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Chapter 1

Introduction

In 1977, Milnor [2] asked whether a non-amenable group (e.g a free group of rank 2) could

act properly by affine transformations. He observed that by applying Tits alternative [3],
this question is equivalent to whether a non-abelian free group could act properly by
affine transformations. Furthermore, he proposed the following construction of such a
group: Start with a free discrete subgroup of SO0(2, 1) (for example a Schottky group
acting on the hyperbolic plane) and add translation components to obtain a group of
affine transformations which may act freely.
In 1983, Margulis introduced the Margulis invariant and used it to show that such properly
discontinuous groups do exist, realizing Milnor’s suggestion. In 1991, Drumm [5] gave a
generalization of Schottky’s construction introducing the Crooked Planes. Following this
work Drumm and Goldman [6] [9] in a series of papers studied the Crooked Planes in
much detail. This approach gave a slightly stronger positive result as to which groups act
properly discontinuously on Rn.
In the above mentioned 1983 paper Margulis [4] used the Margulis invariant to detect
properness. He gave a necessary condition for properness using the sign of the invariant.
Goldman conjectured this necessary condition to be sufficient. In 2006 Charette [12] came
up with an example of a one-holed torus suggesting that the conjecture is generally false.
In 2001, following Margulis’s work, Labourie [10] extended the original Margulis invariant
to higher dimensions.
Recently, in 2009, Margulis, Goldman and Labourie [7] found an equivalent condition for
properness using the extended Margulis invariant and gave a very conceptual proof of the
Opposite Sign Lemma.
In this paper we study the works of Drumm and Goldman on Crooked Planes [5] [6] [9] and
the recent works of Margulis, Goldman and Labourie [7] on giving an equivalent condition
for properness.
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Chapter 2

Geometry of R2,1

Let, R2,1 be the 3-dimensional real vector space with inner product,

B(v, w) := v1w1 + v2w2 − v3w3

and G0 = O0(2, 1) the identity component of its group of isometries. G0 consists of linear
isometries of R2,1 which preserve both an orientation of R2,1 and a connected component
of the open light cone:

{ v ∈ R2,1 : B(v, v) < 0 }.

Then, G0 = O0(2, 1) ∼= PSL(2,R) ∼= Isom0(H2), where H2 denotes the real hyperbolic
plane.

2.1 The Hyperboloid Model

We define H2 as follows. We work in the irreducible representation R2,1 (isomorphic to
the adjoint representation of G0). A non zero vector v ∈ R2,1 is called:

• Space like if B(v, v) > 0
• Light like or Null if B(v, v) = 0
• Time like if B(v, v) < 0

The two sheeted hyperboloid:

{ v ∈ R2,1 : B(v, v) = −1 }

has two connected components. We fix a timelike vector e3 and define H2 as the con-
nected component with B(v, e3) < 0. The Lorentzian metric defined by B restricts to a
Riemannian metric of constant curvature −1 on H2. The identity component G0 of the
isometry group of R2,1 is the group of orientation preserving isometries of H2.
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2.2 The Lorentz Product

On the space R2,1 defined as above we define a cross product called the Lorentzian cross
product as follows:

� : R2,1 × R2,1 −→ R2,1 such that,

(u, v) 7−→

u2v3 − u3v2

u3v1 − u1v3

u2v1 − u1v2


. Note that � is a skew-symmetric and bilinear form, satisfying the following properties:

• B(u, u� v) = B(v, u� v) = 0
• u� v = −v � u
• B(u� v, u� v) = B(v, u)2 − B(u, u)B(v, v)

Let ‖.‖ be the euclidean norm on the space R3. Denote by < v1, v2, ..., vn > the subspace
generated by v1, v2, ..., vn and the sphere of unit euclidean length by S2. For any v ∈ R2,1

its Lorentz perpendicular plane is denoted by P(v). Let C be the light cone. It consists of
all null vectors and its two components form the time orientations of R2,1. We define C+

and C− respectively to be the positive and the negative time orientation. Similarly we
denote by U the space of all time like vectors and its two components as U+ and U−. If
a, b ∈ C+∩S2 are two non zero null vectors with positive time orientation, then v = a� b
is space like and is a vector parallel to the intersection P(a)∩P(b). Let v be a null vector
then the plane P(v) equals the plane tangent to the light cone containing the line Rv
and the null line Rv divides the plane into two components. The mapping x 7−→ x � v
defines a diffeomorphism of C+ \R+v onto one component. We denote the closure of this
component by P+(v), that is, P+(v) := cl((C+ \ R+v)� v) and the other component by
P−(v), that is, P−(v) := cl(v � (C+ \ R+v)). If v is a space like vector then P(v) ∩ C
is the union of two null lines. There exists a unique pair x−(v), x+(v) ∈ P(v) ∩C+ such
that ‖x−(v)‖ = ‖x+(v)‖ = 1 and B(v, x−(v)� x+(v)) > 0. If v is a space like then,

• x−(v)� x+(v) = 2B(v, v)v/(B(v, v) + ‖v‖2)
• v � x+(v) = −B(v, v)1/2x+(v).
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We define a conical neighbourhood A ⊂ C+ of v ∈ C+ to be an open connected subset
of C+ containing v such that if w ∈ A then R+w ⊂ A. For disjoint conical open sets A
and B we define,

T(A,B) := {v ∈ R2,1 : B(v, a� b) > 0 for all a ∈ cl(A) and b ∈ cl(B)}.

In particular, if A,B are connected then T(A,B) is an open infinite pyramid whose vertex
is the origin and whose four edges are parallel to vectors in the boundary of A and B.
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Chapter 3

Affine Geometry

In this chapter we collect general properties of affine spaces, affine transformations and
affine deformations of linear group actions. We are primarily interested in affine de-
formations of linear actions factoring through the irreducible 2r + 1 dimensional real
representation Vr of G0 where r is a positive integer. We note that for r = 1 we get
V1 = R2,1.

3.1 Affine Spaces and their automorphisms

Let V be a real vector space. An affine space E (modelled on V) is a space equipped with
a simply transitive action of V. We call V the vector space underlying E, and refer to its
elements as translations. Translation τv by a vector v ∈ V is denoted by addition, that is,

τv : E −→ E given by x 7−→ x+ v.

Let E be an affine space with associated vector space V. Choosing an arbitrary point
O ∈ E (the origin) identifies E with V via the map,

f : V −→ E given by v 7−→ O + v.

An affine automorphism of E is the composition of a linear mapping (using the above
identification of E and V) and a translation, that is,

g : E −→ E given by O + v 7−→ O + L(g)(v) + u(g)

where L(g) ∈ GL(V) and u(g) ∈ V. The affine automorphisms of E form a group Aff(E).
The mapping,

(L, u) : Aff(E) −→ GL(V) nV given by g 7−→ (L(g), u(g))

gives an isomorphism of groups. The linear mapping L(g) ∈ GL(V) is called the linear
part of the affine transformation g, and

L : Aff(E) −→ GL(V) given by g 7−→ L(g)

is a homomorphism. The vector u(g) ∈ V is called the translational part of g. The
mapping,
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u : Aff(E) −→ V given by g 7−→ u(g)

satisfies the following identity (also known as the cocycle identity):

u(g1g2) = u(g1) + L(g1)u(g2)

for g1, g2 ∈ Aff(E).

3.2 Affine deformations of linear actions

Let Γ0 ⊂ GL(V) be a group of linear automorphisms of a vector space V. Denote the
corresponding Γ0 module as V as well. An affine deformation of Γ0 is a representation,

ρ : Γ0 −→ Aff(E)

such that L ◦ ρ is the inclusion Γ0 ↪→ GL(V). We confuse ρ with its image Γ := ρ(Γ0),
to which we aso refer to as an affine deformation of Γ0. Note that ρ embedds Γ0 as
the subgroup Γ of GL(V). In terms of the semi-direct product decomposition Aff(E) ∼=
GL(V)nV an affine deformation is the graph ρ = ρu (with image denoted by Γ = Γu) of
a cocycle

u : Γ0 −→ V,

that is, a map satisfying the aforementioned cocycle identity. We write g = ρ(g0) =
(g0, u(g0)) ∈ Γ0 n V for the corresponding affine transformation g(x) = g0(x) + u(g0).
Cocycles form a vector space Z1(Γ0,V). Cocycles u1, u2 ∈ Z1(Γ0,V) are cohomologous if
their difference u1 − u2 is a coboundary, a cocycle of the form,

δv0 : Γ0 −→ V given by g 7−→ v0 − gv0

where v0 ∈ V. Moreover, cohomologous classes of cocycles form a vector space H1(Γ0,V).
Affine deformations ρu1 , ρu2 are conjugate by translation by v0 if and only if u1−u2 = δv0 .
Thus H1(Γ0,V) parametrizes translational conjugacy classes of affine deformations of
Γ0 ⊂ GL(V). Note that when u = 0, the affine deformation Γu equals Γ0 itself.

3.3 The Margulis Invariant

Consider the case that G0 = PSL(2,R) and L is an irreducible representation of G0.
For every positive integer r, let Lr denote the irreducible representation of G0 on the
2r-symmetric power Vr of the standard representation of SL(2,R) on R2. The dimension
of Vr equals 2r + 1. The central element −I ∈ SL(2,R) acts by (−1)2r = 1. So this
representation of SL(2,R) defines a representation of

PSL(2,R) = SL(2,R)/{±I}.

Note that the representation R2,1 introduced before is V1, the case when r = 1. Fur-
thermore the G0 invariant non-degenerate skew-symmetric bilinear form on R2 induces
a non-degenerate symmetric bilinear form B on Vr, which we normalize in the following
paragraph.
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An element g ∈ G0 is hyperbolic if it corresponds to an element g̃ of SL(2,R) with dis-
tinct real eigenvalues. Necessarily these eigenvalues are reciprocals λ, λ−1 which we can
uniquely specify by requiring |λ| < 1. Furthermore we choose eigenvectors v+, v− ∈ R2

such that:

• g̃(v+) = λv+

• g̃(v−) = λ−1v−
• The ordered basis {v−, v+} is positively oriented.

Then the action Lr has eigenvalues λ2j , for j ∈ {−r, 1 − r, ..., 0, ..., r − 1, r} where the
symmetric product vr−j− vr+j+ ∈ Vr is an eigenvector with eigenvalue λ2j . In particular g
fixes the vector x0(g) := cvr−v

r
+, where the scalar c is choosen so that B(x0(g), x0(g)) = 1.

Call x0(g) the neutral vector of g. The subspaces,

V−(g) :=

r∑
j=1

R(vr+j− vr−j+ ),

V+(g) :=

r∑
j=1

R(vr−j− vr+j+ )

are g invariant and V enjoys a g-invariant B-orthogonal direct sum decomposition,

V = V−(g)⊕ R(x0(g))⊕ V+(g).

For any norm ‖.‖ on V, there exists C, k > 0 such that,

• ‖gn(v)‖ 6 Ce−kn‖v‖ for v ∈ V+(g) and
• ‖g−n(v)‖ 6 Ce−kn‖v‖ for v ∈ V−(g).

Furthermore, x0(gn) = |n|x0(g) if n ∈ Z \ {0} and V±(gn) = V±(g) if n > 0
V∓(g) if n < 0

.

Now, let us suppose that g ∈ Aff(E) is an affine transformation whose linear part L(g) is
hyperbolic. Then there exists a unique affine line lg ⊂ E which is g-invariant. The line lg
is parallel to x0(L(g)). The restriction of g to lg is a translation by the vector,

B(gx− x, x0(L(g)))x0(L(g))

where x0(L(g)) is as defined above with B(x0(L(g)), x0(L(g))) = 1.
Suppose that Γ0 ⊂ G0 be a Schottky group, that is, a non-abelian discrete subgroup
containing only hyperbolic elements. Such a discrete subgroup is a free group of rank at
least two. We define the Margulis invariant to be the function,

αu : Γ0 −→ R given by
g 7−→ B(u(g), x0(g))

where u ∈ Z1(Γ0,V). The Margulis invariant αu associated to an affine deformation Γu
is a well defined class function on Γ0 satisfying the following properties:
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• α[u](g
n) = |n|α[u](g) for g ∈ Γ0 and [u] ∈ H1(Γ0,V)

• α[u](g) = 0⇔ g fixes a point in V.
• The function α[u] depends linearly on [u].
• The map

α : H1(Γ0,V) −→ R given by
[u] 7−→ α[u]

is injective.
In his 1983 paper Margulis used this invariant to detect properness. The significance of
the Margulis invariant comes from the following result due to Margulis:

Theorem 3.3.1 (The Opposite Sign Lemma). Suppose Γ acts properly. Then either
α[u](g) > 0 for all g ∈ Γ0 or α[u](g) < 0 for all g ∈ Γ0.

We will give a proof of this result at the last chapter using tools developed jointly by
Margulis, Goldman and Labourie.

9



Chapter 4

Margulis Space Times

Complete affinely flat manifolds correspond to subgroups Γ ⊂ Aff(Rn) which act properly
discontinuously on Rn, and π1(M) ∼= Γ for M = Rn/Γ. Milnor showed that if Γ is virtually
polycyclic then there exists some complete affinely flat manifold M such that π1(M) ∼= Γ,
and he asked if the converse was true.
Margulis demonstrated that there exist free subgroups Γ ⊂ Aff(R3) acting properly dis-
continuously on R3, thus answering Milnor’s question negatively. By Fried and Goldman,
the underlying linear group of Γ must be conjugate to a subgroup of G0. The correspond-
ing quotient manifolds M ∼= R3/Γ are called Margulis space-times. We note that Γ, a
group of affine homeomorphisms of R3 acts properly discontinuously and freely on R3 if
there exists a three dimensional submanifold X with boundary (a fundamental domain)
such that no two elements of the interior of X are Γ-equivalent and every element of R3

is Γ-equivalent to an element of X . In the following sections we try to construct a nice
fundamental domain for a large class of Margulis space-times.

4.1 Fundamental Polyhedra for the linear part

Let G =< g1, g2, ..., gn > where gi ∈ G0 for i ∈ {1, 2, ..., n}. Denote Gi =< gi >. We note

that, G “acts as a Schottky group on C+” [9] if there are conical neighbourhoods A±i of
x±(gi) such that

• cl(A±i ) ∩ cl(A∓i ∪i 6=j (A+
j ∪A

−
j ) = ∅ and

• cl(gi(A−i )) = C+ \A+
i .

Denote the set C \ {v ∈ C : v = kx±(gi) for some k ∈ R} by C and the complement of
the set (A+

i ∪ (−A+
i ) ∪A−i ∪ (−A−i )) by A.

Theorem 4.1.1. A is a fundamental domain for the action of Gi on C.

Proof. We note that cl(gi(A
−
i )) = C+ \ A+

i . Using this we get that for g ∈ Gi and g 6= e
we have gi(A) ∩ A = ∅.
Now, if we take x ∈ C then gni (x) → x+(gi). So for any y ∈ C there exists a x ∈ A such
that gmi (y) = x for some integer m. Hence A is a fundamental domain for the action of
Gi on C.
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Define v±ij for j ∈ {1, 2} to be of euclidean norm 1 and in the boundary of A±i satisfying

• v±i1 � v
±
i2 6= 0 and

• gi(v−ij)/‖gi(v
−
ij)‖ = v+

ij .

The action under consideration is linear. So using the above theorem and linearity of the
action we get that a fundamental domain for the action of Gi on U+ is the region bounded
by A, F+

i := {v ∈< v+
i1, v

+
i2 >: B(v, v) 6 0} and F−i := {v ∈< v−i1, v

−
i2 >: B(v, v) 6 0}.

Consider the half planes P±(v±ij). Note that

• gi(P+(v−ij)) = P+(v+
ij) and

• gi(P−(v−ij)) = P−(v+
ij),

since g(x±v )/‖g(x±v )‖ = x±g(v) for hyperbolic g ∈ G0 and v ∈ R2,1. Define the wedges W±i
to be the open region bounded by F±i ∪P+(v±i1)∪P+(v±i2) and not containing F∓i ∪P+(v∓i1)∪
P+(v∓i2) and the wedges M±i to be the open region bounded by F±i ∪ P−(v±i1) ∪ P−(v±i2)
and not containing F∓i ∪P−(v∓i1) ∪P−(v∓i2).

Theorem 4.1.2. A fundamental domain for the action of Gi

• on R2,1 \ (P+(x−gi) ∪P+(x+
gi)) is R2,1 \ (W+

i ∪W−i ) and

• on R2,1 \ (P−(x−gi) ∪P−(x+
gi)) is R2,1 \ (M+

i ∪M−i ).

Proof. The result follows from the previous discussion and using the last theorem.

4.2 Affine Fundamental Polyhedra

In this section we will discuss about the fundamental domains involving the P+(v)’s.
The argument for the fundamental domains for P−(v) is completely analogous. Let H =
< h1, h2, ..., hn > ⊂ Aff(R3) is such that L(hi) = gi and u(hi) = vi where vi ∈ R3. Denote
Hi =< hi >. The fundamental domain of a cyclic affine group is bounded by translates of
components of the boundary of a fundamental domain for the corresponding cyclic linear
group. We note that

cl(hi(W
−
i )) = cl(gi(W

−
i ) + vi) = (R2,1 \W−i ) + vi

and a fundamental domain for the action of Hi on R2,1 is the complement of W−i and
W+

i + vi if these two sets have disjoint closures.
Let % denote the euclidean distance between two points in R3. If %(y, z + vi) > 0 for all
choices of y ∈ cl(W−i ) and z ∈ cl(W+

i ) then cl(W−i ) ∩ cl(W+
i + vi) = ∅. In particular, if

for each pair of vectors y ∈ cl(W−i ) and z ∈ cl(W+
i ) there is a vector u ∈ R2,1 such that

B(y, u) 6= B(z + vi, u) then cl(W−i ) ∩ cl(W+
i + vi) = ∅.

To construct u given the vectors y ∈W−i and z ∈W+
i , first examine the case in which y

and z are both space like. In this case, x+
y ∈ cl(A−i ), x+

z ∈ cl(A+
i ) and

u = x+
y � x

+
z .

11



If y is not space like and z is space like, let

u = y/‖y‖� x+
z .

If z is not space like and y is space like, let

u = x+
y � z/‖z‖.

If neither y nor z are space like, let

u = (y/‖y‖)� (z/‖z‖).

Note that B(y, u) = 0 if y is not space like. If y is space like then x+
y = x−u and B(y, u) < 0.

Similarly, B(z, u) > 0.
If B(vi, u) > 0 for all possible vectors u described above then cl(W−i ) ∩ cl(W+

i + vi) = ∅
and a fundamental domain for Hi is the complement of W−i and W+

i +vi. For y ∈ cl(W−i )
and z ∈ cl(W+

i ) one can construct a vector u as above such that B(z + vi, u) = B(z, u) +
B(vi, u) > k and B(y, u) 6 0. The set of vi’s such that B(vi, u) > 0 for a fixed u is a half
space bounded by P(u). The set of translations giving rise to a fundamental domain for
the given A±i in this construction is

T(A−i , A
+
i ),

the set of allowable translations. Another set of allowable translations is obtained by
noting that cl(hi(W

−
i − g−1

i (vi))) = R2,1 \ W+
i . In this case the wedges separate if

B(−g−1
i (vi), u) < 0 for all u = z � w where w ∈ cl(A+

i ) and z ∈ cl(A−i ). Equivalently,
B(vi, gi(u)) > 0 for all gi(u) = z � w where w ∈ cl(gi(A+

i )) and z ∈ cl(gi(A−i )) and the
set of allowable translation is

T(gi(A
−
i ), gi(A

+
i )).

These two sets of allowable translations can be combined together to make a larger third
set of allowable translations. If vi1 ∈ T(A−i , A

+
i ) and vi2 ∈ T(gi(A

−
i ), gi(A

+
i )) then

vi = vi1 + vi2 is also an allowable translation. We see that the set
{v : vi = vi1 + vi2 where vi1 ∈ T(A−i , A

+
i ) and vi2 ∈ T(gi(A

−
i ), gi(A

+
i ))} is same as the set

T(A−i , gi(A
+
i )).

Define W−i := W−i − g
−1
i (vi2) and W+

i := W+
i + vi1.

Theorem 4.2.1. A fundamental domain for the action of Hi on R2,1 is R2,1\(W−i ∪W
+
i ),

if vi ∈ T(A−i , gi(A
+
i )) where vi1 ∈ T(A−i , A

+
i ) and vi2 ∈ T(gi(A

−
i ), gi(A

+
i )) are such that

vi = vi1 + vi2.

Proof. The result follows easily from the discussion above.

The fundamental domain for the action of H on R2,1 is the intersection of the funda-
mental domains of the action of Hi’s on R2,1 provided the fundamental domain for each
Hi completely contains the complement of the fundamental domain for the other Hj ’s
where j 6= i. In passing from the fundamental domain of Hi to the fundamental domain
of H, it is useful to demand both wedges be translated away from the origin. We note
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that, in order to guarantee that the closures of the translated wedges are distinct, it is
useful to consider each wedge paired with the other wedges.
Let A±i = A±i ∪j 6=i (A+

j ∪ A
−
j ). If vi ∈ T(gi(A+

i ),A−i ) then vi = vi1 + vi2 for some vi1 ∈
T(A+

i ,A
−
i ) and vi2 ∈ T(gi(A+

i ), gi(A
−
i ), and if −vi ∈ T(gi(A+

i ),A−i ) then vi = vi1+vi2 for
some −vi1 ∈ T(A+

i ,A
−
i ) and −vi2 ∈ T(gi(A+

i ), gi(A
−
i ). In this case, let W+

i = W+
i + vi1,

W−i = W−i − g
−1
i (vi2), M+

i = M+
i + vi1 and M−i = M−i − g

−1
i (vi2).

Theorem 4.2.2. Let hi(x) = gi(x) + vi for i ∈ {1, 2, ..., n} and H =< h1, h2, ..., hn >. If
L(H) acts as a Schottky subgroup on C+ and:

• vi ∈ T(gi(A+
i ),A−i ), then H acts properly discontinuously on R2,1. In this case,

R2,1 \ (∪i(W−i ∪W
+
i )) is a fundamental polyhedron for the action of H on R2,1.

• −vi ∈ T(gi(A+
i ),A−i ), then H acts properly discontinuously on R2,1. In this case,

R2,1 \ (∪i(M−i ∪M
+
i )) is a fundamental polyhedron for the action of H on R2,1.

Proof. It suffices to prove the theorem for the case vi ∈ T(gi(A+
i ),A−i ). It is clear from

the construction that no two elements of X := R2,1 \ (∪i(W−i ∪W
+
i )) are H-equivalent.

Assume that there exists a p ∈ R2,1 which is not H-equivalent to any point in X . Thus,
one can construct an infinite sequence of embedded images of the wedges all containing p
in the following manner:

Let γ0 = e and Wj0
i0

= ω. For integers n > 1 choose γn ∈ H, in ∈ {1, 2} and

jn ∈ {−1, 1}, so that p ∈ γn(Wjn
in

), γn+1(Wjn+1

in+1
) ⊂ γn(Wjn

in
) and γn+1 = γnh

jn
in

.

The leading term of γn is hj0i0 and by an application of the Brouwer fixed point theorem [9]

it can be shown that x+(γn) ∈ Aj0i0 . Let γn+1/2 is defined to be hkγn, where k ∈ {1, 2} is
chosen so that k 6= i0. Using the same argument and applying the Brouwer fixed point
theorem [9] one gets that x+(γn+1/2) ∈ gk(Aj0i0 ).
Define the plane

Sm :=< x+(γm), x0(γm) > for all m ∈ {0, 1/2, 1, 3/2, 2, ...}.

Consider the intersection of the embedded images of the wedges and the plane

P := {x ∈ R2,1 : x3 = p3}.

p is H-equivalent to elements in all of the wedgesW±i . One can assume that p is contained
in a ”small” wedge ω, where the angle between every pair of rays contained in ω ∩ P is
6 π/2. In particular, Sn ∩ P contains a ray lying completely within ω ∩ P for all positive
integers n.
Choose L0 ⊂ P to be the line closest to p which bounds a half plane in P containing all of
ω ∩ P and whose normal in P forms an angle of less than π/4 with all the rays contained
in ω ∩ P. Let Ln ⊂ P be the closest line to p parallel to L0 and bounding a half plane in
P containing γn(Wjn

in
)∩ P. The set {L0, L1, L2, ...} is an infinite sequence of parallel lines

in P constructed so that %(p, Ln+1) 6 %(p, Ln). To arrive at a contradiction it is enough
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to show that (%(p, Ln)− %(p, Ln+1)) is bounded from below.

Now there exists an ε > 0 such that for any x ∈ X the ε-ball centered at x, B(x, ε), is con-
tained in X∩h1(X )∩h−1

1 (X )∩h2(X )∩h−1
2 (X ). Therefore we get that (%(p, L0)−%(p, L1)) >

ε.
Now we consider the case when γn is δ-hyperbolic for positive integer n. For every
y ∈ γ−1

n (Ln), B(y, ε) is contained in the complement of hjnin (Wjn+1

in+1
). And since the an-

gle between P ∩ Sn and the normal to Ln in P was constructed to be less than π/4,

B(x, εδ/23/2) for all x ∈ Ln is contained in the complement of γn+1(Wjn+1

in+1
) and

(%(p, Ln)− %(p, Ln+1)) > εδ/23/2.

Now if γn is not δ-hyperbolic then by a theorem from another paper by Drumm and
Goldman we get that γn+1/2 is δ-hyperbolic. We also notice that the action of g−1

k does
not contract any vector by more than a factor of λ(gk). Combining these facts we get
that

(%(p, Ln)− %(p, Ln+1)) > λ(gk)εδ/2
3/2.

Therefore we have that (%(p, Ln) − %(p, Ln+1)) is bounded from below. So we get a
contradiction. Thus, there is no p ∈ R2,1 which is not H-equivalent to an element of X .
Hence, X is a fundamental domain for the action of H on R2,1.
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Chapter 5

The Geometry of Crooked Planes

We saw in the last chapter that the fundamental domains that we constructed for certain
Margulis space times, are bounded by certain polyhedral hyper-surfaces in R2,1. These
polyhedral hyper-surfaces are called the Crooked planes.
A crooked plane consists of three parts: two half planes, called wings and a pair of opposite
planar sectors, called its stem. The wings lie in null planes and the stem (whose interior
has two connected components) lies in a time like (indefinite) plane.

In this chapter we study the intersections of two crooked planes.

5.1 Anatomy of a Crooked Plane

Let p ∈ R2,1 be a point and v ∈ R2,1 a space like vector. Define the positively oriented
crooked plane C (v, p) ⊂ R2,1 with vertex p and direction vector v to be the union of two
wings

W +(v, p) := p+ P+(x+(v)),
W −(v, p) := p+ P+(x−(v))

and a stem

S (v, p) := p+ {x ∈ R2,1 : B(v, x) = 0,B(x, x) 6 0}.
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Each wing is a half plane and the stem is the union of two quadrants in a space like
plane. The positively oriented crooked plane itself is a piecewise linear submanifold,
which stratifies into four connected open subsets of planes, four null rays and a vertex.
Note that for a crooked plane C (v, p) with v ∈ R2,1 a vector and p ∈ R2,1 a point we call
the line p+ Rv, the spine of the given crooked plane.
We also define the negatively oriented crooked plane K (v, p) ⊂ R2,1 with vertex p and
direction vector v to be the union of two wings

M +(v, p) := p+ P−(x+(v)),
M−(v, p) := p+ P−(x−(v))

and a stem

S (v, p) := p+ {x ∈ R2,1 : B(v, x) = 0,B(x, x) 6 0}.

In the following sections we will only consider positively oriented half planes. Furthermore,
an unspecified orientation for a crooked plane will assumed to be the positive one. The
case for the negatively oriented half planes is similar. The following sections describe
intersections of two wings, a wing and a stem, and two stems. From these results follow
necessary and sufficient conditions for the intersection of two crooked planes.

5.2 Intersection of Wings

A plane in R2,1 may be written as p + P(v), for p ∈ R2,1 and v ∈ R2,1. Suppose that
p1, p2 ∈ R2,1 and that v1, v2 ∈ R2,1 are linearly independent. Then the intersection
P1 ∩P2 of the two planes Pi := pi + P(vi) is a line which can be parametrized as

p+ R(v1 � v2)

for some p ∈P1 ∩P2.

Lemma 5.2.1. Let x1, x2 ∈ C+ be two linearly independent null vectors and p1, p2 ∈ R2,1

be two points. The corresponding null half planes P+
i := pi + P+(xi) for i ∈ {1, 2} are

disjoint if and only if B(p2 − p1, x1 � x2) > 0. Otherwise, P+
1 ∩P+

2 is a point if and
only if B(p2 − p1, x1 � x2) = 0 and P+

1 ∩P+
2 is a space like line segment if and only if

B(p2 − p1, x1 � x2) < 0.

Proof. Let l be the intersection of the planes that contain P+
1 and P+

2 . Then P+
1 ∩P+

2 ⊂
l. Let w := x1 � x2 and p = l ∩ (p1 + P(w)) so that l = p+ Rw.
The subsets l ∩P+

i of l are characterized as the set of all p+ kw where k ∈ R satisfying
the inequalities

B((p+ kw)− p1,−w) > 0 and
B((p+ kw)− p2, w) > 0

respectively. Now p was chosen so that B(p−p1, w) = 0 and for the given parametrization
of l

l ∩P+
1 ←→ (−∞, 0] and

l ∩P+
2 ←→ [B(p2 − p1, w)/B(w,w),∞).
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Then

• P+
1 ∩P+

2 is empty if and only if B(p2 − p1, w) > 0
• P+

1 ∩P+
2 is a point if and only if B(p2 − p1, w) = 0 and

• P+
1 ∩P+

2 is a space like line segment if and only if B(p2 − p1, w) < 0.

and the proof is complete.

Here is the corresponding lemma for pairs of half planes with opposite orientations.

Lemma 5.2.2. Let x1, x2 ∈ C+ be two linearly independent null vectors and p1, p2 ∈ R2,1

be two points. The intersection of the half planes P+ := p1 + P+(x1) and P− :=
p2 + P−(x2) is never empty.

Proof. Using a similar method of argument as used in the previous theorem we get the
result.

Now we consider the intersection of null half planes for the degenerate case when the
null half planes are parallel:

Lemma 5.2.3. Let x ∈ C+ be a null vectors and p1, p2 ∈ R2,1 be two points. The
corresponding null half planes P+

i := pi + P+(x) for i ∈ {1, 2} are disjoint if and only if
B(p2 − p1, x) 6= 0. Otherwise, one of the half planes contains the similarly oriented half
plane and their intersection is a null half plane.

Proof. Using a similar method of argument as used in the first theorem of this section we
get the result.

5.3 Intersection of Stem with Wing

In this section we describe when a positively oriented null half plane intersects a stem.
From this section onwards we will just state the lemmas as the proof follows a similar line
of reasoning as was used to prove the first theorem of the previous section.
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Lemma 5.3.1. Let x be a positively oriented null vector and v a unit space like vector
such that B(x, v) < 0. Let p1, p2 ∈ R2,1 be points. Then the stem S1 := S (v, p1) and the
positively oriented null half plane P+

2 := p2 + P+(x) are disjoint if and only if

B(p2 − p1, v � x) > |B(p2 − p1, x)|.

Otherwise S1 ∩P+
2 consists of,

• a point (which lies on ∂S1 but not on ∂P+
2 ) if and only if

B(p2 − p1, v � x) < 0 = B(p2 − p1, x).

• a point (which lies on ∂S1 and on ∂P+
2 ) if and only if

B(p2 − p1, v � x) = |B(p2 − p1, x)|.

• a space like line segment (with atleast one vertex on ∂S1) if and only if

B(p2 − p1, v � x) < |B(p2 − p1, x)|

where the other end point lies on ∂P+
2 if and only if

B(p2 − p1, v � x) > −|B(p2 − p1, x)|

and on ∂S1 if and only if

B(p2 − p1, v � x) 6 −|B(p2 − p1, x)|.

Now we consider the case when the null half plane and the stem are orthogonal:

Lemma 5.3.2. Let x be a positively oriented null vector and v a unit space like vector
such that B(x, v) = 0. Let p1, p2 ∈ R2,1 be points. Then the stem S1 := S (v, p1) and the
positively oriented null half plane P+

2 := p2 + P+(x) are disjoint if and only if

• B(p2 − p1, v) < 0 when x is a multiple of x−(v)
• B(p2 − p1, v) > 0 when x is a multiple of x+(v)

Otherwise S1∩P+
2 is a ray with end point on ∂P+

2 (except if B(p2−p1, x) = 0, in which
case it is an entire line).
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5.4 Intersection of Stems

Let C (v1, p1) and C (v2, p2) be two crooked planes where p1, p2 ∈ R2,1 are points and
v1, v2 ∈ R2,1 are unit space like vectors. We call the two vectors v1 and v2 :

• ultraparallel iff P(v1)∩P(v2) is a space like line or equivalently B(v1� v2, v1� v2) > 0.
• asymptotic iff P(v1) ∩P(v2) is a null line or equivalently B(v1 � v2, v1 � v2) = 0.
• crossing iff P(v1) ∩P(v2) is a time like line or equivalently B(v1 � v2, v1 � v2) < 0.

We describe the intersection of two stems separately for the above mentioned three dif-
ferent cases.

Lemma 5.4.1. Let v1 and v2 be ultraparallel unit space like vectors. The stems S (v1, p1)
and S (v2, p2) are disjoint if and only if

|B(p2 − p1, v1 � v2)| > |B(p2 − p1, v1)|+ |B(p2 − p1, v2)|.

Otherwise S (v1, p1) ∩ S (v2, p2) is a line segment whose end points lie on two distinct
lines contained in ∂S (v1, p1) ∪ ∂S (v2, p2).

Lemma 5.4.2. Let v1 and v2 be asymptotic unit space like vectors such that x−(v1) =
x+(v2). The stems S (v1, p1) and S (v2, p2) are disjoint if and only if

B(p2 − p1, x
−(v2)� x+(v1)) has a different sign from

B(p2 − p1, v1) and B(p2 − p1, v2).

Otherwise S (v1, p1) ∩S (v2, p2) is

• a point if and only if B(p2 − p1, x
−(v2)� x+(v1)) = 0 and B(p2 − p1, v1) and

B(p2 − p1, v2) have the same signs.
• a line segment if and only if B(p2 − p1, x

−(v2)� x+(v1)) and B(p2 − p1, v1) and
B(p2 − p1, v2) have the same signs.
• a ray if and only if either B(p2 − p1, vi) = 0 for only one i or B(p2 − p1, v1) and
B(p2 − p1, v2) have opposite signs.
• a line if and only if B(p2 − p1, vi) = 0 for both i.

Lemma 5.4.3. Let v1 and v2 be crossing unit space like vectors. The intersection of the
stems S (v1, p1) and S (v2, p2) lies on a line and is either a line, the union of two disjoint
rays, or two rays and a line segment, where all end points lie on the set ∂S (v1, p1) ∪
∂S (v2, p2).

5.5 Intersection of Crooked Planes

In this section we describe the intersection of two crooked planes. While considering
the intersection of two crooked planes, some terminology regarding the orientation of the
vectors defining the crooked planes is useful. Say that space like vectors v1, v2, ...vn are
consistently oriented if

B(vi, vj) < 0 and B(vi, x
±(vj)) 6 0
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for i 6= j.
Geometrically, consistent orientation means the following:
A unit space like vector v defines a half plane H (v) in the hyperbolic plane H2 as follows:

H (v) := {u ∈ U+ : B(u, v) > 0}.

Suppose v1, v2 ∈ R2,1 are ultraparallel (respectively asymptotic) unit space like vectors.
Then the half planes H (v1),H (v2) are bounded by ultraparallel (respectively asymp-
totic) geodesics in H2. A pair v1, v2 ∈ R2,1 of ultraparallel (respectively asymptotic) unit
space like vectors are consistently oriented if and only if the half planes H (v1),H (v2)
are disjoint. In that case H (v1)∩H (v2) is a strip with two ideal boundary components
and boundary components ∂H (v1), ∂H (v2).

Lemma 5.5.1. If v1, v2 ∈ R2,1 are two consistently oriented unit space like vectors, then

• x+(v1)� x+(v2) is a positive scalar multiple of (v1 � v2)− v1 + v2.
• x+(v1)� x−(v2) is a positive scalar multiple of (v1 � v2) + v1 + v2.
• x−(v1)� x+(v2) is a positive scalar multiple of (v1 � v2)− v1 − v2.
• x−(v1)� x−(v2) is a positive scalar multiple of (v1 � v2) + v1 − v2.

Proof. We know that G0 acts transitively on the set of Lorentz unit vectors so without
loss of generality we can take

v1 =

1
0
0

 and x±(v1) = 1/
√

2

 0
∓1
1

 .
Applying a hyperbolic element with v1 as a fixed eigenvector we get,

v1 =

−a0
c


where |c| =

√
a2 − 1. Furthermore,

x±(v2) = 1/
√

2

−c/a∓1/a
1

 .
Since v1, v2 are consistently oriented, a, c > 0. Thus a > 1 and c =

√
a2 − 1. And for

j, k ∈ {−,+} we have

v1 � v2 − kv1 + jv2 =

−k − ja−c
jc


xj(v1)� xk(v2) =

−j − k/a−c/a
jc/a


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xj(v1)�xk(v2) is a multiple of v1� v2− kv1 + jv2, since B(xj(v1), v1� v2± v1 + jv2) = 0,
B(xk(v2), v1 � v2 − kv1 ± v2) = 0.
Furthermore, xj(v1)�xk(v2) is a positive multiple of v1� v2− kv1 + jv2 since B(xj(v1)�
xk(v2), v1 � v2 − kv1 + jv2) = (a± 1)2/a > 0. Hence we have our desired result.

Theorem 5.5.2. Let v1, v2 ∈ R2,1 be two consistently oriented ultraparallel unit space like
vectors and p1, p2 ∈ R2,1 be two points. The positively oriented crooked planes C (v1, p1)
and C (v2, p2) are disjoint if and only if

|B(p2 − p1, v1 � v2)| > |B(p2 − p1, v1)|+ |B(p2 − p1, v2)|.

Otherwise the intersection is either a single point or a polygon.

Proof. The result follows from the lemma 5.4.1.

Theorem 5.5.3. Let v1, v2 ∈ R2,1 be two consistently oriented asymptotic unit space like
vectors such that x−(v1) = x+(v2) and p1, p2 ∈ R2,1 be two points. The positively oriented
crooked planes C (v1, p1) and C (v2, p2) are disjoint if and only if

• B(p2 − p1, v1) < 0,
• B(p2 − p1, v2) < 0,
• B(p2 − p1, x

−(v2)� x+(v1)) > 0.

Proof. The result follows from applying the lemma 5.4.2.

Theorem 5.5.4. Let v1 and v2 be two crossing unit space like vectors. The intersection
of crooked planes of indeterminate orientation with spines parallel to v1 and v2 is always
nonempty.

Proof. In this case, since the stems intersect, the orientations are irrelevant and the proof
follows easily from the lemma 5.4.3.

Now we consider the intersection of two crooked planes of different orientations.

Theorem 5.5.5. Let v1 and v2 be two unit space like vectors which are not parallel. The
intersection of the positively oriented crooked plane C (v1, p1) and the negatively oriented
crooked plane K (v2, p2) is always nonempty.

Proof. The result follows easily from the lemmas in the previous sections.
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Chapter 6

The Extended Margulis Invariant
and Its Applications

In this chapter we take an alternate approach to attack the original problem. We describe
an extension of the Margulis invariant to a continuous function on higher dimensions given
by Labourie and following the recent works of Margulis, Goldman and labourie, use the
extended Margulis invariant to give an equivalent criterion for properness.

6.1 Flat Bundles associated to Affine Deformations

In this section we make the necessary ground work to extend the Margulis invariant. Let
us consider the Lie group G0, the vector space V = Vr and a linear representation, L :
G0 −→ GL(V). Let G be the corresponding semi-direct product VoG0. Multiplication
in G is defined by

(v1, g1) � (v2, g2) := (v1 + g1v2, g1g2).

The projection

Π : G −→ G0 given by
(v, g) 7−→ g

defines a trivial bundle with fiber V over G0. We note that when r = 1, that is, V = R2,1,
G is the tangent bundle of G0 with its natural Lie group structure.
Since the fiber of Π equals the vector space V, the fibration Π can be given the structure
of a (trivial) affine bundle over G0. Futhermore, this structure is G-invariant. Denote
the total space of this G-homogeneous affine bundle over G0 by Ẽ .
Note that we can also consider Π as a (trivial) vector bundle. This structure is then G0-
invariant. Via L, this G0-homogeneous vector bundle becomes a G-homogeneous vector
bundle Ṽ over G0. This vector bundle underlies Ẽ . The G-homogeneous affine bundle
Ẽ and the G-homogeneous vector bundle Ṽ admit flat connections. We denote both of
these connections by ∇̃.
We have seen in chapter two that L preserves a bilinear form B on V. The G0 invariant
bilinear form B : V× V −→ R defines a bilinear pairing

22



B : Ṽ × Ṽ −→ R

of vector bundles. We note that, if L preserves a bilinear form B on V, the bilinear pairing
B on Ṽ is parallel with respect to ∇̃.
Now let

a(t) :=

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)


for t ∈ R. We notice that for p ∈ H2, a(t)p describes the geodesic through p and tangent
to ṗ.
Right multiplication by a(−t) on G0 identifies with the geodesic flow ϕ̃t on UH2 where
UH2 denotes the unit tangent bundle on H2. We denote the vector field corresponding
to the geodesic flow by ϕ̃. Similarly, right multiplication by a(−t) on G identifies with
the geodesic flow Φ̃t on Ẽ . We note that this flow covers the flow ϕt on G0 defined by
right multiplication by a(−t) on G0. Also the vector field Φ̃ on Ẽ generating Φ̃t covers
the vector field ϕ̃ generating ϕ̃t.
We note that the flow Φ̃t commutes with the action of G. Thus Φ̃t is a flow on the flat
G-homogeneous affine bundle Ẽ covering ϕt. We also note that identifying Ṽ as the vector
bundle underlying Ẽ , the R-action is just the linearization DΦ̃t of the action Φ̃t.
The G-action and the flow DΦ̃t on Ṽ preserve a section ν̃ of the bundle Ṽ. This section
is called the neutral section. We note that although ν̃ is not parallel in every direction,
it is parallel along the flow ϕ̃t.
Let Γ ⊂ G be an affine deformation of a discrete subgroup Γ0 ⊂ G0. We denote the
quotient manifold H2/Γ0 by Σ. Since Γ is a discrete subgroup of G, the quotient

E := Ẽ/Γ

is an affine bundle over UΣ = UH2/Γ0 and inherits a flat connection ∇ from the flat
connection ∇̃ on Ẽ . Furthermore, the flow Φ̃t on Ẽ descends to a flow Φt on E which is
the horizontal lift of the flow ϕt on UΣ. The vector bundle V underlying E is the quotient

V := Ṽ/Γ = Ṽ/Γ0

and inherits a flat linear connection ∇ from the flat linear connection ∇̃ on Ṽ. The flow
DΦ̃t on Ṽ covering ϕ̃t and the neutral section ν̃ both descend to a flow DΦt and a section
ν respectively. We denote UrecΣ ⊂ UΣ to be the union of all recurrent orbits of ϕ.
Let us define a geodesic current as a Borel probability measure on the unit tangent bundle
UΣ of Σ invariant under the geodesic flow ϕt. We denote the set of all geodesic currents
on Σ by C(Σ) and the subset of C(Σ) consisting of measures supported on periodic orbits
by Cper(Σ). We note that C(Σ) has the structure of a topological space with the weak
?-topology and has a notion of convexity.

6.2 Labourie’s diffusion of the Margulis Invariant

We recall that the Margulis invariant α = αu is an R valued class function on Γ0 whose
value on γ ∈ Γ0 equals
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B(ρu(γ)O −O, x0(γ))

where O is the origin and x0(γ) ∈ V is the neutral vector of γ. Now the origin O will be
replaced by a section s of E , the neutral vector will be replaced by the neutral section ν
of V, and the linear action of Γ0 on V will be replaced by the geodesic flow on UΣ.
Let s be a C∞ section of E . Its covariant derivative with respect to ϕ is a smooth section
∇ϕ(s). And let ν be the null section. We define a function,

Fu,s : UΣ −→ R where
Fu,s := B(∇ϕ(s), ν).

Let S(E) denote the space of continuous sections s of E over UrecΣ which are differ-
entiable along ϕ and the covariant derivative ∇ϕ(s) is continuous. If s ∈ S(E), then Fu,s
is continuous.

Now let us define,

Ψ[u],s(µ) :=
∫
UΣ Fu,sdµ.

We note that Ψ[u],s(µ) is independent of the section s which was used to define it. So we
get a well defined function,

Ψ[u] : C(Σ) −→ R given by
Ψ[u](µ) = Ψ[u],s(µ)

where s is a section.
We also note that Ψ[u] is continuous in the weak ?-topology on C(Σ). The following
theorem establishes the link between this invariant and the Margulis invariant. It shows
that Ψ[u] is indeed an extension of the Margulis invariant.

Theorem 6.2.1. Let γ ∈ Γ0 be hyperbolic and let µγ ∈ Cper(Σ) be the corresponding
geodesic current. Then

α(γ) = `(γ)
∫
UΣ Fu,sdµ

where `(γ) is the length of the closed geodesic corresponding to the element γ ∈ Γ0.

6.3 An equivalent condition for Properness

In this section we give an equivalent condition for properness using the extended Margulis
invariant and we conclude this section by giving a conceptual proof of the opposite sign
lemma.

Theorem 6.3.1. Let Γu denote an affine deformation of Γ0. Then Γu acts properly if
and only if Ψ[u](µ) 6= 0 for all µ ∈ C(Σ).

Now using this theorem we give a proof of the Opposite sign lemma.

Corollary 6.3.2 (Opposite Sign Lemma). Let γ1, γ2 ∈ Γ0 be such that α(γ1) and α(γ2)
has opposite sign. Then Γ does not act properly.
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Proof. As α(γ1) and α(γ2) has opposite sign, we can without loss of generality assume
that α(γ1) < 0 < α(γ2). Using theorem 6.2.1 we get

Ψ[u](µγ1) < 0 < Ψ[u](µγ2).

Now convexity of C(Σ) implies that there exists a continuous path µt ∈ C(Σ) with t ∈ [1, 2],
for which µ1 = µγ1 and µ2 = µγ2 . We know that the function

Ψ[u] : C(Σ) −→ R

is continuous. Therefore the intermediate value theorem implies that Ψ[u](µt) = 0 for
some t ∈ (1, 2). Now theorem 6.3.1 implies that Γ does not act properly.
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