence by Theorem 2.3.1 we get that
either D(F̃ ) = Dτ or D(F̃ ) = D−τ . Thus F̃ is contained in either Dτ or D−τ and it is indeed

a Cauchy surface of it. Hence F̃ /Γτ is a Cauchy surface for Dτ/Γτ or D−τ /Γτ and this implies

that F̃ /Γτ is di�eomorphic to M . Suppose F̃ ⊆ Dτ . First of all we show that any timelike

coordinate on F̃ is proper. In fact since F̃ is a complete spacelike hypersurface, if we �x a set of
a�ne orthonormal coordinates (y0, . . . , yn), by Proposition 1.4.29 F̃ is the graph of a function

ϕ de�ned over {y0 = 0}. So in order to show that y0 is a proper function on F̃ it is su�cient
to show that ϕ is a proper function. From Lemma 2.1.16 it follows that ∂Dτ is also the graph
of a function ψ de�ned over {y0 = 0}, since F̃ ⊆ Dτ we have that ψ ≤ ϕ. But from Lemma
2.1.18 we know that ψ is a proper map, so if we assume by contradiction that {pn} ⊆ {y0 = 0}
is a divergent sequence such that ϕ(pn) converges, then we have that ψ(pn) diverges and since
ψ ≤ φ we get an absurd. So ϕ is a proper map.

Finally since F̃ is contained in Dτ we can consider the Gauss map N : Dτ → Hn of Dτ
restricted to F̃ . Since it is Γτ -equivariant it induces a map N̄ : F̃ /Γτ → M . This map is
homotopic to the identity, hence it has degree 1. In fact consider the family of scaled cocycles
tτ ∈ Z1(Γ,Rn+1) with t ∈ [0, 1] and consider the associated Gauss maps Ntτ . When t = 0 we
get N0 = id : Hn/Γ → Hn/Γ and when t = 1 we get our induced Gauss map N̄ . Hence N̄ is
homotopic to the identity.

Now it remains to show that Yτ and Y −τ are the only maximal globally hyperbolic �at
spacetimes with compact spacelike Cauchy surface and holonomy group Γτ . We start with a
remark.

Corollary 2.3.6. For every τ ∈ Z1(Γ,Rn+1), the intersection Dτ ∩ D−τ is empty.

Proof. The intersection Dτ ∩ D−τ is a Γτ -invariant convex set that is also bounded since it is
limited from above and below by the graphs of the functions ϕ and ϕ′ de�ning ∂Dτ and ∂D−τ
respectively. Hence if the intersection is not empty its barycentre p is �xed by Γτ . Hence I

+(p)
and I−(p) are respectively a future complete Γτ -invariant regular domain and a past complete
one. Hence I+(p) = Dτ and I−(p) = D−τ . So their intersection is empty.

Lemma 2.3.7. The developing map D : Ỹ → Mn+1 of a �at globally hyperbolic spacetime Y
with a complete spacelike Cauchy surface S is injective.

Proof. Fix a timelike direction v in Mn+1 and for x̃ ∈ Ỹ let δ(x̃) be the timelike line in Mn+1

passing through D(x̃) with direction v. Let d(x̃) be the connected part of D−1(δ(x̃)) containing

x̃. Then d(x̃) is a timelike geodesic in Ỹ . Since S̃ is a Cauchy surface for Ỹ d(x̃) intersects

S̃ in exactly one point p(x̃). Suppose now that D(x̃) = D(ỹ), then δ(x) = δ(y) = δ and

hence D(p(x̃)) = δ ∩ D(S̃) = D(p(ỹ)). But the restriction of D to the hypersurface S̃ is an
embedding from lemma 1.4.29 hence p(x̃) = p(ỹ). This implies that d(x̃) = d(ỹ). But D
restricted to d(x̃) is a local homeomorphism from a topological line to R hence it is injective.
We obtain x̃ = ỹ.



CHAPTER 2. MAIN THEOREM 42

Proposition 2.3.8. Every globally hyperbolic �at spacetime with compact spacelike Cauchy
surface and holonomy group Γτ is di�eomorphic to R×M and isometrically embeds in either
Yτ or Y −τ . Hence Yτ and Y −τ are the unique maximal globally hyperbolic �at spacetimes with
compact spacelike Cauchy surface and holonomy group Γτ .

Proof. Let Y be a globally hyperbolic �at spacetime with compact spacelike Cauchy surface S
and holonomy group Γτ . We have to show that Y isometrically embeds in either Yτ or Y

−
τ . It

is su�cient to show that the developing map D : Ỹ →Mn+1 of Y is an embedding with image
contained either in Dτ or in D−τ . From Lemma 2.3.7 D is injective, then D(Ỹ ) is isometric to Ỹ

and hence the image of S̃ is a Γτ -invariant spacelike hypersurface such that the action of Γτ on
it is free and properly discontinuous, by the equivariance of D. Hence from Corollary 2.3.5 we
have that the image is a Cauchy surface of either Dτ or D−τ . It follows that S is homeomorphic

to M and hence Y is homeomorphic to R ×M . Since Ỹ ∼= R × S̃ and since ∀ t ∈ R we have
that D|{t}×S̃ is contained in either Dτ or D−τ it follows that D(Ỹ ) ⊆ Dτ ∪ D−τ . Since these

domains are disjoint it follows that D(Ỹ ) is contained in one of them, let us say Dτ . Hence

D : Ỹ →Mn+1 is an isometric embedding into Dτ , this induces on the quotient an embedding
of Y in Yτ . Hence any isometric embedding of Yτ and Y −τ in another globally hyperbolic �at
spacetime with compact Cauchy surfaces and holonomy Γτ is surjective.

Remark 2.3.9. Actually we can conclude that Yτ and Y
−
τ are maximal in the sense that every

isometric embedding in another globally hyperbolic �at spacetime is surjective. To see this let
Y be a globally hyperbolic spacetime and ϕ : Yτ → Y an isometric embedding. Let N be a
spacelike Cauchy surface of Yτ di�eomorphic to M , then ϕ(N) is a Cauchy surface for Y since
from [16, Property 6] a compact spacelike hypersurface in a globally hyperbolic spacetime
is automatically a Cauchy surface. So Y has as well compact Cauchy surfaces di�eomorphic
to M , this implies that the holonomy group of Y is Γσ for some cocycle σ ∈ Z1(Γ,Rn+1). If

we consider ϕ̃ : Dτ → Ỹ a lift of ϕ to the universal covering spaces and compose it with the
developing map of Y , which is an isometric embedding of Ỹ in Dσ from Proposition 2.3.8,
we can deduce that D(ϕ̃(Dτ )) is a Γσ-invariant future complete regular domain and then by

uniqueness of Theorem 2.3.1 conclude that D is an isometry between Ỹ and Dσ so that Y is
isometric to Yσ. Then σ and τ di�er by a coboundary and hence Y is isometric to Yτ .

Remark 2.3.10. This result agrees with the Theorem of Choquet-Bruhat and Geroch 1.2.40
that states that every globally hyperbolic spacetime Y admits a Cauchy embedding , see Def-
inition 1.2.38, in a maximal globally hyperbolic spacetime. Moreover this maximal globally
hyperbolic extension is unique up to isometries. Furthermore the maximal globally hyperbolic
extension of a �at globally hyperbolic spacetime is �at. By maximal in this contest we mean
a globally hyperbolic spacetime such that every Cauchy-embedding in another globally hy-
perbolic spacetime is surjective. Nevertheless as we have already stated a compact spacelike
hypersurface in a globally hyperbolic spacetime is automatically a Cauchy surface. Hence for
�at globally hyperbolic spacetime with compact Cauchy surface an embedding is automatically
a Cauchy-embedding.

2.4 Continuous family of domains of dependence

Recall that Γ is a discrete, torsion-free, cocompact subgroup of SO+(n, 1), M = Hn/Γ is a
compact hyperbolic manifold and Yτ = Dτ/Γτ is the unique future complete globally hyperbolic
�at spacetime with compact spacelike Cauchy surfaces homeomorphic to M and holonomy
group Γτ , that is an a�ne deformation of Γ for a �xed [τ ] ∈ H1(Γ,Rn+1).



CHAPTER 2. MAIN THEOREM 43

In this section we will show that the map de�ned in the previous section

H1(Γ,Rn+1)→ TLor(M)

[τ ]→ [Yτ ]

is continuous with respect to the topologies we have put on these sets in the section about
Geometric structures 1.4. More precisely under the identi�cation H1(Γ,Rn+1) ∼= R(Γ) we
put on H1(Γ,Rn+1) the topology of pointwise convergence of the group homomorphisms ρτ
associated to each τ ∈ Z1(Γ,Rn+1). Instead on TLor(M) we put the compact-open topology on
the associated developing maps, notice that we are asking less regularity than in the general
contest of section 1.4, this is because the maps we have associated to every future complete
regular domain and that we are going to use in order to de�ne the developing map associated
to every τ , namely the cosmological time, the retraction and the normal �eld a priori are just
continuous. So the continuity statement reduces to prove that given any bounded neighborhood
U of 0 ∈ Z1(Γ,Rn+1) there exists a continuous map

dev : U × (R+ × M̃)→Mn+1

such that for all τ ∈ U the map devτ = dev(τ, ·) is the developing map associated to the �at
spacetime Yτ .
In Theorem 2.1.4 for any bounded neighborhood U of 0 we have constructed a map dev :
U × Ñ0 → Mn+1, noticing that M̃ ⊆ Ñ0 let us call dev0 the restriction of dev to M̃ = Hn.
Hence we obtain a C∞-map

dev0 : U × M̃ →Mn+1

This map is such that for all τ ∈ U the map dev0
τ = dev0(τ, ·) is an embedding onto a future

strictly convex spacelike hypersurface that is Γτ -invariant. Furthermore dev0
τ is Γτ -equivariant

in the following sense dev0
τ (γx) = γτdev

0
τ (x) for all γ ∈ Γ . Recall that for every τ ∈ U we

let F̃τ be the image under dev0
τ of M̃ . It is a future convex complete spacelike hypersurface

hence from Proposition 1.4.29 we know that if we �x a set of orthonormal a�ne coordinates
(y0, . . . , yn) then F̃τ is the graph of a 1-Lipschitz convex function ϕτ : {y0 = 0} → R. First
we remark that the dependence of ϕτ on τ is continuous in the sense that if τk → τ in U then
ϕτk → ϕτ in the compact open topology. This is because dev0

τk
→ dev0

τ in the C∞-topology,

i.e. they converge uniformly on each compact subset of M̃ hence F̃τk = dev0
τk

(M̃) is uniformly

close to F̃τ on each compact, this implies that the maps ϕτk and ϕτ converge uniformly on each
compact subset of {y0 = 0}.

Since it will be the basic tool for all the following proofs let us recall the statement of
Ascoli-Arzelà Theorem in his more general version.

Theorem 2.4.1 (Ascoli-Arzelà). Let X be a topological space and (Y, d) a metric space. Give
C(X, Y ) the topology of compact convergence (uniform convergence on each compact subset) and
let F be a subset of C(X, Y ). If F is equicontinuous under d and the set Fa = {f(a) | f ∈ F}
has compact closure for every a ∈ X then F is contained in a compact subspace of C(X, Y ).
The converse holds if X is locally compact Hausdor�.

Proof. [22, Theorem 47.1]

Now recall that Dτ for each τ ∈ U is the domain of dependence of F̃τ and it is a future
complete regular convex domain hence ∂Dτ is also de�ned, from Lemma 2.1.16, as the graph
of a 1-Lipschitz convex function ψτ : {y0 = 0} → R. The following result shows that also the
map ψτ depends continuously on τ .

For the next propositions �x U a bounded neighborhood of 0 in Z1(Γ,Rn+1).
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Proposition 2.4.2. Let {τk}k∈N be a sequence of cocycles in U which converges to τ ∈ U , then
ψτk → ψτ in the compact-open topology.

Proof. First we will show that the hypothesis of Ascoli-Arzelà Theorem are satis�ed in order to
conclude that we can extract a subsequence {ψτk} that converges uniformly on every compact
subset to some ψ∞. Since the maps ψτk are all 1-Lipschitz they form an equicontinuous family.

Now we have to prove that they are locally bounded. Since F̃τk ⊆ Dτk we have that ψτk ≤ ϕτk for
all τk, on the other hand we can consider a family of past strictly convex spacelike hypersurfaces
{F̃−τ }τ∈U and let ϕ−τk : {y0 = 0} → R be such that F̃−τk is the graph of ϕ−τk , we have as well

that F̃−τk ⊆ D
−
τk

and since Dτk ∩ D−τk = ∅ it follows that ϕ−τk ≤ ψτk ≤ ϕτk . Since {ϕ−τk}k and
{ϕτk}k are convergent and hence locally bounded ψτk is locally bounded as well. So we can
apply Ascoli-Arzelà Theorem and extract a convergent subsequence ψτk → ψ∞. It remains
to prove that ψ∞ = ψτ . Since ψ∞ is the limit of convex functions it is convex as well and if
S is the graph of ψ∞ it is Γτ -invariant. In fact if p ∈ S, write p = limk pk with pk ∈ ∂Dτk
then γτp = limk γτkpk and since γτkpk ∈ ∂Dτk we have that γτp ∈ S. Furthermore since ψ∞ is
1-Lipschitz the epigraph of ψ∞ has no timelike support hyperplane. Hence I+(S) coincide with
the epigraph of ψ∞ and thus it is a future convex set. Actually I+(S) is a Γτ -invariant future
complete regular domain. In fact each Dτk is the intersection of the future of at least two null
support hyperplanes and since locally we have uniform convergence of the boundary ∂Dτk to
S, then also I+(S) has at least two null support hyperplanes. Finally from the uniqueness of
Dτ , see Theorem 2.3.1, we have that I+(S) = Dτ and hence ψ∞ = ψτ .

Let again {τk} be a sequence in U that converges to τ ∈ U . If we �x a compact set K ⊆ Dτ ,
since we have proved that ψτk → ψτ in the compact-open topology, where ψτk and ψτ de�ne
the boundary of Dτk and of Dτ respectively, this implies that for k big enough K ⊆ Dτk . Hence
we may suppose that K ⊆ Dτk for all k ∈ N. Notice that associated to each Dτk we have
the cosmological time Tτk : Dτk → R+, the retraction rτk : Dτk → ∂Dτk and the normal �eld
Nτk : Dτk → Hn. In the following propositions we want to show that these maps converge in
the compact-open topology to the respective maps de�ned on Dτ as k →∞.

First we need a technical lemma.

Lemma 2.4.3. Let {τk}k∈N a sequence in U which converges to τ ∈ U . For C ∈ R and for
any cocycle σ let

KC(σ) = {x ∈ {y0 = 0} | ψσ(x) ≤ C}
where ψσ is the function ψσ : {y0 = 0} → R such that ∂Dσ is the graph of ψσ. Then for every
C ∈ R and for every ε > 0 there exists k0 ∈ N such that

KC−ε(τ) ⊆ KC(τk) ⊆ KC+ε(τ) ∀k ≥ k0

For every cocycle σ let M(σ) be the minimum of the function ψσ. Then {M(τk)}k converges
to M(τ).

Proof. Since ψσ is a convex function KC(σ) is a closed convex subset of {y0 = 0}. We also
claim that it is compact. Indeed we can argue as in the proof of Lemma 2.1.18. Moreover if
C > M(σ) then KC(σ) has non empty interior and ∂KC(σ) = {x ∈ {y0 = 0} | ψσ(x) = C}.
Now set M = M(τ). First let us suppose that C > M . Fix ε > 0 and let k0 ∈ N such that

‖ψτ − ψτk‖∞,KC+ε(τ) <
ε

2
for all k ≥ k0.

Then KC−ε(τ) ⊆ KC(τk) for all k ≥ k0. Now let x /∈ KC+ε(τ) we claim that ψτk(x) ≥ C+ ε
2
for

all k ≥ k0 and this proves the other inclusion. To see why let k ≥ k0 and x0 ∈ {y0 = 0} such that
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ψτ (x0) = M and consider the map c(t) = ψτk(x0 + t(x− x0)) for t ∈ [0, 1]. Since x0 ∈ KC+ε(τ)
but by assumption x /∈ KC+ε(τ) there exists t0 ∈ (0, 1) such that x0 + t0(x− x0) ∈ ∂KC+ε(τ).
Then

c(0) = ψτk(x0) ≤M +
ε

2
and

c(t0) = ψτk(x0 + t(x− x0)) ≥ ψτ (x0 + t0(x− x0))− ε

2
= C +

ε

2
.

Since c(t0) = ψτk(x0 + t0(x− x0)) ≤ (1− t0)ψτk(x0) + t0ψτk(x) = (1− t0)c(0) + t0c(1) we have
that C + ε

2
≤ (1− t0)(M + ε

2
) + t0c(1) < (1− t0)(C + ε

2
) + t0c(1) hence ψτk(x) = c(1) ≥ C + ε

2
.

Now suppose C < M �x k0 such that

KM+1(τk) ⊆ KM+2(τ) and

‖ψτ − ψτk‖∞,KM+2(τ) <
M − C

2
for all k > k0.

Then combining the two conditions we get thatKC(τk) = ∅ for all k > k0. HenceM(τ) ≤M(τk)
for all k > k0 and this implies that M(τ) ≤ lim infkM(τk), furthermore since ψτk → ψτ we
have that M(τ) ≥ lim supkM(τk).

Now we can prove the continuous dependence of the cosmological time Tτ on τ .

Proposition 2.4.4. Let {τk}k∈N be a sequence in U which converges to τ ∈ U , set Tk = Tτk and
let T be the cosmological time on Dτ . Then Tk converges uniformly on each compact K ⊆ Dτ
to T|K.

Proof. LetM be the minimum of ψτ , by Lemma 2.4.3 there exists k0 such that ψτk(x) ≥M−1
for all x ∈ {y0 = 0} and for all k ≥ k0. Notice that for a compact subset K ⊆ Dτ the set
J−(K) ∩ {y0 ≥ M − 1} is compact and let H be the projection onto {y0 = 0}. Fix ε > 0 and
k(ε) such that ‖ψτ − ψτk‖∞,H < ε

2
for all k ≥ k(ε). Let p ∈ K and r = r(p) ∈ ∂Dτ , where r

is the retraction on Dτ . Notice that r ∈ J−(K) ∩ {y0 ≥ M − 1}. If k ≥ k(ε) we have that
r + ε ∂

∂y0
∈ Dτk and by the de�nition of Tk(p)

Tk(p) >

√
−
〈
p− (r + ε

∂

∂y0

), p− (r + ε
∂

∂y0

)

〉
notice that 〈

p− (r + ε
∂

∂y0

), p− (r + ε
∂

∂y0

)

〉
= −T (p)2 − ε2 + 2ε(p− r)0.

Since J−(K) ∩ {y0 ≥M − 1} is compact there exists C ∈ R such that (p− r)0 ≤ C, hence

Tk(p) >
√
T (p)2 + ε2 − 2εC,

since the right hand side tends to T (p) for every �xed η > 0 if we call α(ε) = −(ε2 − 2εC) we
have that there exists a δ such that if |α(ε)| < δ we have

√
T (p)2 − α(ε) > T (p) − η hence if

we take ε small enough such that |α(ε)| < δ we get that Tk(p) >
√
T (p)2 − α(ε) > T (p) − η

for all k ≥ k(ε) and for all p ∈ K. On the other hand all the projections rk(p) belong to
J−(K) ∩ {y0 ≥ M − 1} so the same argument shows that T (p) > Tk(p) − η for all k ≥ k(ε)
and all p ∈ K.

Now for every τ ∈ U consider the level surfaces of the cosmological time Tτ and denote
them by S̃a(τ) = T−1

τ (a). We know from Proposition 1.4.29 that they are also de�ned as the
graph of functions ψaτ : {y0 = 0} → R. As a Corollary of Proposition 2.4.4 we get that also ψaτ
are continuous functions of τ for every �xed a ∈ R+.
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Corollary 2.4.5. Let {τk} be a sequence of cocycles in U that converges to τ , then ψaτk → ψaτ
in the compact-open topology.

Proof. We can argue that every ψaτk is 1-Lipschitz and hence they constitute an equicontinuous
family. On the other hand let ψτk be the map that de�nes ∂Dτk then ψτk < ψaτk < ψτk + a
so since {ψτk} is a locally bounded family so is {ψaτk}k. So we can apply again Ascoli-Arzelà
Theorem and extract a convergent subsequence and since Tτk → Tτ the limit is ψaτ .

Now we can prove that both the retraction rτ and the normal �eld Nτ are continuous
functions of τ .

Proposition 2.4.6. Let again {τk} be a convergent sequence in U , τk → τ . Let rk, Nk the
retraction and the normal �eld de�ned on Dτk . Fix K a compact subset of Dτ , then the maps
rk |K and Nk |K converge uniformly to r|K and N|K, where r and N are the retraction and the
normal �eld on Dτ .

Proof. Let M be the minimum of ψτ and �x k0 such that ψτk ≥ M − 1 for all k ≥ k0. In
particular rk(p) ∈ J−(K) ∩ {y0 ≥ M − 1} for all p ∈ K and k ≥ k0. Since J

−(K) ∩ {y0 = 0}
is compact there exists C such that ‖p − r(p)‖ ≤ C for all p ∈ K and k ≥ k0, where ‖ · ‖
denotes the Euclidean norm on Rn+1. On the other hand since from Proposition 2.4.4 the
cosmological time Tk = Tτk tends to Tτ on K there exists k1 > k0 such that β > Tk(p) ≥ α > 0
for all p ∈ K and all k ≥ k1. Hence the image of Nk restricted to K in Hn is contained in
{v ∈ Hn | ‖v‖ ≤ C

α
} for all k ≥ k1. Since this is a compact set in Hn the family of functions

{Nk|K}k is bounded. In order to show that Nk |K → N|K uniformly it is su�cient to show that if
pk → p in K then Nk(pk)→ N(p). Since Nk(pk) runs in a compact set we can suppose it tends
to a timelike vector v. Set a = T (p), in order to show that N(p) = v it is su�cient to show

that p+ v⊥ is a support plane for S̃a = T−1(a). This is equivalent to prove that 〈q, v〉 ≤ 〈p, v〉
for all q ∈ S̃a. Fix q ∈ S̃a and put q = (ψaτ (y), y) set ak = Tk(pk) and consider the sequences
qk = (ψakτk (y), y) and q′k = (ψaτk(y), y). From Corollary 2.4.5 we know that q′k → q. On the other
hand ‖qk − q′k‖ ≤ |ak − a| since ‖qk − q′k‖2 = (ψakτk (y) − ψaτk(y))2 ≤ (ak − a)2, so qk → q as
ak → a. We know that 〈qk, Nk(pk)〉 ≤ 〈pk, Nk(pk)〉 from Corollary 2.2.14 and hence passing to
the limit we get 〈q, v〉 ≤ 〈p, v〉. Finally since rk + TkNk = id also rk |K converges uniformly to
r|K .

Finally we can prove a stronger convergence for Tk.

Corollary 2.4.7. Let again {τk} be a convergent sequence in U , τk → τ , �x K a compact
subset of Dτ then Tk converge in the C1-topology to Tτ

Proof. In fact ∇LTk = −Nk and Nk converges uniformly on K to N = −∇LT

Finally we can prove what stated at the beginning of the section, namely the continuity of
H1(Γ,Rn+1) 3 [τ ]→ [Yτ ] ∈ TLor(M).

Theorem 2.4.8. For every bounded neighborhood U of 0 in Z1(Γ,Rn+1) there exists a contin-
uous map

dev : U × (R+ × M̃)→Mn+1

such that devτ = dev(τ, ·) is the (continuous) developing map of Yτ for every τ ∈ U .

Proof. As in the discussion at the beginning of the section let dev0 : U × Hn → Mn+1 be the
C∞-map coming from Theorem 2.1.4. Fix τ ∈ U , x ∈ Hn and t > 0, consider the timelike
geodesic γ in Dτ which passes through dev0

τ (x) and has the direction of the normal �eld at
dev0

τ (x). Let dev(τ, t, x) be the point on γ with cosmological time t, i.e.

dev(τ, t, x) = rτ (dev
0
τ (x)) + tNτ (dev

0
τ (x))
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where rτ and Nτ are the retraction and the normal �eld de�ned on Dτ . Since the maps dev0
τ , rτ ,

Nτ are Γτ -equivariant so is the map devτ just de�ned. Furthermore devτ is an homeomorphism
onto Dτ , in fact from Proposition 2.4.6 and from the continuity of dev0

τ , the map devτ is

continuous and since Dτ is the domain of dependence of F̃τ = dev0
τ (Hn), for every z ∈ Dτ there

exists a unique y = dev0
τ (x) ∈ F̃τ such that the timelike geodesic γ which passes through z

and has direction x intersects F̃τ in y, so dev(τ, t, x) = rτ (y) + tNτ (y) = z, hence devτ is a
homeomorphism onto Dτ . Hence we can deduce that devτ is a developing map of Yτ .

Remark 2.4.9. In general the developing map has a C∞-regularity. In this case it is just
continuous hence it gives the topological structure on Yτ .

2.5 Proof of the Main Theorem

We now summarize all the steps that have been done in the previous sections in order to prove
Theorem 1.

Proof. For every τ ∈ Z1(Γ,Rn+1) we have constructed Yτ as the quotientDτ/Γτ , whereDτ is the
domain of dependence of the future convex Γτ -invariant spacelike hypersurface F̃τ constructed
in Theorem 2.1.4 such that F̃τ/Γτ is di�eomorphic to M . We have seen in Proposition 2.1.13
that Dτ/Γτ is a globally hyperbolic �at spacetime with Cauchy surfaces di�eomorphic to M
hence Yτ = Dτ/Γτ ∼= R+ × M , and since from Remark 2.1.14 Dτ is future complete so is
Yτ . From Remark 2.2.5 the domain Dτ is a future complete regular domain. Moreover from
Proposition 2.3.8 Yτ is the unique maximal globally hyperbolic future complete spacetime with
holonomy group Γτ = ρτ (Γ) and compact spacelike Cauchy surfaces and every other such
spacetime isometrically embeds in either Yτ or Y −τ . From Theorem 2.2.8 and Corollary 2.2.9

Dτ has regular cosmological time T̃ : Dτ → R+ which has C1-regularity and whose gradient
is, up to sign, the normal �eld Ñ that is surjective from Remark 2.2.28 and hence T̃ is a C1-
submersion. Since from Proposition 2.2.10 and Lemma 2.2.17 every level surface S̃a of T̃ is a
complete spacelike C1-hypersurface ofMn+1, from Lemma 1.4.29 S̃a is the graph of a C

1-convex
function de�ned over {y0 = 0}. Moreover this function is proper from Corollary 2.3.5. And

since T̃ is Γτ -invariant, see Remark 2.2.18, it induces a canonical cosmological time on Yτ such
that the level surfaces are C1-di�eomorphic to M . In Theorem 2.2.8 we have also de�ned a
continuous map r : Dτ → ∂Dτ such that for all p ∈ Dτ we have T̃ (p) = d(p, r(p)). The image
of Dτ under r is denoted by Στ and it is called the singularity in the past. Since, again from
Remark 2.2.18, r is Γτ -equivarinat, Στ is Γτ -invariant. Furthermore Στ is contractible from
Remark 2.2.12 and is connected by spacelike Lipschitz paths by Lemma 2.2.16. Finally the
map R(Γ) 3 [ρτ ]→ [Yτ ] ∈ TLor(M) is continuous from Theorem 2.4.8.



Chapter 3

Geodesic strati�cation

In his work Mess [21, Proposition 12 and Proposition 13 ] gave a bijection between domains
of dependence of closed spacelike hyperbolic surfaces F and measured geodesic laminations
on F . A more explicit and general construction of such bijection can be found in [8]. We
�rst try to give an idea of the construction through a simple example without giving all the
proofs that can be found in the references. Then we spend some words on the generalizations
done by Bonsante. What we saw in the previous chapter, Corollary 2.2.24 and Proposition
2.2.26, is that in any dimension associated to a future complete regular domain with surjective
normal �eld there is a geodesic strati�cation (that for n = 2 is a geodesic lamination) of Hn.
Equipping a geodesic strati�cation C with a transverse measure enable us to construct a future
complete regular domain whose strati�cation coincide with C. For n = 2 this correspondence
is a bijection, in higher dimensions for some technical reason in [12] Bonsante is not able to
extend the argument. However for a particular class of domains, namely the one with simplicial
singularity, the bijection is recovered.

3.1 Geodesic lamination

First of all we recall the de�nition of geodesic lamination on a complete hyperbolic surface and
we refer to [14] for a good explanation of the topic.

De�nition 3.1.1. Given a complete hyperbolic surface F , a geodesic is the image of a complete
geodesic in H2 under the universal covering map, identifying H2 with the universal cover of F .
A geodesic in F is simple if it has no self transverse intersection.

De�nition 3.1.2. A geodesic lamination on a complete hyperbolic surface F is a non empty
closed subset of F which is a disjoint union of simple geodesics. The geodesics that form the
lamination are called the leaves of the lamination. So each leaf is either a simple closed geodesic
or an isometric copy of R embedded in F .

Example 3.1.3. The simplest example of geodesic lamination is a �nite union of disjoint
simple closed geodesics.

Remark 3.1.4. Notice that if F = H2/Γ is a complete hyperbolic surface then a geodesic

lamination L on F lifts to a Γ-invariant geodesic lamination L̃ on H2.

De�nition 3.1.5. A measured geodesic lamination on a complete hyperbolic surface F is a
couple (L, µ) where L is geodesic lamination on F and µ is a transverse measure on L. A
recti�cable arc c on F is transverse to the lamination L if for every point p ∈ c there exists
a neighborhood U of p in F such that U ∩ c intersects each component of U ∩ L in at most
one point and the intersection of U with each connected component of F \ L is a connected

48
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set. Thus a transverse measure µ on L is the assignment of a positive measure µc on every
recti�cable path c transverse to L. This means that µc assigns a non-negative number to every
Borel subset of the arc in such a way that:

1. the support of µc is L ∩ c,

2. if c′ ⊆ c then µc′ = µc|c′ ,

3. if c and c′ are arcs that are homotopic through arcs that are transverse to the leaves of
L keeping the endpoints either on the same leaf or on the same connected component of
F \ L then the homotopy sends the measure µc to µc′ .

Example 3.1.6. The simplest example of measured geodesic lamination (L, µ) on H2 is given
by a �nite family of disjoint geodesic lines each endowed with a real positive weight. This
example is called a weighted multi-curve.

De�nition 3.1.7. A leaf c of a lamination L on a complete hyperbolic surface F is isolated
if for each x ∈ c there exists a neighborhood U of x such that (U,U ∩ L) is homeomorphic to
(disk, diameter). The simplicial part of L is the union of the isolated leaves. We denote it by
LS.

Remark 3.1.8. If L is a lamination on a compact hyperbolic surface F and if all its leaves are
isolated then L is a �nite disjoint union of simple closed geodesics.

De�nition 3.1.9. A leaf l of a measured geodesic lamination (L, µ) is called weighted if there
exists a transverse arc c such that µc ∩ l is an atom of µc. By property 3 of the de�nition of
measured geodesic laminations, for every transverse arc c the intersection of c with l consists
of atoms of µc whose masses are all equal to a positive number called the weight of the leaf.
The weighted part of L is the union of all the weighted leaves. We denote it by LW = LW (µ).

Remark 3.1.10. We remark that in general both LS and LW are not sublaminations of L.
Furthermore since the support of the measure µ is the whole lamination L we have that
LS ⊆ LW . However in general this inclusion is strict. Consider for instance a lamination L of
H2 given by all the geodesics with a �xed starting point, if we take the upper half plane model
for H2 and let the starting point be ∞ then we see that the geodesics are parametrized by R.
Hence we may choose a dense sequence {qn}n∈N in R and construct a measure on L such that
lqn is endowed with the weight 2−n. Then LW is a dense subset of H2.

Remark 3.1.11. However when the surface F is compact the situation of the previous remark
is not possible and indeed for a geodesic lamination L on F we have LS = LW and LS is the
maximal weighted multi-curve sublamination of L. By a weighted multi-curve me wean the
union of a �nite number of disjoint simple closed geodesics on F each endowed with a strictly
positive real weight. Hence L = LS ∪ L1, where L1 is a sublamination with no closed leaves.

Let us denote by

• R the set of regular domains Ω of M2+1 with surjective normal �eld N : Ω→ H2 and

• ML the set of measured geodesic laminations on H2.

Note that there is a natural left action of SO+(2, 1) on ML and of Iso0(M2+1) on R. We
will now summarize the construction, given in [8], of a map ML → R that induces a bijec-
tion between ML and R/R3, where R3 acts on R by translations, and a bijection between
ML/SO+(2, 1) and R/Iso0(M2+1).
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From geodesic laminations to regular domains: we now construct a map

Ω0 : ML −→ R
λ =(L, µ)→ Ω0

λ

Fix a geodesic lamination λ = (L, µ) on H2 and �x a base point x0 ∈ H2 \LW . For every
x ∈ H2 \LW let c be an arc transverse to L between x0 and x. For t ∈ c∩L let v(t) ∈ R3

be the vector tangent to H2 and orthogonal to the leaf through t pointing towards x. For
t ∈ c \ L set v(t) = 0. Hence we have de�ned a function v : c→ R3 that is continuous on
the support of µ. De�ne

ρ(x) =

∫
c

v(t)dµ(t).

We can notice that the de�nition of ρ is independent from the choice of the path c
between x0 and x. Indeed another arc from x0 to x will be homotopic to c and hence by
Property 3 of the de�nition of measured geodesic laminations we will have that the two
line integrals coincide. Moreover ρ is constant on each connected component of H2 \ L
and it is a continuous function ρ : H2 \ LW → M2+1. Hence we de�ne the domain Ω0

λ as
follows

Ω0
λ =

⋂
x∈H2\Lw

I+(ρ(x) + x⊥)

Example 3.1.12. We now see an easy example of the above construction. Consider the
geodesic lamination ofH2 made by one geodesic γ with weight a. Where γ = H2∩{y = 0}.
Fix the base point x0 in H2 ∩ {y < 0}. Let C1 = H2 ∩ {y < 0} and C2 = H2 ∩ {y > 0}
the two connected components of H2 \ L. Then the map ρ : H2 \ {γ} → M2+1 becomes
ρ(x) = 0 if x ∈ C1 and ρ(x) = a~v if x ∈ C2. Where ~v = (0, 0, 1). Hence looking at the
de�nition of Ω0

(L,µ) we get the regular domain showed in Figure 3.1.

γ

γ

x

y

t
t

x

y

x0

~v

~v

ρ(x) = 0 ρ(x) = a~v

C1 C2

[v2]

[v1]

[v1] [v2]

x ∈ C1 x ∈ C2

Figure 3.1: Construction of a regular domain from a geodesic lamination.

Let us now prove that the domain arising from the above construction is a regular domain
with surjective normal �eld.
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Proposition 3.1.13. Ω0
λ is a regular domain.

Proof. If x belongs to a geodesic l of the lamination L denote by M(x) such geodesic,
otherwise if x belongs to H2 \ L denote by M(x) the connected component of H2 \ L
that contains x. Notice that M(x) is a convex subset of H2 that is the convex hull of its
boundary points. If we show that

Ω0
λ =

⋂
x∈H2\Lw, [v]∈M(x)∩∂H2

I+(ρ(x) + v⊥)

then Ω0
λ will be a regular domain. Since ρ is constant on eachM(x) we have by de�nition

that ρ(x) + y⊥ is a support plane for Ω0
λ for all y ∈M(x) hence if v is a null vector such

that [v] is a point on the boundary ofM(x) then ρ(x)+v⊥ will be a support plane for Ω0
λ

thus we have one inclusion, namely Ω0
λ ⊆

⋂
x∈H2\Lw, [v]∈M(x)∩∂H2 I+(ρ(x) + v⊥). For the

other inclusion suppose that p ∈ M2+1 and 〈p− ρ(x), v〉 < 0 for every x ∈ H2 \ LW and
[v] ∈ M(x) ∩ ∂H2. Notice that every x ∈ H2 \ L is a convex linear combination of some
null vectors representing points on the boundary ofM(x) it follows that 〈p− ρ(x), x〉 < 0
so p ∈ Ω0

λ.

Proposition 3.1.14. The normal �eld N : Ω0
λ → H2 associated to the regular domain

Ω0
λ constructed above is surjective.

Proof. From the de�nition of Ω0
λ and from the fact that points in the image of the normal

�eld are characterized as points in H2 such that there is a support plane for Ω0
λ orthogonal

to them it follows that H2 \LW is contained in the image of N . Suppose now that x ∈ H2

belongs to a weighted leaf l of L we can consider the geodesic arc c passing through x0

and x, then there exist ρ−(x) = limt→x− ρ(t) and ρ+(x) = limt→x+ ρ(t) and the di�erence
ρ+(x) − ρ−(x) is a spacelike vector orthogonal to x. The plane passing through ρ−(x)
and orthogonal to x is a support plane for Ω0

λ and indeed it contains also ρ+(x). Hence
x is in the image of N .

From regular domains to measured geodesic laminations: let us now construct a map
in the other direction

R →ML.

Fix Ω a regular domain andN : Ω→ H2 the normal map associated to Ω. As in De�nition
2.2.23 we set F(p) = N(r−1(p)) for p ∈ Σ. From Corollary 2.2.24 and Proposition 2.2.26
we know that F(p) is an ideal convex set of H2 and that F(p) and F(q) do not meet
transversally, thus geodesics that are either boundary components of some F(p) or that
coincide with some F(p) are pairwise disjoint and hence they form a geodesic lamination
of H2. Thus

L =
⋃

dimF(r)=1

F(r)
⋃

dimF(r)=2

∂F(r)

is a geodesic lamination of H2.

Example 3.1.15. For example let Ω be the regular domain we have constructed in
Example 3.1.12, then in Figure 3.2 we see the associated geodesic lamination of H2. The
lamination is made by one geodesic, that corresponds to points that are internal to the
closed segment [p1, p2], and that divides H2 into two ideal convex sets that correspond to
the endpoints of the segment.
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p1 p p2

r−1(p1) r−1(p)

Σ

F(p1) F(p2)

F(p)

Σ

Figure 3.2: Geodesic lamination associated to a future complete regular domain.

We want to put on L a transverse measure such that Ω = Ω0
λ. Set

Y = {x ∈ H2 | #N−1(x) ∩ S̃1 > 1},

where S̃1 is the level surface of the cosmological time of Ω at time 1. Let c : [0, 1]→ H2 be
a geodesic segment transverse to L with no endpoints on Y . Consider the inverse image
c̃ of c on S̃1, i.e. N(c̃) = c. It is a Lipschitz hence recti�cable path, ([8, Proposition
3.23]). Let r(t) = r(c̃(t)) and N(t) = N(c̃(t)), then c̃(t) = r(t)+N(t). As we have proved
in Proposition 2.2.16 r(t) is locally Lipschitz hence it is di�erentiable almost everywhere

with spacelike derivatives and ṙ(t) ∈ Tc̃(t)S̃1 = TN(t)H2. Hence we may de�ne a measure
µ̃ on each Borel set E of [0, 1] as follows

µ̃(E) =

∫
E

|ṙ(t)|dt

where |ṙ| =
√
〈ṙ(t), ṙ(t)〉. So we may de�ne a transverse measure µc as

µc = N∗(µ̃).

Moreover from Proposition 2.2.26 we have that 〈r(t+ h), x〉 ≥ 0 and 〈r(t+ h), y〉 ≤ 0
for x ∈ F(r(t + h)) and y ∈ F(r(t)) hence ṙ(t) is 0 unless N(t) belongs to a leaf
of the lamination and in this situation ṙ(t) ∈ TN(t)F(r(t))⊥. So we have that ṙ(t) =
|ṙ(t)|v(N(t)) where v(N(t)) is either the unit vector orthogonal to the leaf through N(t)
or 0. It follows that

r(N−1(c(1)))− r(N−1(c(0))) =

∫
c̃

ṙ(t)dt =

∫
c̃

|ṙ(t)|v(N(t))dt =

∫
c

v(y)dµc(t).

Then since for Ω(L,µ) we have that if c(t) is a geodesic arc that does not meet the weighted
part then ρ(t) = r(t) and by construction ρ(t)− ρ(t0) =

∫
[c(t0),c(t)]

v(t)dµc(t) this implies
that Ω = Ω(L,µ).

3.2 Generalization to all dimensions

Now we spend some words on how Bonsante attempts to generalize these ideas. First of all we
give a de�nition.

De�nition 3.2.1. A geodesic strati�cation of Hn is a family C = {Ci}i∈I such that
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1. Ci is an ideal convex set of Hn. By an ideal convex set of Hn we mean a convex set that
is the convex hull of its boundary points,

2. Hn =
⋃
i∈I Ci,

3. for every i 6= j ∈ I there exists a support plane Pi,j which separates Ci from Cj and such
that Ci ∩ Cj = Ci ∩ Pi,j = Cj ∩ Pi,j.

Every Ci is called a piece of the strati�cation.

Remark 3.2.2. For n = 2 geodesic strati�cations of H2 are in fact geodesic laminations.

De�nition 3.2.3. If C is an ideal convex set, then we say that a point p ∈ C is internal if
all the support planes passing through p contain C. Let us denote by bC the set of points of
C that are not internal. Note that unless C has non-empty interior bC is not the topological
boundary of C. If C has dimension k then bC has a natural decomposition in convex pieces
that are ideal convex sets of dimension strictly less than k. If C is a geodesic strati�cation of
Hn, we can add to it the pieces of the decomposition of bCi for all Ci ∈ C. In this way we obtain

a new geodesic strati�cation C called the completion of C. Notice that C = C. A strati�cation
is said to be complete if C = C.

De�nition 3.2.4. For k = 1, . . . , n − 1 a k-stratum of a geodesic strati�cation C of Hn is
de�ned as the set

X(k) =
⋃
{F ∈ C | dimF ≤ k}.

Remark 3.2.5. Recall that the Hausdor� distance between two compact subsets X, Y of a
metric space (M,d) is de�ned as follows

dH(X, Y ) = inf{ε > 0 | X ⊆ Yε and Y ⊆ Xε}

where Xε =
⋃
x∈X{z ∈M | d(x, z) ≤ ε}. Or equivalently de�ned as

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

We call Hausdor� topology the topology de�ned by the Hausdor� distance.

Remark 3.2.6. For n = 2 strati�cations are continuous in the following sense: if {xk}k∈N ⊆ H2

with xk ∈ Ck and xk → x ∈ H2 then there exists a piece C of the strati�cation such that
x ∈ C and Ck tends in the Hausdor� topology to C. Unfortunately for n > 2 we do not have
such continuity but however we can de�ne a weaker notion that will be satis�ed by geodesic
strati�cations arising from regular domains with surjective normal �eld.

De�nition 3.2.7. A geodesic strati�cation C is weakly continuous if the following property
holds. Suppose {xk}k∈N is a convergent sequence of Hn and limk xk = x. Let Ck be a piece
of the strati�cation which contains xk and suppose Ck → C in the Hausdor� topology. Then
there exists a piece G ∈ C such that C ⊆ G.

From Corollary 2.2.24 and Proposition 2.2.26 we know that every regular domain Ω with
surjective normal �eld N produces a geodesic strati�cation {F(p)}p∈Σ of Hn. We now show
that this geodesic strati�cation is weakly continuous.

Proposition 3.2.8. Let Ω be a future complete regular domain with surjective normal �eld N .
Then the geodesic strati�cation C associated with it is weakly continuous.



CHAPTER 3. GEODESIC STRATIFICATION 54

Proof. Let {xk}k∈N be a convergent sequence in Hn, with xk → x. Let Ck be the piece of the
strati�cation which contains xk and suppose Ck → C. We have to prove that C is contained in
a piece G of C. Let us take rk ∈ Σ such that F(rk) = Ck. Notice that pk = rk + xk ∈ S̃1. Since
from Proposition 2.2.27 the map N|S̃1

is a proper map there exists a convergent subsequence

{pk(j)}. Set p = lim pk(j) and r = r(p). We want to show that C is contained in F(r). Notice

that C is the convex hull of L̂C = C ∩ ∂Hn, hence it is su�cient to show that L̂C ⊆ L̂(r). Now
let [v] ∈ L̂C . From the convergence Ck → C we know that there exists a sequence [vn] ∈ L̂(rn)
such that [vn] → [v] ∈ ∂Hn. Hence we have that rn + R+vn ⊆ ∂Ω. Since ∂Ω is closed this
implies that r + R+v ⊆ ∂Ω. Thus we can conclude that [v] ∈ L̂(r).

Now we may give the notion of transverse measure on a strati�cation which will be a
generalization of the one of transverse measure on a geodesic lamination. Fix a complete
weakly continuous geodesic strati�cation C of Hn. For p ∈ Hn let C(p) be the piece in C which
contains p and has minimum dimension. First of all we de�ne the notion of transverse measure
on a piece-wise geodesic path.

De�nition 3.2.9. Let c : [0, 1]→ Hn be a piece-wise geodesic path. Then a transverse measure
on it is a Rn+1-valued measure µc on [0, 1] such that

1. there exists a �nite positive measure |µc| such that µc is |µc|-absolutely continuous,
(i.e. |µc|(A) = 0 implies µc(A) = 0 for all A Borelian subset of [0, 1]) and supp|µc| is
the topological closure of the set {t ∈ (0, 1) | ċ(t) /∈ Tc(t)C(c(t))},

2. let vc = dµc
d|µc| be the |µc|-density of µc (i.e. µc((a, b)) =

∫ b
a
vc(t)d|µc|) then

vc(t) ∈ Tc(t)Hn ∩ Tc(t)C(c(t))⊥

〈vc(t), vc(t)〉 = 1

〈vc(t), ċ(t)〉 > 0 |µc| − a.e.,

3. the endpoints of c are not atoms of the measure |µc|, (i.e |µc|(0) = |µc|(1) = 0).

In order to de�ne a transverse measure on a geodesic strati�cation we need the following
de�nition.

De�nition 3.2.10. Let ϕs : [0, 1] → Hn be an homotopy between ϕ0 and ϕ1. We say that ϕ
is C-preserving if C(ϕs(t)) = C(ϕ0(t)) for all t, s ∈ [0, 1].

Now we give the de�nition of transverse measure on a geodesic strati�cation.

De�nition 3.2.11. Let C be a weakly continuous strati�cation and let us �x a subset Y of Hn

which is a union of pieces of C such that the Lebesgue measure of Y is 0. By a (C, Y )-admissible
path we mean any piece-wise geodesic path c : [0, 1] → Hn such that every maximal geodesic
subsegment of c has no endpoint on Y .
A transverse measure on (C, Y ) is the assignment of a transverse measure µc to every admissible
path c : [0, 1]→ Hn such that

1. if there exists a C-preserving homotopy between two paths c and d then µc = µd (so this
implies in particular that the measure µ is constant on each piece of the strati�cation),

2. for every admissible path c and every parametrization s : [0, 1] → [0, 1] of an admissible
sub-arc of c we have that µc◦s = s∗(µc), that means that if c′ = c ◦ s we have that
µc′(E) = s∗(µc)(E) = (s−1)∗(µc)(E) = µc(s(E)),
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3. the atoms of |µc| are contained in c−1(Y ) and for every y ∈ Y there exists an admissible
path c such that |µc| has some atoms on c−1(y), (this implies in particular that supp|µc| ⊆
c−1(Y )),

4. µc(c) = 0 for every closed admissible path, (this implies in particular that µc̄(c̄) = −µc(c)
where c̄ is the inverse path),

5. for all sequences {xk}k∈N such that xk ∈ Hn \ Y and x = limk xk ∈ Hn \ Y , we have that
µck(ck)→ 0 where ck is the admissible arc [xk, x].

γ

cvc(t)

Figure 3.3: Admissible path c with Y = {γ}.

De�nition 3.2.12. A measured geodesic strati�cation is given by a weakly continuous geodesic
strati�cation C, a subset Y as above and a transverse measure µ on (C, Y ).

As in the �rst part of the construction for n = 2 we can associate to each measured geodesic
strati�cation (C, Y, µ) a future complete regular domain with surjective normal �eld and such
that the strati�cation associated to it coincide with C on Hn \ Y . Indeed we can �x a base
point x0 ∈ Hn \ Y and de�ne for every x ∈ Hn \ Y

ρ(x) = µcx(cx)

where cx is an admissible path between x0 and x. We can notice that this de�nition is inde-
pendent of the chosen path and that

ρ(y) = ρ(x) + µcx,y(cx,y)

where cx,y is an admissible path between x and y. As before, using property 5 of De�nition
3.2.11, ρ de�nes a continuous function ρ : Hn \ Y → Mn+1 and we de�ne the future complete
regular domain associated to (C, Y, µ) as follows

Ω =
⋂

x∈Hn\Y

I+(ρ(x) + x⊥)

In [12, Theorem 8.6 and Proposition 8.8 ] Bonsante proves, as in Proposition 3.1.13,
that Ω is a future complete regular domain with surjective normal �eld and that the geodesic
strati�cation associated to Ω coincide with C at least on Hn\Y . However for some technicalities
the inverse construction cannot be carried in any dimension. Nevertheless for a particular class
of domains the bijection is recovered. They are domains associated to simplicial strati�cations
that are de�ned as follows.

De�nition 3.2.13. A geodesic strati�cation C of Hn is called simplicial if any p ∈ Hn admits
a neighborhood U intersecting only a �nite number of pieces of C.
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Remark 3.2.14. For n = 2 a simplicial strati�cation coincide with a simplicial lamination that
is the union of the isolated leaves of the lamination.

For convenience we specialize to the case n = 3, however the results are general.

Lemma 3.2.15. If (C, Y, µ) is a measured geodesic strati�cation with simplicial support then
Y = X(2), the 2-stratum of C.

Proof. Since Y is union of pieces of C of dimension 2 or less then Y ⊆ X. On the other hand
let c be a geodesic path with no endpoint in X transverse to X, hence it is admissible. Then
supp|µc| is c−1(X), since this set is �nite |µc| has an atom on every point of c−1(X). The atoms
of |µc| are contained in c−1(Y ), thus X ⊆ Y .

De�nition 3.2.16. Let C be a simplicial strati�cation of H3. A family of positive constants
a = {a(P )}P parametrized by the set of 2-pieces of C is called a family of weights for the
strati�cation if it satis�es the following equation for every l 1-piece of the strati�cation∑

l⊆P

a(P )w(P ) = 0

where w(P ) is the unitary vector of l⊥ tangential to P and pointing inward.

Pi−1

w(Pi)

Pi

l

Figure 3.4: Neighborhood of a 1-piece of a simplicial strati�cation.

Proposition 3.2.17. Let C be a simplicial strati�cation then the families of weights on C
parametrize the transverse measures on C.

Proof. [12, Proposition 9.1].

Remark 3.2.18. We just remark that if we have a set of weights {a(P )}P on a simplicial geodesic
strati�cation C then we can de�ne a transverse measure on it in the following way. If c is an
admissible geodesic path which does not intersect any geodesic of the strati�cation then we
can de�ne

µc =
∑
P

a(P )w(P )δc−1(P ),

where w(P ) is the normal vector to P pointing in the direction of c and δx is the Dirac measure
centered at x. If c intersects only one geodesic l, let P1, . . . , Pk and ∆1, . . . ,∆k be respectively
the two and three pieces that incide on l. If we choose a numeration as in Figure 3.5 and
suppose that c comes from ∆1 and goes to ∆j then we can de�ne

µc =

j−1∑
i=1

a(Pi)w(Pi)δc−1(l).
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Then for every admissible path c we may choose a decomposition in geodesic admissible paths
c = c1 ∗ . . . ∗ ck such that each ci intersects either only one geodesic of the strati�cation or only
one 2-piece.

∆1 ∆2

∆j

∆k

P1

Figure 3.5: De�nition of a transverse measure on a geodesic which passes through the 1-stratum.

Proposition 3.2.19. Let Ω be the future complete regular domain associated to a measured
geodesic strati�cation (C, X(2), µ) whose support is simplicial, then the singularity in the past
Σ of Ω has a natural cellular decomposition in the following sense. For i = 0, 1, 2 let

Σi = {p ∈ Σ | dimF(p) = 3− i}

then Σ0 is a numerable set. Every component of Σ1 is an open segment, moreover the closure of
such segment has endpoints contained in Σ0, every component of Σ2 is an open 2-cell, moreover
the closure of such cell is a �nite sided polygon with vertices in Σ0 and edges in Σ1.

Proof. [12, Corollary 9.4.].

De�nition 3.2.20. Let Σ be the singularity in the past associated to a future complete regular
domain Ω. A point p ∈ Σ is called a vertex if there exists a spacelike support plane at p which
intersects Ω only at p.
We say that Σ is simplicial if the set of vertices Σ0 is discrete and Σ is a cellular complex with
cellularization Σ0 ⊆ Σ1 ⊆ Σ2 such that every component of Σ1 \ Σ0 is a straight segment with
endpoints in Σ0 and every component of Σ2 \ Σ1 is a �nite-sided polygon with vertices in Σ0

and edges in Σ1.

Proposition 3.2.21. Let Ω be a regular domain with surjective normal �eld and simplicial
singularity. The strati�cation associated to Ω is simplicial. Moreover there exists a unique
measure µ on C such that Ω is equal up to translations to the domain associated to (C, X(2), µ).

Proof. [12, Proposition 9.9.].

Remark 3.2.22. We just point out how we can de�ne a measure on the strati�cation C associated
to a regular domain with surjective normal �eld and simplicial singularity. From Proposition
3.2.17 it is su�cient to give a set of weights on C. Given a 3-piece ∆ of C then from Proposition
2.2.26 there exists a vertex v(∆) of Σ such that ∆ = F(v(∆)). Now if P is a 2-piece there exist
3-pieces ∆1 and ∆2 such that P is a face of them. Then r(N−1(P )) is the spacelike segment
[v(∆1), v(∆2)], thus we can de�ne

a(P ) = (〈v(∆2)− v(∆1), v(∆2)− v(∆1)〉)
1
2 .
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3.3 Equivariant construction

Fix Γ discrete torsion-free cocompact subgroup of SO+(n, 1).

De�nition 3.3.1. A measured geodesic strati�cation (C, Y, µ) is Γ-invariant if C is Γ-invariant,
Y is Γ-invariant and we have

µγ◦c(E) = γ(µc(E))

for all admissible paths c : [0, 1]→ Hn, Borel set E ⊆ [0, 1] and γ ∈ Γ.

Proposition 3.3.2. Let (C, Y, µ) be a Γ-invariant measured geodesic strati�cation of Hn. Fix a
basepoint x0 /∈ Y and set τγ = ρ(γ(x0)). Then τ ∈ Z1(Γ,Rn+1). Let Ω be the domain associated
to (C, Y, µ) then we have Ω = Dτ .

Proof. Since µ is Γ-invariant we have

ρ(γ(x)) = γρ(x) + ρ(γ(x0))

Indeed ρ(γ(x)) = µcγ(x)(cγ(x)) where cγ(x) is an admissible path between x0 and γ(x). If cx
is an admissible path between x0 and x, then γ(cx) is an admissible path between γ(x0) and
γ(x) and µγ(cx)(γ(cx)) = γµcx(cx) = γ(ρ(x)). So ρ(γ(x)) = ρ(γ(x0)) + µcγ(x0),γ(x)(cγ(x0),γ(x)) =

ρ(γ(x0)) + γ(ρ(x)). Thus if τγ = ρ(γ(x0)) we have that ταβ = ατβ + τα hence τγ ∈ Z1(Γ,Rn+1).
Furthermore let Ω be the regular domain associated to (C, Y, µ) then we can notice that it is a
Γτ -invariant regular domain. In fact recall that Ω is de�ned as follows

⋂
x∈Hn\Y I

+(ρ(x) + x⊥)

then since γτ (ρ(x)+x⊥) = γ(ρ(x))+γ(x)⊥+τγ = ρ(γ(x))+γ(x)⊥ we have that Ω is Γτ -invariant.
Hence by Theorem 2.3.1 Ω = Dτ .

Remark 3.3.3. If Ω is a Γτ -invariant future complete regular domain then by Lemma 2.1.17
the normal �eld is surjective and it is evident that the geodesic strati�cation {F(p)}p∈Σ is
Γ-invariant.

Now restricting to the case of Γτ -invariant regular domains with simplicial singularity we
get a complete bijection.

Lemma 3.3.4. Let C be a Γ-invariant simplicial geodesic strati�cation then the set of measures
on it is parametrized by a �nite number of positive numbers satisfying a �nite set of linear
equations.

Proof. [12, Proposition 9.11 and following discussion. ].

Proposition 3.3.5. There exists a bijective correspondence between Γ-invariant measured sim-
plicial strati�cations of H3 and future complete regular domains which are invariant for some
a�ne deformation Γτ of Γ and have a simplicial singularity.

Proof. We know that if Ω is a Γτ -invariant regular domain with simplicial singularity then
it has surjective normal �eld so that it has an associated geodesic strati�cation C which is
Γ-invariant and from Proposition 3.2.21 we know that C is simplicial and furthermore we can
put on it a unique measure µ such that Ω = Ω(C,µ). Notice that from the de�nition of the
set of weights in Remark 3.2.22 and the de�nition of the associated measure µ in Remark
3.2.18 we can see that (C, X(2), µ) will satisfy the condition in order to be Γ-invariant. On the
other side if we start with a Γ-invariant measured simplicial strati�cation we can construct
by Proposition 3.3.2 a regular domain that is Γτ -invariant for some τ and from Proposition
3.2.19 the singularity in the past of such domain has a cellular decomposition. So what is
left to prove is that Γ-invariant measured simplicial strati�cations give domains of dependence
with simplicial singularity, i.e. the set of vertices Σ0 is discrete. Fix (C, X(2), µ) a Γ-invariant
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measured simplicial strati�cation of H3 and let {a(P )} be the family of weights associated
with it. By Lemma 3.3.4 there exists an a > 0 such that a ≤ a(P ) for all P 2-piece of the
strati�cation. Now for a 3-piece ∆ let ρ∆ be the corresponding point on Σ, by Proposition
3.2.19 we have that Σ0 = {ρ∆ | ∆ is a 3-piece}. On the other hand from Remark 3.2.22 we
know that 〈ρ∆ − ρ∆′ , ρ∆ − ρ∆′〉 = a(P )2 ≥ a2 so Σ0 is discrete.

Remark 3.3.6. We can remark that this result holds in every dimension.

In dimension n = 2 the above theorem has a simpler formulation without the need of the
simplicial assumption.

Proposition 3.3.7. There is a bijection between Γ-invariant measured geodesic laminations of
H2, up to the action of SO+(2, 1) and Γτ -invariant future complete regular domains, up to the
action of Iso0(M2+1),

Proof. [8, Theorem 1.5.]
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