
Leiden University
Faculty of Science

Mathematical Institute

Master Thesis

Perfectly Secure Message
Transmission Protocols with Low

Communication Overhead and Their
Generalization

Thesis Advisors Candidate
Dr. Robbert de Haan Jacopo Griggio

Prof. dr. Ronald Cramer

Academic Year 2011–2012

Those who leave for a journey leave forever.

Chi parte per un viaggio non fa più ritorno.

i

Acknowledgements (Ringraziamenti)

Il mio primo ringraziamento, doveroso, va alla mia famiglia. In primis, per
la loro totale fiducia in me e nelle mie capacità; ma anche perchè l’avere un
solido nucleo familiare alle spalle dà molta certezza nella vita.

Ringrazio anche Dino Festi per colui che è. I contrasti tra le nostre
personalità e le nostre filosofie di vita mi hanno spesso dato grandi spunti di
riflessione.

Un grazie particolare anche a Marta Lucchini per gli interminabili ma effi-
caci pomeriggi di studio, per i suoi manicaretti e per la sua costante presenza
da coinquilino aggiunto.

E grazie anche a tutti gli altri miei amici, vicini e lontani. Non posso
fare un elenco ma un ringraziamento è loro dovuto per tutti i ricordi dei bei
momenti passati e per i momenti che verranno.

I want to say thanks to my supervisor Robbert de Haan. I had a tough
time with him but it was necessary. I am stubborn, rough and inexpert in
writing and his patience and his being careful to details were fundamental
for making this thesis.

And thank you, Lusine. For everything.

ii

Abstract

The problem of perfectly secure message transmission concerns two synchro-
nized non-faulty processors sender (S) and receiver (R) that are connected
by a synchronous network of n ≥ 2t + 1 noiseless 2-way communication
channels. Their goal is to communicate privately and reliably, despite the
presence of an adversary that may actively corrupt at most t of the channels.
These properties should hold information theoretically and without error.

Previous work has studied the round complexity and communication over-
head of perfectly secure message transmission. The round complexity is the
number of consecutive (possibly bi-directional) data transmissions that are
required to complete the protocol execution. The communication overhead
gives a worst-case value for the total number of bits that needs to be trans-
mitted for each bit of the communicated message, given that the message
consists of ` bits. In other words, if the worst-case total number of commu-
nicated bits is C` for a message of size `, then the communication overhead
for the transmission of this message is C`/`.

When n ≤ 3t, at least two rounds of communication are required and
there exists a general lower bound for the communication overhead of n/(n−
2t). Furthermore, protocols with linear (respectively constant) communica-
tion overhead are known when n− 2t is constant (respectively linear in n).

In order to study the optimal possible communication overhead it is natu-
ral to consider messages that are relatively large with respect to the number
of channels n. We therefore mainly consider messages consisting of Ω(nγ)
field elements of a given finite field Fq with γ ∈ Z≥3. In this work we study
the precise optimal communication overhead of such protocols. In particular,
we demonstrate that for 3-round protocols the known general lower bound is
essentially tight, i.e., there exist 3-round protocols for which the communica-
tion overhead is (n+1)/(n−2t)+O(n3−γ), which converges to (n+1)/(n−2t)
as the message size increases.

Furthermore, we narrow the theoretical gap for 2-round protocols by
demonstrating that there exist 2-round protocols for which the communi-
cation overhead is 6n/(n − 2t) + O(n2−γ), which converges to 6n/(n − 2t)
as the message size increases. This should be compared with the best previ-
ously known communication overhead for such protocols, which was roughly
25n/(n− 2t).

We moreover study the basic coding-theoretic techniques involved with
these protocol constructions and generalize our new approach. This has
potential (theoretical) applications to settings where the message is very
small with respect to the number of available communication channels.

iii

Contents

1 Introduction 1

2 Preliminary Theory 4
2.1 Coding Theory . 5
2.2 Perfectly Secure Message Transmission 8

2.2.1 The model . 9
2.2.2 Complexity . 12
2.2.3 Known Results . 13

2.3 Secret Sharing . 14
2.3.1 Definitions . 14
2.3.2 Error-Correcting Codes 17
2.3.3 High Information Rate Ramp Schemes 19

3 An Asymptotically Optimal 3-Round Protocol 22
3.1 Linear Dependence Modulo a Code 22
3.2 A basic 3-Round Protocol . 25

3.2.1 Overview . 26
3.2.2 The Protocol . 26
3.2.3 Proofs . 29

3.3 Block-Maximal Sets of Linearly Independent Vectors Modulo
a Code . 30

3.4 The Optimal 3-Round Protocol 33
3.4.1 Overview of the Protocol 33
3.4.2 The Protocol . 34
3.4.3 Privacy of the Protocol 37
3.4.4 Reliability of the Protocol 37
3.4.5 Communication Overhead of the Protocol 39
3.4.6 The Case n = 2t+ b 39

4 A Nearly Optimal 2-Round Protocol 42
4.1 Graph Matching . 42
4.2 Generalized Broadcasting . 44
4.3 The Nearly Optimal 2-Round Protocol 45

4.3.1 Overview of the Protocol 45
4.3.2 The Protocol . 46
4.3.3 Privacy of the Protocol 50
4.3.4 Reliability of the Protocol 51
4.3.5 Communication Overhead of the Protocol 52

4.4 Case n = 2t+ b . 53

iv

A Appendix: A 2-Round Protocol Using Generic Codes 57
A.1 Uniformity Property for Codes 57
A.2 Sketch of the Protocol . 58
A.3 Perfectly Secure Message Transmission Over Finite Fields . . . 59

A.3.1 Establishment of Correlations 60
A.3.2 Generalized Broadcasting 61
A.3.3 Privacy Amplification 61

A.4 Conflicts . 63
A.5 Existence of Suitable Generic Codes 64

v

1 Introduction

The problem of transmitting messages securely finds its roots in ancient
history. More than 2000 years ago, much before the telecommunications era
began, people already had secrets to share. Regardless of whether these
secrets were of a personal or a military nature, two aspects were important.
The first was that the secret had to reach its destination. The second was
that the secret remained secret.

The oldest documented cryptosystem is due to the Roman general Caius
Iulius Caesar. Caesar used to protect his secrets using an enciphering method
that today is known as the Caesar cipher, where every letter of the message
was shifted forward three positions in the alphabet. In this way, an A became
a D, a B became an E and so on. The principle was simple: even if the courier
that was carrying the message was intercepted by an enemy, the enemy would
still be unable to determine the secret. This method had a disadvantage
though, as only very few people should know about the method. Indeed, the
more people would know about it, the more likely it was that this method
would be revealed to the enemy. Moreover, once the enemy knew about the
method, no secret would have been secure any longer.

Cryptography has advanced dramatically since then. In 1883, in La Cryp-
tologie Militaire, Kerckhoffs formulated the famous Kerckhoffs’ principle: a
cryptosystem should be secure even if the enemy knows everything about
the system except the key. It is clear that Caesar’s method did not respect
Kerckhoffs’ principle.

Furthermore, the rise of general-purpose computers made it more attrac-
tive to design new cryptosystems that respect Kerckhoffs’s principle. Perhaps
the most famous among such systems is the one due to Rivest, Shamir and
Adleman, the RSA cryptosystem. The security of this method however relies
heavily on the computational capabilities of currently existing calculators;
keys that are safe today may not be safe in the near future, especially if the
technology of quantum computers can be sufficiently developed.

Hence, better security may be needed. A cryptosystem should be safe
independently of an enemy’s computational power. Indeed, techniques that
are currently out of reach with our technology might become feasible in a
future. Hence, we should make the assumption that the enemy is a worst-
case enemy: he knows every detail of the system and therefore its weaknesses
and can take advantage of all of them. Furthermore it may be that for all
practical purposes the enemy has unbounded computational power.

Some cryptosystems that are able to deal with unbounded enemies are
already known, such as for example the one-time pad encryption method.
This method consists of having as a key a sequence of pairwise independent

1

numbers, and to then encipher the message by rotating the i-th component
of the message by as many positions in the alphabet as the i-th number in
the key. In other words, it’s like applying a different Caesar’s cipher to each
position of the message. As long as the key remains secret, this cryptosystem
is proven to be unbreakable. On the other hand, the key can be used only
once.

All these cryptosystems rely on the same assumption: the key must re-
main private. Indeed, even the most safe and unbreakable cryptosystem is
easily broken once the enemy obtains the key. The solution to this problem
is clearly that keys should be exchanged privately, but this might look like a
paradox: it seems that we are required to have a private communication to
exchange the key we want to use for a private communication. Apart from
the logical implication (also the first private communication would require
a private key, generating an infinite backward loop), there is a practical im-
plication: if we have already performed a private communication there is
no point in doing another a key exchange, because the secret could already
be sent. These issues moreover already appear when the enemy is merely
eavesdropping. If the enemy is able to additionally corrupt or disturb the
communication, no key exchange can safely be executed at all.

A twist to the approach to this problem is due to Dolev, Dwork, Waarts
and Yung. In their 1993 paper [DDWY93] they introduce a substantially
different assumption, namely that instead of one communication channel
multiple, i.e., n > 1 communication channels are available to transmit infor-
mation. They assume moreover that the enemy is able to take control of less
than half of these channels; in fact, they proved that this is a necessary and
sufficient condition for this model to be useful.

This branch of cryptography is called perfectly secure message transmis-
sion. We say that perfectly secure message transmission is achieved when
two requirements are met. First, the receiver is able to output the message
with perfect correctness. Second, no adversary can learn partial information
about the message. It was proven that these requirements can be met only
if the communication takes place over n channels with n > 2t, where t is the
number of channels controlled by an adversary. Furthermore, it was proven
that in the setting where n ≤ 3t at least two communication rounds are
necessary.

Since the introduction of perfectly secure message transmission, proto-
cols have been developed that achieve these security requirements. It was
proven by Narayanan et al. in [NPRS04] that in the n ≥ 2t+1 setting a gen-
eral communication overhead lower bound holds for perfectly secure message
transmission protocols of n

n−2t , regardless on the number of communication
rounds. Most previous work in this field has focused on achieving optimal

2

communication overhead complexity.

Contributions

Our primary aim in this work is to improve the precise communication over-
head of currently known perfectly secure message transmission protocols.

For protocols that run in 3 communication rounds a theoretical lower
bound of n

n−2t for the communication overhead has been proven. Neverthe-
less, a protocol that meets this lower bound tightly has never been presented.
In this work we provide a 3-round protocol which (asymptotically) meets an
overhead of n+1

n−2t as the message size increases and is therefore essentially
optimal.

The theoretical lower bound of n
n−2t for the communication overhead also

holds for 2-round protocols. In previous works an overhead of Ω
(

n
n−2t

)
was

achieved, but the hidden multiplicative constants are not optimal; in the
best currently known protocol this constant can in fact be proven to be
25. Therefore, we further optimize the currently known techniques for 2-
round perfectly secure message transmission protocols. The communication
overhead of the resulting protocol is again Ω

(
n

n−2t

)
, but this time with hidden

multiplicative constant 6. Therefore, this protocol is more efficient in terms
of communication overhead than all currently known 2-round protocols.

Finally, we study the problem of achieving perfectly secure message trans-
mission in a general setting. Indeed, once we remove restrictions on the linear
codes that are used and on the used finite field, the hypotheses required by
currently known techniques need not be met anymore. We introduce new
techniques that require weaker hypotheses and thereby generalize the con-
structions of these protocols.

3

2 Preliminary Theory

In this section we provide some basic theory and background information on
the topic that is studied in this thesis. After a brief introduction on Coding
Theory in Section 2.1, we introduce and treat the Perfectly Secure Message
Transmission problem in Section 2.2. Finally, we discuss Secret Sharing in
Section 2.3.

Coding theory is a mathematical discipline which saw its origins in the
second half of the last century. As electronic communication began to impact
everyday life, the need of developing a mathematical theory that could im-
prove the efficiency of this kind of communication increased. It was important
that messages could be sent and received correctly even if the communication
channel was subject to errors. Shannon’s “A Mathematical Theory of Com-
munication” in 1948 [Sha48] was the starting point for Information Theory.
From there on the theory of error-correcting codes was developed in order to
expand the theoretical background. Even though Coding Theory is an ap-
plied branch of mathematics, several pure disciplines are related to it: Linear
Algebra, Algebra, Combinatorics, Number Theory and Algebraic Geometry.
Section 2.1 presents some of its basic aspects, such as the Hamming weight
and the definition of linear codes, and also provides some theory involving
linear codes.

Perfectly Secure Message Transmission (briefly, PSMT) is a concept that
was first introduced by Dolev, Dwork, Waarts and Yung in their homony-
mous paper [DDWY93]. In cryptography there is a crucial problem: if one
wants to have encrypted private communication, an encryption/decryption
key first must be available. Hence, keys must be exchanged privately before
the transmission of the message. However, in a single-channel model this
requires a private communication itself, thus generating a paradox. The idea
that was introduced by Dolev et al. was to assume that the communication
did not take place through a single channel, but through n > 1 channels of
which less than half were controlled by the adversary. Following their results
more advanced protocols were developed in order to reach more and more
efficiently the two basic aspects of PSMT: on the one hand eavesdroppers
should not be able to obtain even partial information about the message; on
the other hand, disturbances generated by intruders should not compromise
the correct transmission of the message. Section 2.2 will introduce the prob-
lem and provide a mathematical model for it, together with some definitions.

Secret Sharing is a sub-area in theoretical cryptology that has its origins
in Shamir’s paper How to Share a Secret in 1979 [Sha79]. In this paper
Shamir introduces the problem of key storage. Since even an unbreakable
cryptosystem is easily broken when an adversary knows the secret key, the key

4

of a cryptosystem should be stored in some location which is unaccessible to
adversaries. The problem turns out to be that this kind of storage introduces
a single-point-of-failure: if the storage does not work properly, there is the
possibility that the key is partially or completely lost. The storage in multiple
locations can be considered a solution to the problem, but in this case it
is more likely that some location leaks some information about the key to
adversaries.

The solution that was proposed by Shamir was to keep the key secret and
then break it into n pieces called shares, with the property that for any set
of t shares all possible secrets are equally likely, while any set of t+ 1 shares
uniquely determines the secret. With this method a key can be stored in
several locations without being more vulnerable to adversaries.

2.1 Coding Theory

In this section we present some definitions and results in Coding Theory,
mainly focusing on the basic results that are relevant to this work.

From here on, let Fq denote the field with q elements, where q = pr

for some prime number p and some r ∈ Z≥1. The “ · ” denotes the usual
scalar product between vectors or between matrices, or between vectors and
matrices. Let Mn×m(Fq) denote the set of all matrices with n rows and m
columns with coefficients in Fq. For A ∈ Mn×m(Fq) we denote its transpose
by AT .

For a vector ~v ∈ Fnq and 1 ≤ j ≤ n we use the notation vj to denote the
element in the j-th coordinate of ~v, i.e., we have that ~v = (v1, . . . , vn).

Definition 2.1. Let n ∈ Z≥1 and consider the vector space Fnq . A linear
code C is a subspace of Fnq . We call n the length of C.

Notation. An [n, k]-linear code is a code of length n and (subspace) dimen-
sion k. A codeword of a (linear) code C is a vector ~c ∈ C.

It is worthwhile to note that while in general not all error-correcting
codes are linear, we only consider linear codes in this work. Linear codes are
commonly used for their error-correction capabilities.

Suppose we have a linear code C of length n over Fq and that a codeword

~c ∈ C is sent through a channel, where afterwards the vector ~d ∈ Fnq is
received. We say that a transmission error occurred if there exists an index
j such that dj 6= cj. In this case we define the value dj − cj ∈ Fq to be the

transmission error in the j-th coordinate and the vector ~e = ~d− ~c to be the
error-vector.

5

Whether a code C allows to recover the originally transmitted vector ~c
from ~d depends on certain properties of the code and the number of indices
for which transmission errors have occurred. To make this concept more
precise we now introduce the notion of distance for vectors of Fnq . The idea
is that a received vector can be corrected if and only if it is “close enough”
to the original codeword that was sent.

Definition 2.2. The Hamming weight of a vector ~v ∈ Fnq is:

wt(~v) := |{i ∈ {1, . . . , n} | vi 6= 0}|.

It is easy to see that the Hamming weight naturally defines a “distance
function” between vectors of Fnq .

Definition 2.3. The Hamming distance between two vectors ~v, ~w ∈ Fnq is:

d(~v, ~w) := wt(~v − ~w).

We are now able to define the minimum distance of a code.

Definition 2.4. The minimum distance d(C) of a code C is the value:

d(C) := min
~c1, ~c2∈C:~c1 6=~c2

{d(~c1, ~c2)}.

Remark. If C is a linear code the vector ~c1 − ~c2 belongs to C for every
~c1, ~c2 ∈ C. Therefore, for a linear code C the minimum distance turns out
to be equal to the minimal weight among the non-zero codewords of C:

d(C) = min{wt(~c) | ~c ∈ C \ {~0}}.

It is well-known from Coding Theory that a linear code is able to correct
an error-vector of weight w if and only if w ≤ bd−1

2
c, since in this case there is

always a unique nearest codeword. In particular circumstances, as we will see
in Lemma 2.38, a linear code is able to correct even error-vectors of weight up
to d− 1, provided that the coordinates of the transmission errors are known.

There are different equivalent ways to represent a linear code. The rep-
resentation we use in this work is via a generator matrix of the code.

Definition 2.5. A generator matrix for an [n, k]-linear code C is a matrix
G ∈Mk×n(Fq) of rank k such that the row vectors span C.

Remark. It follows that the generator matrix of a linear code is uniquely
defined up to a choice of basis.

6

From here on, when we make use of a linear code C ⊂ Fnq we sometimes
implicitly assume that a generator matrix G ∈Mk×n(Fq) for this code has a
priori been fixed. To encode k information symbols means to pick a vector
~v ∈ Fkq and map it into a codeword ~c = ~v ·G.

Definition 2.6. A check matrix for an [n, k]-linear code C is a matrix H ∈
Mn×(n−k)(Fq) of rank n − k with the property that G · H = 0k×(n−k), where
0k×(n−k) is the all-zero matrix in Mk×(n−k)(Fq).

From this definition it follows that if C is a linear code with generator
matrix G and check matrix H, then for every ~c ∈ C we have that ~c ·H = 0 ∈
F(n−k)
q .

A fact from Coding Theory regarding the check matrix of a linear code
and its minimum distance is given by the following lemma. The proof of this
lemma is omitted here since it is a basic linear-algebra argument.

Lemma 2.7. Let C be a code with check matrix H. Then the minimum
distance of C is equal to the cardinality of the smallest subset of rows of H
that is linearly dependent.

Whenever we define a code we implicitly define another code, namely its
dual code.

Definition 2.8. Let C be a code of length n over Fq. Then the dual code of
C is:

C∗ = {~v ∈ Fnq | ∀~c ∈ C : ~c · ~vT = 0}.

In particular, if C is an [n, k]-linear code then this defines a subspace
of Fnq given by k independent linear equations. This implies that C∗ is an
[n, n − k]-linear code. Now, the following lemma holds for linear codes and
allows us to justify this last definition.

Lemma 2.9. Let C ⊂ Fnq be a linear code with generator matrix G ∈
Mk×n(Fq) and check matrix H ∈ Mn×(n−k)(Fq). Let C∗ be the dual code
of C. Then HT and GT are respectively a generator matrix and a check
matrix for C∗.

Proof. Let ~w ∈ Fn−kq and consider the vector ~v = ~w · HT . Then for every
~c ∈ C we have:

~c · ~vT = ~c · (~w ·HT)T = ~c ·H · ~wT = ~0 · ~wT = ~0,

hence C∗ contains the linear code generated by HT . On the other hand
dim(C∗) = n − k, while HT has rank n − k, so its rows span an (n − k)-
dimensional subspace of Fnq . It follows that C∗ and the code generated by
HT have the same dimension, and in fact they are the same code.

7

Now by definition of G and H we have:

HT ·GT = (G ·H)T = 0Tk×(n−k) = 0(n−k)×k,

so GT is a check matrix of C∗.

This lemma implies that, given a linear code C, automatically its dual
C∗ is uniquely defined up to isomorphisms. Moreover, it also implies that
(C∗)∗ = C, which justifies the fact that this code is called the dual code.

A very important result is a bound on the parameters that a linear code
can have. Indeed, for a fixed length and a fixed dimension, it is not true that
there exist codes with arbitrary minimum distances; the minimum distance
has an upper bound.

Proposition 2.10 (Singleton-bound). Let C be an [n, k]-linear code with
minimum distance d. Then n− k ≥ d− 1.

Codes for which the parameters meet the Singleton-bound (i.e., for which
n − k = d − 1) are called Maximum Distance Separable (MDS) codes. Ex-
amples of MDS-codes are the Reed-Solomon codes.

Definition 2.11. Let |Fq| ≥ n and α1, α2, . . . , αn ∈ Fq be distinct elements.
A Reed-Solomon code of length n and dimension t+ 1 over a field Fq is the
subspace of Fnq consisting of the vectors of the form

(f(α1), . . . , f(αn)),

where f ∈ Fq[x] with deg(f) ≤ t.

This definition also shows how encoding is done when using Reed-Solomon
codes. Suppose we want to encode r elements a1, . . . , ar ∈ Fq, with r ≤ t,
into a codeword of an [n, t + 1]-Reed-Solomon code C. We choose an ar-
bitrary index set {i1, . . . , it+1} ⊂ {1, . . . , n}. Then using Lagrange interpo-
lation we find a polynomial f ∈ Fq[x] with deg(f) = t such that f(αi1) =
a1, . . . , f(αir) = ar and f(αir+1) = ar+1, . . . , f(αit+1) = at+1 for some random
values ar+1, . . . , at+1 ∈ Fq. Finally, we define the codeword ~c ∈ C by setting
~c = (f(α1), . . . , f(αn)). f is said to be the defining polynomial of ~c.

2.2 Perfectly Secure Message Transmission

In this section we sketch the background environment in which we are going
to work. Suppose a sender S wants to send a secret message M to a receiver
R. The most natural way in which S can do this is to send M through a

8

two-way channel, say s, that connects S with R. However, suppose there is
also a third party present during this process: an adversary A who tries to
eavesdrop on and/or to disturb the communication. If A is able to read any
information that is sent through s, then A learns the content of the secret
message. Moreover, if A is also able to modify information sent through s,
R cannot even be sure that the message that he received is indeed the secret
message sent by S. Summing up, two reasonable requirements for secure
message transmission are violated: secrecy and reliability. Our goal is to
perfectly (i.e., with probability 1) meet these two requirements.

For this, we require the following model. The communication is not going
to take place through a single channel, but through n > 1 distinct channels.
Indeed, a necessary assumption that we require to reach our goal is that A
cannot read or modify data on all communication channels. More specifi-
cally, we will assume that strictly less than half of the channels are under
the influence of A. Next, we equip S and R with a protocol P . This pro-
tocol guarantees that at the end of its execution these two parties will share
enough common secret information to communicate using the perfectly se-
cure method of one-time pad encryption. In this way, A’s influence on the
channels becomes irrelevant both for gathering information about M and for
disturbing the communication.

2.2.1 The model

The precise model for the environment explained above is the following. Let
S,R andA be three synchronized non-faulty processors. Let N := {1, . . . , n}
be a public index set for n two-way channels connecting S to R. A pair of
algorithms implemented by S and R (i.e., a protocol) P is known by all three
parties and is organized according to the following framework. A selects a
set IA ⊂ N with these properties: if i ∈ IA then A is able to read the
information sent through the i-th channel and to replace it with a private
random string. If i /∈ IA instead, A is not able to read the information sent
through the channel, and is not able to change it either. We say that the
i-th channel is controlled by A if and only if i ∈ IA.

A communication round proceeds as follows. First, for every i ∈ N one
party (that could be either S or R) sends a random private vector ~ci (usually
an element of a fixed finite vector space) through channel i. Next, for each
i ∈ N the other party receives a vector ~ci

′, with ~ci
′ = ~ci if i /∈ IA and

~ci
′ = ~ci + ~ai if i ∈ IA, where ~ai is a private vector chosen by A.

We assume that information is transmitted through every channel with-
out delay and without transmission errors. We also assume that A has
unbounded computational power and that his actions on the channels he

9

controls give rise to negligible delays in transmission. In particular, we are
interested in worst-case adversaries, i.e., adversaries that are able to take
advantage of every possible weakness of the protocol.

There are two types of adversary. We say that an adversary is passive
if he only reads the data transmitted over the channels he controls without
modifying it, while we say that an adversary is active if he modifies data as
well. Note that worst-case adversaries are not necessarily active adversaries,
as we demonstrate further below. Also note that an adversary may be active
on some channels and passive on others.

A channel is said to be corrupted if the behaviour of the adversary is
active.

Definition 2.12. An adversary A is called a t-adversary if at the beginning
of every round |IA| ≤ t.

As we stated above, we everywhere assume that the adversary always
controls strictly less than half of the channels. In other words, we require
n > 2t. It has indeed been proven by Dolev et al. in [DDWY93] that
otherwise PSMT is not possible.

Definition 2.13. The view of the adversary A at a given point during the
protocol execution, denoted by VA, consists of his randomly generated strings,
together with all the data transmitted so far over the controlled channels.

Remark. Note that this definition indirectly also includes all modifications
that A made to the data he read, and all other information that can be
deduced from his view. Indeed, all the modifications are obtained determin-
istically from the initial random values and the observed data.

Suppose that S initially selects a private random message M from a finite
set M, and that he initiates a communication with R to transfer M securely.
Our goal in this communication is to achieve perfectly secure message trans-
mission (PSMT), as defined below.

Definition 2.14. A protocol P achieves perfectly secure message transmis-
sion if at the end of every execution of P the following two properties hold:

� (Correctness) R outputs a string M ′ with:

P (M ′ = M) = 1.

� (Privacy) For every M1,M2 ∈M chosen uniformly at random and for
any possible adversarial view V , we have:

P (M = M1|VA = V) = P (M = M2|VA = V).

10

These probabilities are defined over the local random coins of S, R and A.

Definition 2.15. A protocol P is a perfectly secure message transmission
protocol if it achieves perfectly secure message transmission.

The inputs of P consist of the random data that is locally generated by
S, R and A at the beginning of its execution, and in addition the message
M ∈ M for S. Note that after these initial random choices are made, the
rest of the protocol runs deterministically.

Commonly used perfectly secure message transmission protocols can in
general be divided into three steps.

Step 1: Transmission Subprotocol. During this step S and R have com-
munication rounds as described above, based on their initial random
strings and all the additional data they collected from the previous
rounds.

Step 2: Information Reconciliation. During this step S and R use the cor-
relation established in the first step to interactively agree on a mutual
(bit) string. Note that A may partially know this string, but not com-
pletely.

Step 3: Privacy Amplification. During this step S and R use a previously
agreed upon algorithm to extract from the string computed during the
information reconciliation a key which is totally unknown to A, and
that can be used for a one-time pad encryption.

Although it is known that a protocol made of these three steps can achieve
PSMT, a converse of this fact has not yet been proven.

Suppose that for a message transmission we require correctness but not
privacy. This may occur in several cases, for example when the conversation
is already enciphered with some enciphering method unknown to A, or if the
data sent does not change the view VA. In this case, the easiest (and perhaps
most natural) method to transmit is the following.

Definition 2.16. We say that a message is broadcast if it is sent simulta-
neously over all the n channels.

Suppose we are in a situation where n > 2t. If a message is broadcast
and an active adversary corrupts this message on some of his channels, the
receiver can easily determine which among all the messages he received is the
correct one by simply choosing the message that appears most. A learns the
message, but this is not important because privacy is not required.

11

Remark. This is a case in which the worst-case adversary is a passive ad-
versary. Indeed, suppose that an active adversary corrupts some data on
his channels. Then, once the receiver knows which message is the original
message, he immediately spots the corrupted channels. So in this case for A
it is more convenient not to corrupt any data.

Since we always assume worst-case adversaries, whenever a message is
broadcast we assume without loss of generality that the adversary is passive
during broadcasts.

2.2.2 Complexity

Whenever we deal with an algorithm or a protocol which requires data trans-
mission and computation, a very important aspect to be considered is com-
plexity. It is obvious that all other aspects being equal, the algorithm or the
protocol which needs less computation performed or less information sent is
better. Here we give two definitions for communication complexity which are
used to measure the efficiency of a protocol; these two definitions take into
account that in modern electronic communication messages are sent in the
form of binary strings.

Definition 2.17. The communication complexity C` of a protocol is the
minimum number of total bits that must be transmitted by S and R during
the whole execution of the protocol in the worst-case scenario, given a message
consisting of ` bits.

Definition 2.18. The communication overhead L of a protocol is the ratio
between the communication complexity needed to send a message of ` bits and
the length of the message itself, i.e. L := C`/`.

This definition refers to the number of computations that parties must
perform to run the protocol instead.

Definition 2.19. The computational cost of a protocol is the minimum num-
ber of bit operations that must be performed by S and R for the protocol to
complete in the worst-case, given a message consisting of ` bits.

This third definition is important because a protocol which has a very
low communication complexity could be totally inefficient in terms of com-
putation, for example when it needs to solve a computationally hard prob-
lem between one transmission and another. Note that in general, since the
transmission of a bit always requires computation, a protocol with a high
communication complexity will always have high computational cost.

12

We are of course mainly interested in those protocols which have com-
munication overhead and computational cost as low as possible. In general,
a protocol is considered efficient when these two parameters are polynomial
in n and `, i.e. they are O(nk1`k2) for some k1, k2 ∈ Z≥1.

2.2.3 Known Results

After having stated the PSMT problem in 1993, Dolev et al. in [DDWY93]
gave some initial fundamental results. The first was that perfect correctness
and perfect privacy can be achieved in a single-round transmission if and
only if n ≥ 3t+ 1. If we allow more communication rounds, which implies an
interaction between the sender and the receiver, then we can reach our goal
even with n ≥ 2t+ 1. Finally, it was proven that if n ≤ 2t no solution to the
problem exists.

In 2007 in their paper [FFGHV07] Fitzi, Franklin, Garay and Harsha
Vardan proved that an optimal communication overhead of L = n

n−3t can be
achieved for a one-round protocol under the condition n ≥ 3t+ 1; in 2004 a
lower bound of L = n

n−2t for the communication overhead of protocol with
two (or more) rounds in the case n ≥ 2t + 1 was given by Narayanan et al.
in the paper [NPRS04].

In 2006 Agarwal, Cramer and de Haan [ACH06] presented a protocol
for n ≥ 2t + 1 with the (optimal) communication overhead of Ω(n); this
protocol, however, was computationally inefficient. In 2008 in their paper
[KS08] Kurosawa and Suzuki presented a PSMT protocol for n ≥ 2t+1 which
not only reaches the communication overhead of Ω(n) (25n, precisely), but
also has efficient computational cost. These are the best results currently
known.

Even though a communication overhead lower bound of n
n−2t was proven,

no known protocol at the moment reaches this overhead, i.e., none meets
tightly the lower bound given by Narayanan et al. . Section 3 presents
the first efficient protocol for n ≥ 2t + 1 that (asymptotically) minimizes
the communication overhead. Moreover, in Section 4 we present a 2-round
protocol which significantly improves the communication overhead reached
by Kurosawa and Suzuki.

Since these results rely on the possibility of choosing arbitrarily large finite
fields, one may ask if PSMT protocols can be defined in an environment where
the size of the field does not depend on n (and can in particular be much
smaller). Appendix A approaches this problem in a more general setting.

13

2.3 Secret Sharing

The application of secret sharing that we consider in this work is the ap-
plication to perfectly secure message transmission. Indeed, suppose that a
sender S wants to send a secret to a receiver R, and suppose that n channels
connect the two parties. Then S divides the secret into n shares, and sends
each share through a different channel. If a passive adversary A has size t,
then the t shares he learns during the transmission should not be enough
for him to learn the secret. In general secret sharing techniques allow to
create a distribution beween chunks of data such that certain combinations
can determine the secret, while others cannot.

It is worthwhile to note that this does not solve the PSMT problem itself,
because an adversary may be active; a secret sharing scheme is not protected
against corruptions by itself. For this reason we not only use secret sharing
techniques.

2.3.1 Definitions

Let S0, . . . , Sn be random variables which are defined respectively on the
finite alphabets X0, . . . , Xn. Without loss of generality we may assume that
∀i ∈ {1, . . . , n}, ∀si ∈ Xi:

P (Si = si) > 0.

Definition 2.20. A vector of random variables is a vector (Si)i∈I where
I = {1, . . . , n} is a non-empty index set, and for every i ∈ I Si is a random
variable.

Definition 2.21. A secret sharing scheme is a pair (~S, j) with the following
properties:

�
~S := (Si)i∈I is a vector of random variables;

� n > 1;

� |Xj| > 1;

� For every sj ∈ Xj we have:

P (Sj = sj) =
1

|Xj|
,

i.e., Sj has the uniform distribution on Xj.

The index j is called the designated index. From here on, we denote as
I∗ the set I \ {j}.

14

Definition 2.22. Let (si)i∈I ∈
∏

i∈I Xi, with:

P ((Si)i∈I = (si)i∈I) 6= 0.

Then sj is said to be the secret of (si)i∈I , while the elements {si}i∈I∗ are said
to be the shares.

Let P(I∗) be the set of all subset of I∗. For a secret sharing scheme we
define two sets Γ,A ⊂ P(I∗) as follows.

Definition 2.23. A subset B ⊂ I∗ is said to be accepted if for every possible
choice (si)i∈B ∈

∏
i∈BXi we have that:

∃sj ∈ Xj s.t. P (Sj = sj | {Si = si}i∈B) = 1.

Definition 2.24. A subset B ⊂ I∗ is said to be rejected if for every possible
choice (si)i∈B ∈

∏
i∈BXi and for every sj ∈ Xj we have:

P (Sj = sj | {Si = si}i∈B) =
1

|Xj|
.

We then define Γ to be the set of all accepted subsets, and A to be the
set of all rejected subsets.

Remark. Γ and A clearly have the property that Γ ∩A = ∅, while it is not
true in general that Γ ∪ A = P(I∗).

Definition 2.25. A secret sharing scheme for which Γ ∪ A = P(I∗) is said
to be perfect.

An interesting property that Γ and A have is that they are closed with
respect to union and intersection, respectively. In other words, Γ is monotone,
while A is anti-monotone.

Definition 2.26. A secret sharing scheme has t-privacy if for every B ⊆ I∗

with |B| ≤ t we have that B ∈ A.

Definition 2.27. A secret sharing scheme has r-reconstruction if for every
B ⊆ I∗ with |B| ≥ r we have that B ∈ Γ.

These two definitions are just a formal way to say that if a secret sharing
scheme has t-privacy and r-reconstruction, then every subset of I∗ of cardi-
nality at least r is accepted, while every subset of cardinality at most t is
rejected. Since Γ ∩ A = ∅ as we pointed above, it is straightforward to see
that 0 ≤ t < r ≤ n holds.

15

Definition 2.28. An index i ∈ I∗ is said to be dummy if the two following
conditions hold:

� ∀B ∈ Γ, B \ {i} ∈ Γ;

� ∀B ∈ A, B ∪ {i} ∈ A.

Equivalently to this definition, we can say that an index is dummy if both
its presence and its absence are irrelevant to learn the secret.

Definition 2.29. A secret sharing scheme is said to be ideal if it has no
dummy indices.

For practical reasons we are mainly interested in ideal secret sharing
schemes. A very important aspect of ideal perfect secret sharing schemes
comes from the following theorem.

Theorem 2.30. Let (~S, j) be an ideal perfect secret sharing scheme, with
~S = (Si)i∈I . Then, for every i ∈ I∗ we have |Xi| ≥ |Xj|.

Proof. See for instance [Haa09].

It follows from this theorem that, since for each index i ∈ I∗ the number of
possible shares in that position is larger than the number of possible secrets,
the minimum number of bits required to represent each share is greater than
or equal to the minimum number of bits required to represent the secret. In
other words, each share is at least as large as the secret.

Among ideal schemes, a very interesting family of schemes is represented
by threshold schemes.

Definition 2.31. A secret sharing scheme is said to be t-threshold if it has
t-privacy and (t+ 1)-reconstruction.

Note that this definition implies that a t-threshold scheme is ideal, as the
following easy lemma states.

Lemma 2.32. A threshold secret sharing scheme is ideal.

Proof. Consider a t-threshold secret sharing scheme and suppose by contra-
diction that it has a dummy index i. Then every set in A of cardinality
t contains i. Indeed, if there exists B ∈ A with |B| = t and i /∈ B, then
B∪{i} ∈ A because i is a dummy index; but |B∪{i}| = t+1, so B∪{i} ∈ Γ,
contradicting the fact that Γ ∩A = ∅. Hence, every set in A of cardinality t
contains i; but by hypothesis A contains every set of cardinality at most t,
and not all of them include i. This leads to a contradiction.

16

We remark also that threshold schemes are perfect. Indeed, for every
B ∈ P(I∗) either |B| ≤ t, or |B| ≥ t + 1, hence it immediately follows that
Γ ∪ A = P(I∗).

We now report a famous secret sharing scheme introduced by Shamir in
[Sha79] in 1979.

Example 2.33 (Shamir’s Secret Sharing Scheme). Shamir’s (t, n)-secret
sharing scheme is described as follows. Let Fq be a finite field with q > n.
Privately select uniformly at random an element s ∈ Fq and a polynomial
f ∈ Fq[x] with deg(f) ≤ t and f(0) = s. We define f(0) = s to be the secret,
and {f(i)}ni=1 to be the shares.

Shamir’s (t, n)-secret sharing scheme is a t-threshold scheme. Indeed, by
Lagrange’s Interpolation Theorem we can recover a polynomial f of degree
t from r evaluation points if and only if r > t; for this reason all sets of size
≥ t + 1 are accepted. On the other hand, given any set B of size t the set
B ∪ {0} has size t + 1; for any pair of possible secrets s1, s2 ∈ Fq Lagrange
Interpolation gives two polynomials f1(x), f2(x) ∈ Fq[x] with f1(0) = s1,
f2(0) = s2 and clearly f1 6= f2. Since the secrets have a uniform distribution
over Fq it follows that the polynomials that can be deduced from B using
Lagrange Interpolation are as many as the secrets and uniformly distributed;
hence, the set B is rejected.

2.3.2 Error-Correcting Codes

As a consequence of Theorem 2.30, for any ideal secret sharing scheme each
share is at least as large as the secret. From here on, we consider a particular
type of ideal schemes, where every random variable takes values in the same
space: a finite field Fq for some fixed prime power q. Also, for simplicity the
index set I will be {1, . . . , n+ 1} and the designated index j will be n+ 1.

There is a link between secret sharing schemes and error-correcting codes.
Suppose we have a code C of length n + 1, and let ~c = (ci)

n+1
i=1 ∈ C be a

codeword. Then we obtain a secret sharing scheme simply by setting cn+1 to
be the secret, and ci to be the i-th share for i ∈ {1, . . . , n}.

One can study the properties of these kinds of secret sharing schemes.
In particular, we are interested in how the parameters of the code C influ-
ence peculiarities of the scheme, such as the privacy and the reconstruction
thresholds. For instance, it is known that a code C with minimum distance
d is able to correct up to e =

⌊
d−1
2

⌋
transmission errors. This immedi-

ately implies that the secret sharing scheme associated with C has (at least)

17

(n− e)-reconstruction. On the other hand, if we take

C = {~c ∈ Fn+1
q | cn+1 =

n∑
i=1

ci},

then there is no chance to recover the secret cn+1 without knowing all the n
shares. In this case, we have clearly (n− 1)-privacy.

In this section we describe in more detail how these thresholds behave.
First, we introduce a new family of secret sharing schemes.

Definition 2.34. A secret sharing scheme is said to be linear if for any two
secrets sn+1, s

′
n+1 with respective share vectors (s1, . . . , sn) and (s′1, . . . , s

′
n)

and for any λ ∈ Fq, the vectors (s1 + s′1, . . . , sn + s′n) and (λs1, . . . , λsn) are
valid share vectors for the secrets sn+1 + s′n+1 and λsn+1 respectively.

It follows immediately from this definition that a secret sharing scheme
associated with a linear code C is in fact a linear secret sharing scheme.

Definition 2.35. A linear secret sharing scheme is said to be a ramp scheme
if it has t-privacy and r-reconstruction with r > t+ 1.

Ramp schemes are also called quasi-threshold secret sharing schemes.
Whether a linear secret sharing scheme associated with a linear code C is a
threshold scheme or a ramp scheme is explained by the following theorem.

Theorem 2.36. A secret sharing scheme associated with a linear code C is
a threshold scheme if and only if C is a MDS-code.

Proof. See [Haa09].

Example 2.37. Shamir’s (t, n)-secret sharing scheme is a t-threshold scheme.
Indeed, it can be seen as a secret sharing scheme associated with a Reed-
Solomon code of length n+ 1 and dimension t+ 1.

In this work we do not always deal with MDS-codes, so the schemes we
use are in general ramp schemes.

The next lemma points out a useful property of linear codes. Recall that
an erasure is a transmission error for which the position (but not the value)
is known.

Lemma 2.38. Let C be a code of length n over Fq with minimum distance
d. Then C is able to correct up to d− 1 erasures.

18

Proof. Suppose a codeword ~c ∈ C is received with d − 1 erasures in the
positions i1, . . . , id−1; let I = {i1, . . . , id−1}. Consider the subset V ⊂ Fnq
defined this way:

V = {~v ∈ Fnq | vi = ci ∀i /∈ I}.

Then, we prove that V ∩C = {~c}. Indeed, for sure ~c ∈ V ∩C. Suppose there
exists ~c′ ∈ V ∩ C, ~c′ 6= ~c; Then d(~c,~c′) ≤ d − 1, but this is a contradiction
since the minimum distance of C is d.

We are now able to state how the privacy and the reconstruction thresh-
olds behave in the case of linear secret sharing schemes associated with linear
codes.

Theorem 2.39. Let C be an [n+1, k]-linear code with minimum distance d;
let also C∗ be its dual code, and d∗ the minimum distance of C∗. Then the
linear secret sharing scheme associated with C is a (d∗ − 2, n− d+ 2)-ramp
scheme.

Proof. First, we prove the reconstruction threshold. Suppose we have n−d+2
elements of a codeword ~c ∈ C at the positions i1, . . . , in−d+2 with n + 1 not
appearing in this list. Let I = {i1, . . . , in−d+2}; we flag the elements in the
positions {1, . . . , n}\I as erasures. Then we have exactly (n+1)−(n−d+2) =
d− 1 erasures, and by Lemma 2.38 we can uniquely recover ~c. This implies
that I is accepted.

Now, we prove the privacy threshold. Assume that I = {i1, . . . , id∗−2}
with n + 1 /∈ I is a set of shares which jointly determine the secret. Then
there is a row in a check matrix of C with 0 in all entries but in the positions
determined by I ∪ {n + 1}. This is equivalent to saying that the code C∗

contains a codeword whose non-zero entries lie only on the positions given by
I ∪ {n+ 1}. This codeword has Hamming weight d∗ − 1 by definition, so we
get a contradiction. Hence, the shares in I do not determine the secret.

2.3.3 High Information Rate Ramp Schemes

The main advantage that ramp schemes have when compared to threshold
secret sharing schemes is that, at the price of some uncertainty about the
privacy and reconstruction thresholds, they allow a higher information rate.

The secret sharing schemes we studied so far all have in common the fact
that the secret is just a single element of the field Fq. Theorem 2.30 states
that for every ideal secret sharing scheme each share is at least as large as the
secret. If, however, we go beyond the standard definition of secret sharing
schemes, we can also go beyond this result. Hence, it is reasonable to ask
whether it is possible to have secrets of bigger length.

19

Here is a first generalization of the schemes associated with linear codes
that we have seen so far. Let C be a code of length n + ` with ` > 1, and
define for each codeword the elements at the positions {1, . . . , n} to be the
shares, and those at the positions {n+ 1, . . . , n+ `} to be the secrets.

Lemma 2.40. Let C be an [n+ `, k]-linear code with minimum distance d ≥
`+1; let also C∗ be its dual code, and d∗ ≥ `+1 the minimum distance of C∗.
Then the ramp scheme associated with the code C is a (d∗−`−1, n+`−d+1)-
ramp scheme.

Proof. Acceptance follows by applying the same proof as in Theorem 2.39,
substituting n with n+ `− 1.

As for rejection, we use again an argument which is similar to the one used
for Theorem 2.39. Assume that I = {i1, . . . , id∗−`−1} with {n + 1, . . . , n +
`} ∩ I = ∅ is a set of shares which have a linear relation with the secret
(or with part of it). Then the code C∗ contains a codeword whose non-zero
entries lie only on the positions contained in {n + 1, . . . , n + `} ∪ I. This
codeword has Hamming weight at most d∗− `− 1 + ` = d∗− 1 by definition,
so we get a contradiction. Hence, the shares in I are uncorrelated with the
secret.

The limitation d ≥ `+ 1 is due to the fact that, since we have n shares in
this scheme, we need that n+ `− d+ 1 ≤ n, while the limitation d∗ ≥ `+ 1
is needed because the privacy threshold should be at least 0.

Here we give an example that will be very useful later.

Example 2.41. Let C be an [n + `, t + `]-Reed-Solomon code. Since C is
MDS it meets the Singleton bound, hence its minimum distance is (n+ `)−
(t+`)+1 = n− t+1. On the other side, we have that the minimum distance
of the dual code is (t + `) + 1 = t + ` + 1. With these parameters, and
assuming that n− t+ 1 ≥ `+ 1 as in the hypothesis of Lemma 2.40, we have
that the ramp scheme associated with C has (t + ` + 1)− `− 1 = t privacy
and n+ `− (n− t+ 1) + 1 = t+ ` reconstruction.

In [Haa09] we find a construction that allows to have secrets of size Ω(n),
without using codes of length bigger than n. Let Ĉ be an [n, k̂]-linear code,
and let C ⊂ Ĉ be a subcode. In particular, C is an [n, k]-linear code with
k < k̂. Now, let ` = k̂ − k and consider a linear map:

ϕ : F`q → Fnq ,

with the properties:

� ϕ is injective;

20

� Im(ϕ)⊕ C = Ĉ.

Let S = Im(ϕ). Such an S can always be found, for example by completing

a basis of C to a basis of Ĉ. Any ~̂c ∈ Ĉ can be uniquely written as:

~̂c = ~c+ ~s,

with ~c ∈ C, ~s ∈ S. Let also ~v ∈ F`q s.t. ϕ(~v) = ~s.

In this environment, we define the vector ~̂c to be the set of shares, and
the vector ~v to be the secret.

Theorem 2.42. Let Ĉ be an [n, k̂]-linear code with minimum distance d̂ and
let C be a subcode of Ĉ of dimension k < k̂. Let d∗ be the minimum distance
of the dual code of C. Then the secret sharing scheme described above is a
(d∗ − 1, n− d̂+ 1)-ramp scheme.

Proof. As pointed out above, every codeword ~̂c of Ĉ can be written as ~̂c =
~c + ~s, with ~c ∈ C, ~s ∈ S. It follows that ~s = ~̂c − ~c. Therefore, a set I
is accepted if it is accepted by both the scheme associated with Ĉ and the
scheme associated with C. On the other hand, a set I is rejected if it is
rejected by both those schemes. Let d be the minimum distance of C and d̂∗

be the minimum distance of the dual code of Ĉ.
First, we prove acceptance. By Theorem 2.39 the acceptance thresholds

for the schemes associated with Ĉ and C are, respectively, n − d̂ + 1 and
n − d + 1. I must be accepted by both, so it must have cardinality at
least the maximum of the two. d ≥ d̂ because C ⊂ Ĉ, so it follows that
n− d̂+ 1 ≥ n− d+ 1 and acceptance is proven.

Now, we prove rejection. By Theorem 2.39 the rejection thresholds for
the schemes associated with Ĉ and C are, respectively, d̂∗ − 1 and d∗ − 1. I
must be rejected by both, so it must have cardinality at most the minimum of
the two. We have d̂∗ ≥ d∗ because Ĉ∗ ⊂ C∗, so it follows that d∗−1 ≤ d̂∗−1
and rejection is proved.

This concludes the discussion of secret sharing schemes. In the next
sections we apply secret sharing to perfectly secure message transmission
and present two communication-optimal PSMT protocols.

21

3 An Asymptotically Optimal 3-Round Pro-

tocol

In this section we treat the first of the main topics of this work, which is a
3-round protocol that asymptotically meets the known lower bound for com-
munication overhead. Recall that Narayanan et al. [NPRS04] proved that in
the case of n ≥ 2t+ 1 (where n is the number of channels and t is the size of
the adversary) PSMT protocols have a lower bound in the communication
overhead equal to n

n−2t . Nevertheless, a protocol which actually meets this
bound has never been presented.

Throughout this section we always stick to the case q = Ω(n). Indeed,
the problem is much easier when we let q be arbitrarily larger than n, while
it is non-trivial for q = Ω(n).

In Section 3.1 we introduce a technique that was first used by Kurosawa
and Suzuki in [KS08]: the use of a maximal set of linearly independent vectors
modulo a code. We also give a more general approach so it can be applied
to generic codes. Then, in Section 3.2 we present a basic 3-round protocol
on which the new protocol will be based. In Section 3.3 we present the new
notion of block-maximal set of linearly independent vectors modulo a code.
Finally, we introduce our protocol step by step, giving formal proofs for every
detail including privacy, reliability, communication cost and communication
overhead. We also generalize from the setting with n = 2t+ 1 to the setting
with n = 2t+ b with b ∈ Z. t will always represent the size of the adversary
A.

3.1 Linear Dependence Modulo a Code

In this section we introduce the concepts of linear dependence modulo a code,
based on the work of Kurosawa and Suzuki [KS08].

Suppose that we have a linear code C of length n, and we transmit a set of
codewords X = {~c1, . . . ,~cr}. Assume that a t-adversary A is able to corrupt
all the entries at the positions contained in IA = {i1, . . . , it} ⊂ {1, . . . , n}.
Let D = {~d1, . . . , ~dr} be the set of received codewords.

In general, some of the ~di’s will not belong to C. In particular, if the
minimum distance of C is d > t (as it will be in our applications) then any

modification made by A in a vector ~ci will result in a vector ~di /∈ C. Indeed,
A can modify up to t entries, hence d(~di,~ci) ≤ t < d.

The error-vectors ~ei = ~di − ~ci for i ∈ {1, . . . , r} span a subspace E ⊂ Fnq
called the error-vector space. The following lemma is straightforward to
prove.

22

Lemma 3.1. dim(E) ≤ t.

Proof. Since A can modify only the entries in the positions in IA, it follows
that all the non-zero entries of every ~ei will be in positions contained in IA.
For every j ∈ {1, . . . , n} we denote ~εj as the vector with 1 on the j-th position
and 0 on every other position; then we have that E is contained in the vector
space spanned by {~εi1 , . . . ,~εit}, which has dimension t.

Moreover, it is clear that we have E ∩ C = {~0}. We are interested in

finding a minimal subset {~di1 , . . . , ~dia} ⊆ D with a ≤ t so that:

〈~ei1 , . . . , ~eia〉 = E.

Definition 3.2. Let C be a linear code of length n over Fq, and let ~v1, . . . , ~vs ∈
Fnq \ {~0}. Then we say that ~v1, . . . , ~vs are linearly independent modulo C if
any relation of the type:

s∑
i=1

αi~vi = ~c,

with α1, . . . , αs ∈ Fq and ~c ∈ C holds if and only if α1 = · · · = αs = 0 and
~c = ~0.

We can now prove the following simple fact, which will be very useful
later on.

Theorem 3.3. Let B be a maximal set of vectors of D that are linearly
independent modulo C. Then |B| = dim(E).

Proof. Let B = {~di1 , . . . , ~dia} and consider the vectors ~eij = ~dij − ~cij for
j ∈ {1, . . . , a}. Then trivially also the ~eij are linearly independent modulo
C. Since the subspace spanned by the ~eij is contained in E, it follows that
|B| ≤ dim(E).

Conversely, let {~ei1 , . . . , ~eis} be a basis of E contained in {~e1, . . . , ~er};
then, for j ∈ {1, . . . , s} we have ~eij = ~dij −~cij , with ~dij ∈ D and ~cij ∈ C. Let
α1, . . . , αs ∈ Fq not all 0, ~c ∈ C s.t.:

s∑
j=1

αj ~dij = ~c,

then:
s∑
j=1

αj ~dij =
s∑
j=1

αj(~eij + ~cij) =
s∑
j=1

αj~eij −
s∑
j=1

αj~cij ,

23

so
s∑
j=1

αj~eij = ~c′

for some ~c′ ∈ C. Now, the Hamming weight of the term on the left side is
less than or equal to s ≤ t, while ~c′ is a codeword of C, so this equality is
possible only if ~c′ = ~0. Since the ~eij are linearly independent, it follows that

α1 = · · · = αs = 0. In other words, the set {~di1 , . . . , ~dis} is a set of vectors

of D that are linearly independent modulo C. Hence, {~di1 , . . . , ~dis} ⊆ B and
|B| ≥ dim(E).

From this theorem it is straightforward to see that such B is a minimal
set of vectors in D whose error-vectors span the whole E. Indeed, as a
consequence of this theorem we have that the error-vectors of any proper
subset of B generate a vector space over Fq of dimension strictly less than
dim(E).

Furthermore, by Lemma 3.1 the errors that are generated by a t-adversary’s
activity span a subspace of dimension at most t. In our applications we use
an [n, k]-linear code C with minimum distance d ≥ t + 1. It follows by the
Singleton bound that k + t ≤ n, hence the error-vector space can always
be fully determined. Indeed, if we find such a set B with |B| = t, then we
must have an error-vector space of dimension t. It follows that the condition
k + t ≤ n is necessary and sufficient.

It only remains to state how to find the set B in practice. In [KS08] Kuro-
sawa and Suzuki’s method is based on Lagrange’s Interpolation Theorem.
However, in this thesis the hypothesis of the theorem on the field size is not
always satisfied. Nevertheless, we can determine B with a basic linear-algebra
argument as well. This remains computationally efficient even despite the
lack of structure that characterizes generic codes.

Before we state the argument, we require the following definition.

Definition 3.4. Let C be a linear code of length n over the field Fq, H a
check matrix for C and ~v ∈ Fnq . Then we call the syndrome of ~v the vector
~σ = ~v ·H.

It follows from the definition that a vector of Fnq belongs to C if and only

if its syndrome is ~0. The following proposition can be used to compute B.

Proposition 3.5. Let C be a linear code of length n over Fq, and ~v1, . . . , ~vs ∈
Fnq . Let also H be a check matrix for C. Then ~v1, . . . , ~vs are linearly in-
dependent modulo C if and only if their syndromes ~σ1, . . . , ~σs are linearly
independent.

24

Proof. We prove equivalently that ~v1, . . . , ~vs are linearly dependent modulo
C if and only if ~σ1, . . . , ~σs are linearly dependent. Let α1, . . . , αs ∈ Fq not all
0 such that

s∑
i=1

αi~vi − ~c = ~0

for some arbitrary ~c ∈ C. Then we claim that this equality is true if and
only if (

s∑
i=1

αi~vi − ~c

)
·H = ~0.

Indeed, the first equality certainly implies the second. On the other hand, if
the second equality holds then the left hand side of the first equation is equal
to some ~c′ ∈ ker(H) = C. Hence, since also ~c′ · H = ~0, both the following
equalities hold at the same time:

s∑
i=1

αi~vi − ~c = ~c′ and

(
s∑
i=1

αi~vi − ~c

)
·H = ~c′ ·H.

This clearly implies that if we replace ~c by ~c+ ~c′ in our inequalities (and we
can by the arbitrariness of ~c) the second equality implies the first. Therefore,

~0 = ~c ·H =

(
s∑
i=1

αi~vi

)
·H =

s∑
i=1

αi~vi ·H =
s∑
i=1

αi~σi,

which means that the first equality (i.e., saying that ~v1, . . . , ~vs are linearly
dependent modulo C) is equivalent to saying that ~σ1, . . . , ~σs are linearly
dependent.

It follows from Proposition 3.5 that B can be computed in a very simple
way. We can follow this simple algorithm. We initialize a set B = ∅. For
i = 1, . . . , r we check if the vector ~σi = ~di ·H is a linear combination of the
syndromes of the vectors in B; if it is not, we add ~di to B and proceed with
~di+1 (or we stop, if i = r). In the end, we output B = B.

This algorithm only requires r linear dependency checks, each of which
can be done in time polynomial in n.

3.2 A basic 3-Round Protocol

Now we present a basic 3-round protocol for the case n = 2t+ 1, on which
the new 3-round protocol we are presenting is based. We also explain the
main issues in reaching the optimal communication overhead of n

n−2t .

25

3.2.1 Overview

This basic protocol mainly relies on the technique of finding a maximal set of
linearly independent vectors modulo a code explained above in Section 3.1.
The main idea is to take advantage of having a third communication round
by giving complete feedback about the channels that were corrupted during
the first round.

Let q ≥ n + t + 1. As stated in the introduction we consider the case
q = Ω(n) since with larger field size the problem becomes much easier to
solve.

In this protocol a code C over Fq is used, with the following properties.
The secret sharing scheme associated with C is a t-threshold scheme. We
need t-privacy since each share in this scheme will be sent over a different
channel, and t of these channels are controlled by A. On the other hand,
we need (t + 1)-reconstruction for the information reconciliation part of the
protocol.

This protocol consists of four steps. In the first step, S sends some secret
random values to R. Then in the second step, R computes a maximal set
of linearly independent vectors modulo the code that is used for the error-
vector space generated by A as described in Section 3.1 and sends it to S. In
the third step S enciphers the message using the random values selected at
the beginning of the first step. Next, he sends the enciphered message to R
together with a description of the channels that were corrupted during the
first step. Finally, in the fourth and final step R recovers all random data
that was sent during the first step and deciphers the message.

This protocol is not efficient enough in terms of communication overhead
because sending the message during the third communication round is rel-
atively expensive. In fact, even though sending the message immediately
during the first step would be less expensive, the transmission of the maxi-
mal set of linearly independent vectors modulo the code in the second step
would then leak information about the message. Hence, only random data
is sent during the first step to prevent leakage, at the cost of increasing the
overhead to roughly 2n.

3.2.2 The Protocol

Let C be an [n+ 1, t+ 1]-Reed-Solomon code over Fq. By Example 2.37 the
secret sharing scheme associated with C is a t-threshold scheme. Note that
the set of vectors consisting of the first n positions of the codewords of C
forms a code C ′. C ′ is again a linear code, but in particular by Definition 2.11
it is also a Reed-Solomon code with length n and dimension t+ 1. As a

26

consequence, the secret sharing scheme associated with C ′ is a t-threshold
scheme as well.

Suppose that S wants to send to R a message M ∈ Fn3

q . The details of
the first communication round can be found in Figure 3.1.

S does the following.

� He selects y1, . . . , yn3+t elements of Fq uniformly at random.

� For each k ∈ {1, . . . , n3 + t} he selects a codeword ~c(k) ∈ C uniformly

at random such that c
(k)
n+1 = yk. The vector ~c(k)

′
= (c

(k)
1 , . . . , c

(k)
n) ∈ Fnq

is obtained by restricting to the first n positions of ~c(k)

� For each i ∈ {1, . . . , n} and each k ∈ {1, . . . , n3 + t} he sends through

channel i the element c
(k)
i , thus keeping secret the element c

(k)
n+1 = yk

to any collusion of t channels.

Figure 3.1: First communication round.

Basically, in the first round S samples n3 + t codewords of C uniformly
at random, which each encode a uniformly random value in Fq. The rea-
son for the “+t” is that later in the protocol at most t of those codewords
are discarded. Next, he sends the codewords component-wise through the
communication channels.

The table below intuitively shows how encoding is done.

c
(1)
1 c

(1)
2 . . . c

(1)
n−1 c

(1)
n c

(1)
n+1 = y1

c
(2)
1 c

(2)
2 . . . c

(2)
n−1 c

(2)
n c

(2)
n+1 = y2

...
...

. . .
...

...
...

c
(n3+t−1)
1 c

(n3+t−1)
2 . . . c

(n3+t−1)
n−1 c

(n3+t−1)
n c

(n3+t−1)
n+1 = yn3+t−1

c
(n3+t)
1 c

(n3+t)
2 . . . c

(n3+t)
n−1 c

(n3+t)
n c

(n3+t)
n+1 = yn3+t

n shares 1 secret

Assume now that R received the vectors ~d(k) ∈ Fnq at the end of the first
round. Figure 3.2 shows the details of the second round.

As we saw in Section 3.1 the maximal set B of linearly independent
vectors modulo C ′ fully determines the error-vector space spanned by the
errors carried by the vectors ~d(k). R computes B and then broadcasts it.

Figure 3.3 shows how S acts in the third (and last) communication round.

Here we assume that B = {~d(k1), . . . , ~d(kr)}, with r ≤ t.

27

R does the following.

� As in Section 3.1 he computes a maximal set B of linearly independent
vectors modulo C ′ for the whole error-vector space.

� He broadcasts B.

Figure 3.2: Second communication round.

S does the following.

� He computes a set of indices I consisting of all the non-zero entries of
the vectors ~d(k`) − ~c(k`)′ for ` ∈ {1, . . . , r}.

� He defines the set J ⊆ {1, . . . , n3+t} as the first n3 indices k, according
to the usual order on the natural numbers, of the set {1, . . . , n3 + t} \
{k1, . . . , kr}.

� He joins all the values yk with k ∈ J , obtaining a one-time-pad key
K of length n3 over Fq.

� He broadcasts I and the message M enciphered with K.

Figure 3.3: Third communication round.

S first determines all channels that have been corrupted by A during the
first round. Then he discards those secret values corresponding to the vectors
in the set B and uses the others to form a secret key K. He then enciphers
the message using K and sends it across.

Finally, R acts as in Figure 3.4 in order to recover the message M .

R does the following.

� He computes the set J .

� He considers the vectors (~d(k), 0) ∈ Fn+1
q for k ∈ J , and erases the

entries corresponding to the indices in I ∪ {n+ 1}.

� He corrects those erasures, obtaining the vectors ~c(k) and in particular
the values yk with k ∈ J .

� He computes K, deciphers the enciphered message and obtains M .

Figure 3.4: Message decoding by R

28

In this final step R erases all data corresponding to the channels that
were corrupted by A during the first communication round on the vectors
~c(k)

′
with k ∈ J . This allows him to recover the random data that was

initially sent by S. He then computes the secret key K, which allows him to
decipher the encrypted message.

This concludes the protocol. In the next section we prove that this pro-
tocol reaches perfect privacy and perfect reliability, with an overhead of 2n.

3.2.3 Proofs

First, we claim that with this simple protocol R is able to compute M reli-
ably.

Proposition 3.6. At the end of every protocol execution R outputs a mes-
sage M ′ with P (M ′ = M) = 1.

Proof. First of all, we recall that the vector ~c(k)
′

is a codeword of C ′. A has
size at most t, hence in the first communication round he can corrupt up to t
entries for each codeword ~c(k)

′
. Therefore, for every k we have d(~d(k),~c(k)

′
) ≤

t. Since d(C ′) = n − (t + 1) + 1 = t + 1, this implies that if A corrupted

any data during the transmission of ~c(k)
′

we have that ~d(k) /∈ C ′. So, the
errors carried by the vectors ~d(k) span an error-vector space E of dimension
at most t. The maximal set of linearly independent vectors modulo C ′ that is
computed by R is hence well-defined and gives complete information about
all the positions of the corruptions that were made by A during the first
communication round.

As a consequence, the set I that S computes in the third round contains
all the channels that have been corrupted by A and clearly |I| ≤ t. When R
receives this set I, he can erase all the entries contained in I ∪ {n+ 1} from

the vectors (~d(k), 0) ∈ Fn+1
q . He still has at least t+ 1 correct entries of each

codeword ~c(k), and the reconstruction threshold of C is t + 1. Therefore, he
can recover each codeword ~c(k) and extract the secret c

(k)
n+1 = yk.

R now has all the values yk with k ∈ J and from those he can compute
the secret key K, and hence he can reliably output the message M .

Now, we prove the privacy of the protocol.

Proposition 3.7. After every protocol execution the view of A is independent
of the message M .

Proof. After the first communication round A knows t entries of each code-
word ~c(k). However, the privacy threshold of C is t, so he cannot compute the
secret element yk = c

(k)
n+1. After the second communication round, instead,

29

he can compute all the codewords ~c(k`) for ` ∈ {1, . . . , r} corresponding to
the vectors in the maximal set of linearly independent vectors modulo C ′.
Hence, he knows the values yk1 , . . . , ykr . Since these values are discarded, the
secret key K is perfectly secure.

Finally, it is easy to see that at most 2n4 + tn2 + tn field elements are sent
in this protocol in order to transmit a message of size n3. Hence 2n is an
approximate upper bound to the communication overhead of the protocol.

This completes the study of this basic 3-round protocol. The basic 3-
round protocol presented here is close to optimal, even though it is very
simple. However, if we want to actually reach optimality we have to overcome
a major problem: after the sending of the maximal set of linearly independent
vectors modulo C ′, A can have information about up to t values yk. Since
we do not know a priori which values yk are compromised, we must discard
them a posteriori. This implies that only randomness can be sent during
the first communication round, doubling the communication overhead. So, if
we want to send the message during the first communication round we need
a technique which allows S and R not to discard any value but still keep
the message private. The technique we use involves block-maximal sets of
linearly independent vectors modulo a code and is introduced in the next
section.

3.3 Block-Maximal Sets of Linearly Independent Vec-
tors Modulo a Code

Suppose we divide our codewords ~c(1), . . . ,~c(n
3) into n2 blocks of n vectors.

From here on, vectors will be denoted as ~v(j,k), where:

� j is the index of the block that contains the vector;

� k is the index of the vector inside the the j-th vector block.

The `-th component of a vector ~v(j,k) will be denoted as ~v
(j,k)
` .

First we explain what we mean when we say that a block j is involved by
a maximal set of linearly independent vectors modulo C ′.

Definition 3.8. Let D = {~d(j,k) | j ∈ {1, . . . , n2}, k ∈ {1, . . . , n}} and let

B = {~d(j1,k1), . . . , ~d(jr,kr)} with r ≤ t, {j1, . . . , jr} ⊂ {1, . . . , n2}, {k1, . . . , kr} ⊂
{1, . . . , n} be a maximal set of linearly independent vectors modulo C ′. Then
the block j is said to be involved by B if j ∈ {j1, . . . , jr}.

Next, we introduce an ordering for these maximal sets.

30

Definition 3.9. Let B1, B2 be two maximal sets of linearly independent
vectors modulo C ′. Then we say that B1 4 B2 if:

{j | j is involved by B1} ⊆ {j | j is involved by B2}

It is easy to see that 4 is a partial order.

Definition 3.10. A maximal set B of linearly independent vectors modulo
C ′ is said to be block-maximal if it is maximal with respect to the partial
order 4.

A block-maximal set of linearly independent vectors modulo C ′ always
exists because every set of involved blocks is contained in the set {1, . . . , n2}.
In our applications the upper bound will be even smaller.

For every maximal set B of linearly independent vectors modulo C ′ we
introduce three definitions:

� We denote by R(B) the set {j | j is involved by B};

� We denote by S(B) ⊆ R(B) the set

{j ∈ R(B) s.t. |{k s.t. ~d(j,k) ∈ B}| = 1}.

In other words, S(B) is the set of blocks that are involved only once
by B;

� We denote by B′ ⊆ B the set of vectors {~d(j,k) ∈ B s.t. j ∈ S(B)}.
B′ will be called the reduced block-maximal set of linearly independent
vectors modulo C ′.

We now prove a very important property about block-maximal sets of linearly
independent vectors modulo C ′.

Proposition 3.11. Let B be a block-maximal set of linearly independent
vectors modulo C ′ for the whole error-vector space. Suppose that j /∈ R(B)

and let Ej be the error-vector space spanned over C ′ by the vectors ~d(j,k) for
k ∈ {1, . . . , n}. Then a maximal set of linearly independent vectors modulo
C ′ for Ej is contained in B′.

Proof. Assume by contradiction that no maximal set of linearly independent
vectors over C ′ of Ej is contained in B′. Let 〈B′〉 be the error-vector space
spanned by the errors carried by the vectors in B′. Then:

dim(Ej)− dim(Ej ∩ 〈B′〉) = a ≥ 1.

31

Hence, there are a vectors ~d(j,k1), . . . , ~d(j,ka) that, when added to a maximal
set of linearly independent vectors modulo C ′ for Ej ∩ 〈B′〉, form a maximal
set of linearly independent vectors modulo C ′ for E. These vectors will be
linearly independent modulo C ′ with all the vectors in B′ as well. Now,
since B is a maximal set of linearly independent vectors modulo C ′ for the
whole error-vector space, we have that a maximal set of linearly independent
vectors modulo C ′ for Ej must be contained in B. Hence, we can replace

a vector in B \ B′ with one of the vectors ~d(j,k1), . . . , ~d(j,ka), obtaining an
equivalent maximal set B̂ of linearly independent vectors modulo C ′ for the
whole error-vector space. As a consequence, R(B̂) = R(B) ∪ {j}, which
contradicts the block-maximality of B.

This proposition not only states an important property of block-maximal
set of linearly independent vectors modulo C ′ that will be fundamental later
on in describing the protocol, but it also gives an idea of how to compute
such a block-maximal set of linearly independent vectors modulo C ′.

Suppose that R wants to compute a block-maximal set of linearly inde-
pendent vectors modulo C ′ for the whole error-vector space. Then he can
use the following algorithm:

� He computes a (generic) maximal set B of linearly independent vectors
modulo C ′ with the method given in Section 3.1;

� He computes R(B), S(B) and B′;

� For every j ∈ {1, . . . , n2} \R(B), he does the following:

– He computes the error-vector space Ej spanned by the errors car-

ried by the vectors ~d(j,k);

– If Ej ⊆ 〈B′〉 and j is the maximum in the set {1, . . . , n2} \R(B),
he outputs B, R(B), S(B) and B′;

– If Ej ⊆ 〈B′〉 and j is not the maximum in the set {1, . . . , n2} \
R(B), he passes to the next j;

– If Ej is not contained in 〈B′〉, he chooses a vector ~̂d(j,k) s.t. 〈 ~̂d(j,k)〉 ⊆
Ej \ (Ej ∩〈B′〉). Then, he replaces a vector in B \B′ with ~̂d(j,k) in
such a way that the obtained set is still a maximal set of linearly
independent vectors modulo C ′ for the whole error-vector space.
After this, he replaces B with this new set, he computes the new
R(B), S(B) and B′ and moves on to the next j.

32

All the steps in this algorithm work in polynomial time and since the number
of j’s is polynomial in n we have that the overall computational cost of
the algorithm is polynomial. The key reason is that for our protocol we
require the block-maximal set of linearly independent vectors modulo C ′ to
be maximal and not maximum with respect to the partial order 4.

3.4 The Optimal 3-Round Protocol

With the new technique introduced in Section 3.3 we are able to present
our optimal 3-round protocol. Recall that this protocol is communication-
optimal, in the sense that as the message size increases its communication
overhead is (asymptotically) n+1

n−2t . In Section 3.4.3 we prove that this pro-
tocol is perfectly private and in Section 3.4.4 we prove that it is perfectly
reliable. The communication overhead is analyzed in Section 3.4.5. Finally, a
generalization in the case of n = 2t+b with b ∈ Z is presented in Section 3.4.6.

3.4.1 Overview of the Protocol

Let n = 2t+ 1 and assume that q ≥ n+ 1. As in the basic 3-round protocol,
here just two codes are necessary for our purposes: the codes C and C ′,
defined precisely as in Section 3.2. Indeed, we just need their privacy and
reconstruction properties.

The main idea in this protocol is to have S break the message into several
message blocks of length n. In order to prevent the leakage caused by the
transmission of the block-maximal set of linearly independent vectors modulo
the code in the second communication round, he first encodes each message
block with 1-privacy. Then, he sends the enciphered message blocks across
during the first communication round encoded as secret vectors. Since R
sends a reduced block-maximal set of linearly independent vectors modulo
the code in the second communication round, 1-privacy is enough to prevent
leakage on the message in the involved blocks. The blocks which are not
involved instead give a perfectly secure one-time pad which is used to encipher
and send again the involved message blocks. The cost of this last operation
is relatively low as long as the involved blocks are only a small fraction of
the total number. Hence, the only communication round during which a
significant number of field elements is sent is the first round. This allows the
communication rate to be (asymptotically) n+ 1, which is equal to the lower
bound of n+1

n−2t , as the message size increases.

33

3.4.2 The Protocol

We define two Reed-Solomon codes C, C ′ exactly as the codes C, C ′ in
Section 3.2 and with the same relation between them: the first n positions of
each codeword of C form a codeword of C ′ and every codeword of C ′ consists
of the first n positions of a codeword of C. The secret sharing schemes
associated with these codes are both t-threshold schemes.

Let γ ∈ Z, γ ≥ 3 and suppose that S wants to send to R a message
M of size L = nγ over Fq. In the first communication round S acts as in
Figure 3.5.

S does the following.

First, he breaks the message M into nγ−1 vectors ~m(1), . . . , ~m(nγ−1) ∈ Fnq ,

where each ~m(j) will be called the j-th message block. Then, for every
j ∈ {1, . . . , nγ−1} he does the following:

� He selects yj ∈ Fq uniformly at random;

� He initializes the vector ~y(j) = (yj, . . . , yj) ∈ Fnq ;

� He initializes the vector ~x(j) = (~m(j) + ~y(j), yj) ∈ Fn+1
q . This vector is

called the j-th encoded block ;

� He finds for every k ∈ {1, . . . , n+ 1} a codeword ~c(j,k) ∈ C s.t. c
(j,k)
n+1 =

x
(j)
k . From here on, vectors will be denoted as in Section 3.3.

� For every k he defines ~c(j,k)
′
= (c

(j,k)
1 , . . . , c

(j,k)
n) ∈ C ′.

� For every i ∈ {1, . . . , n} and for every k ∈ {1, . . . , n + 1} he sends

through channel i the element c
(j,k)
i , keeping secret all the values

c
(j,k)
n+1 = x

(j)
k .

Figure 3.5: First communication round.

What S actually does is to encode each message block ~m(j) into a vector
~x(j) with 1-privacy. The method can be seen as a Caesar cipher, with the key
of the cipher as the last element of the vector. He then sends each element of
each encoded block as a secret in the secret sharing scheme associated with
C.

The table below shows intuitively how the encoding of a message block
~m(j) is done.

34

c
(j,1)
1 c

(j,1)
2 . . . c

(j,1)
n−1 c

(j,1)
n c

(j,1)
n+1 = x

(j)
1 = m

(j)
1 + yj

c
(j,2)
1 c

(j,2)
2 . . . c

(j,2)
n−1 c

(j,2)
n c

(j,2)
n+1 = x

(j)
2 = m

(j)
2 + yj

...
...

. . .
...

...
...

c
(j,n)
1 c

(j,n)
2 . . . c

(j,n)
n−1 c

(j,n)
n c

(j,n)
n+1 = x

(j)
n = m

(j)
n + yj

c
(j,n+1)
1 c

(j,n+1)
2 . . . c

(j,n+1)
n−1 c

(j,n+1)
n c

(j,n+1)
n+1 = x

(j)
n+1 = yj

n shares 1 secret

Suppose now that R received the vectors ~d(j,k) for j ∈ {1, . . . , nγ−1} and
k ∈ {1, . . . , n + 1}. Then in the second communication round R acts as in
Figure 3.6.

R does the following.

� He computes a block-maximal set B of linearly independent vec-
tors modulo C ′ for the whole error-vector space as explained in
Section 3.3. In general, B = {~d(j1,k1), . . . , ~d(jr,kr)} with r ≤ t,
{j1, . . . , jr} ⊂ {1, . . . , nγ−1}, {k1, . . . , kr} ⊂ {1, . . . , n + 1}. He also
computes R = R(B), S = S(B) and B′.

� He broadcasts the sets B′, R and S.

Figure 3.6: Second communication round.

In other words, R computes a block-maximal set of linearly independent
vectors modulo C ′ as in Section 3.3. As we said above, since the blocks
involved by the reduced block-maximal set of linearly independent vectors
modulo C ′ are involved by only one vector, the 1-privacy provided by the
vectors ~x(j) is enough to prevent leakage on the message.

In the third communication round S acts as in Figure 3.7.
In this step S computes all the channels that were corrupted by A during

the first communication round on the blocks j with j /∈ R. He then broad-
casts this set of channels. Afterwards, if this set of channels is not enough to
determine all the channels corrupted by A also for the blocks j with j ∈ R,
he also sends those message blocks again using broadcast, where the yj with
j /∈ R are used as a key for a one-time pad encryption.

Finally in order to output the message M , R acts as in Figure 3.8.
In this last step, first R recovers all the codewords ~c(j,k) with j /∈ R

by erasing the channels contained in the set I. From them, he is able to
compute all the message blocks ~m(j) with j /∈ R. If the channels contained
in I are not enough to do the same operations for the remaining blocks,
then during the third communication round he received those message blocks

35

S does the following.

� He determines the channels corrupted by A during the first phase
on the j-th vector blocks with j /∈ R by looking at the non-zero
entries of the vectors ~c(js,ks)

′ − ~d(js,ks), obtaining the set of channels
I = {i1, . . . , ia} with a ≤ t;

� He broadcasts the set I;

� If a 6= t and |R| 6= |S| then he also does the following:

– He chooses the first |R|n indices in {1, . . . , nγ−1} \ R, say
{j1, . . . , j|R|n};

– He divides the vector (yj1 , . . . , yj|R|n) into |R| vectors

~z(1), . . . , ~z(|R|) ∈ Fnq ;

– For every jh ∈ R he broadcasts the message ~m(jh) using the vector
~z(h) as a key for a one-time-pad encryption.

Figure 3.7: Third communication round.

R outputs M . To do so, he does the following for every j /∈ R.

� He considers the vectors (~d(j,k), 0) ∈ Fn+1
q , and erases the entries cor-

responding to the indices contained in I ∪ {n+ 1}.

� He corrects those erasures, obtaining the vectors ~c(j,k) and in particular
the values x

(j)
k .

� He recovers ~m(j) and yj from ~x(j).

After that, he recovers the remaining part of the message:

� He computes all the vectors ~z(h);

� He recovers all the ~m(jh) with jh ∈ R by subtracting ~z(h) from the
received encrypted messages.

Figure 3.8: Message reconstruction by R

again, enciphered with the yj with j /∈ R. After computing these values, he
can decipher those message blocks as well.

This concludes the protocol. In the following sections we provide all the
proofs.

36

3.4.3 Privacy of the Protocol

In this section we show in detail that our protocol is perfectly private, i.e.,
that in every step the adversary does not even get partial information about
the message M .

After the first communication round A knows at most t positions of each
vector ~c(j,k)

′
that is sent by S. Hence, since the secret sharing scheme asso-

ciated with C ′ has t-privacy, he cannot recover any vector that was sent. In
particular, he cannot recover any of the elements c

(j,k)
n+1 = x

(j)
k (and hence the

encoded blocks) either.
We now show that the technique of using a block-maximal set of linearly

independent vectors modulo C ′ allowsR to send back to S some vectors ~d(j,k)

without leaking information about the message. Indeed, during the second
round A gets to know B′, R and S. The latter two are two sets of indices
which are independent of M . We should prove, therefore, that he gains no
partial knowledge about the message M during the transmission of B′.

Let ~d(j,k) ∈ B′, i.e., j ∈ S. Then, by the definition of S, the vector block
j is involved by B′ only by the vector ~d(j,k).

From the vector ~d(j,k) A learns the codeword ~c(j,k) and hence the value
c
(j,k)
n+1 = x

(j)
k . However:

� if k = n+1, then x
(j)
n+1 = yj, which is a random element of Fq completely

unrelated with the j-th message block;

� if k 6= n + 1, then x
(j)
k = m

(j)
k + yj. Hence, for the adversary it is

impossible to learn the value m
(j)
k without first guessing yj.

In other words, B′ is uncorrelated with the message.
Finally, during the third round A learns the set I (which is already known

by A) and the vectors ~m(jh)+~z(h). To prove perfect privacy, we need to prove
that A has no knowledge about the vectors ~z(h). Now, we saw above that
after the first communication round A has no knowledge about any of the
yj. During the second communication round he might however learn up to t
values yj: precisely those with j ∈ S. Since by definition the j’s used for the
vectors ~z(1), . . . , ~z(|R|) are not in S, we can conclude that A has no knowledge
about them.

This proves that our 3-round protocol is perfectly secure.

3.4.4 Reliability of the Protocol

In this section we prove that our protocol is perfectly reliable, i.e., that at the
end of the protocol executionR outputs a message M ′ with P (M ′ = M) = 1.
We do this by proving that every step is well-defined.

37

Assume that R received the vectors ~d(j,k) after the first communication
round.

Remark. For all j, k the vector ~c(j,k)
′
= (c

(j,k)
1 , . . . , c

(j,k)
n) is a codeword of C ′.

Suppose that A corrupted some of these entries. It follows that since the size
of A is t, we have that d(~c(j,k)

′
, ~d(j,k)) ≤ t < d(C ′); hence, ~d(j,k) /∈ C ′. Hence,

the vectors ~d(j,k) define an error-vector space E of dimension less than or
equal to t and a (block-) maximal set of linearly independent vectors modulo
C ′ for it can be found.

During the third round S again sends some encrypted parts of M only
if a 6= t or |R| 6= |S|. Indeed, if a = t or |R| = |S| then there is no need
for this last part. If a = t then I contains all the channels controlled by the
adversary, hence R will be able to correct the errors that occurred during
the first phase on all the vector blocks, including those with j ∈ R. On the
other hand, if |R| = |S| then since |B| ≥ |R| ≥ |S| = |B′| we have that
B = B′ and B′ is a maximal set of linearly independent vectors modulo
C ′ for the whole error-vector space. Hence, also in this case the set I is
enough for R to determine and correct all the errors that occurred during
the first phase. Observe now that since |R| ≤ t by definition, the cardinality
of the set {1, . . . , nγ−1} \R is at least nγ−1− t > |R|n. Therefore the vectors
~z(1), . . . , ~z(|R|) are well defined.

We now conclude this analysis by proving that with all the information
he received, R is able to output M . With the data received during the third
communication round, R for every j ∈ {1, . . . , nγ−1}\R can do the following:

� He considers the vectors (~d(j,k), 0) ∈ Fn+1
q and erases the entries corre-

sponding to the indices in I ∪ {n+ 1}. Since the minimum distance of
C is (n + 1) − (t + 1) + 1 = t + 2 he can correct those erasures and
recover the codewords ~c(j,k). In particular, he obtains all the elements
c
(j,k)
n+1 , and hence the encoded blocks ~x(j).

� He decodes the message block ~m(j) from the equality ~x(j) = (~m(j) +
~y(j), yj).

Hence, now R has all the message blocks ~m(j) for j /∈ R.
Now, if |I| = t or |S| = |R| then as we saw previously the information

he has about the adversary is enough to perform the same operations also
on the j-th vector blocks for j ∈ R and he can therefore recover the entire
message.

If a 6= t and |S| 6= |R| instead, the messages ~m(j) for j ∈ R are easily
recovered by subtracting the corresponding ~z(j)’s from the vectors received

38

during broadcast. We remark that indeed, R has all the yj’s needed to
compute the vectors ~z(j). Therefore, the whole message can be received with
perfect correctness.

3.4.5 Communication Overhead of the Protocol

We now analyze the communication overhead of the protocol.

� During the first communication round nγ + nγ−1 codewords of length
n are sent for an amount of nγ+1 + nγ field elements.

� During the second communication round up to t codewords of length
n and up to 2t indices are broadcast, for an amount of tn2 + 2tn field
elements.

� During the third communication round we have two possibilities.

– If a = t or |S| = |R|, then only a set of indices of size at most t is
broadcast, for an amount of up to tn field elements;

– If a 6= t and |S| 6= |R| then up to t vectors of length n and up to
t indices are broadcast, for an amount of tn2 + tn field elements.

Therefore it is easy to see that we reach the worst case when a 6= t and
|S| 6= |R|. In this case we have that in total nγ+1 + nγ + 2tn2 + 3tn =
nγ+1 +nγ +n3 + (t− 1)n field elements were sent in order to send a message
of size L = nγ. Hence, the information rate is

n+ 1 +
1

nγ−3
− 1

2nγ−2
= n+ 1 +O

(
1

nγ−3

)
.

It is clear that as γ grows, this quantity asymptotically tends to n + 1 =
n+1
1

= n+1
n−2t .

3.4.6 The Case n = 2t+ b

The construction of our optimal 3-round protocol can be easily generalized
to the case n = 2t+ b, with b ∈ Z. Note that b can be linear in n, i.e., b = εt
for some 0 < ε < 1. Suppose that q ≥ n+ b+ 1.

Fix n + b elements α1, . . . , αn+b ∈ Fq. Define C to be an [n + b, t + b]-
Reed-Solomon code over Fq. As we saw in Example 2.41, a secret sharing
scheme associated with C with secrets of size b is a (t, t+ b)-ramp scheme.

Now, the set of vectors consisting of the first n positions of the codewords
of C forms a code C ′ which can be proven to be an [n, t + b]-Reed-Solomon

39

code. The secret sharing scheme associated with C ′ also has t-privacy and
(t+ b)-reconstruction.

Let γ ∈ Z, γ ≥ 3 as before and suppose that S wants to send to R a
message M of size L = bnγ over Fq. The protocol proceeds exactly as in the
case n = 2t+ 1, with the following differences.

� At first, M is divided into bnγ−1 message blocks of length n. The
definition of the encoded blocks does not change.

� Every j-th vector block contains b encoded blocks, in the following way.
Consider the k-th position of b encoded blocks, say x

(j1)
k , . . . , x

(jb)
k . Then

S selects a polynomial f ∈ Fq[x] of degree at most t+ b− 1 such that

f(αn+1) = x
(j1)
k , . . . , f(αn+b) = x

(jb)
k . This polynomial will define the

codeword ~c(j,k). The last b positions of the codewords are kept secret,
and the first communication round proceeds as before.

The table below shows how encoding is performed in this setting for
each block j. Here in the notation we omit the index “j” for simplicity.

c
(1)
1 c

(1)
2 . . . c

(1)
n−1 c

(1)
n c

(1)
n+1 = x

(j1)
1 . . . c

(1)
n+b = x

(jb)
1

c
(2)
1 c

(2)
2 . . . c

(2)
n−1 c

(2)
n c

(2)
n+1 = x

(j1)
2 . . . c

(2)
n+b = x

(jb)
2

...
...

. . .
...

...
...

. . .
...

c
(n)
1 c

(n)
2 . . . c

(n)
n−1 c

(n)
n c

(n)
n+1 = x

(j1)
n . . . c

(n)
n+b = x

(jb)
n

c
(n+1)
1 c

(n+1)
2 . . . c

(n+1)
n−1 c

(n+1)
n c

(n+1)
n+1 = x

(j1)
n+1 . . . c

(n+1)
n+b = x

(jb)
n+1

n shares b secrets

� It is worth noting that the block-maximal set B of linearly independent
vectors modulo C ′ that R computes is maximal in the vector blocks
involved, but not in the encoded blocks involved. Even though this is
equivalent because the number of the encoded blocks involved is exactly
b times the number of vector block involved, the definition of R = R(B)
differs.

� During the second communication round A learns b secrets for each
vector in the reduced block-maximal set of linearly independent vectors
modulo C ′ that is broadcast. However, each of these single secrets
belongs to a single encoded block, and privacy is preserved for the
same reasons as stated in Section 3.4.3.

� with the information contained in the index I computed by S after
the second communication round, R after the third communication
round can fix the codewords in all the j-th vector blocks with j ∈ R,

40

recovering b message blocks for each vector block. In particular, he has
at least bnγ−1 − bt values yj.

� during the third communication round, if a 6= t and |S| 6= |R|, S must
broadcast b|R| messages instead of only |R|; however, since there are at
least bnγ−1− bt > b|R|n values yj on which A has no knowledge about,
he can still define the vectors ~z(h) (they will be b|R| this time) and use
them as keys for a one-time pad encryption.

We now analyze the information rate of this variant of the protocol.

� During the first communication round still nγ + nγ−1 codewords of
length n are sent, for an amount of nγ+1 + nγ field elements.

� During the second communication round up to t codewords of length
n and up to 2t indices are broadcast, for an amount of tn2 + 2tn field
elements; again here there is no difference.

� During the third communication round we again have two possibilities.

– if a = t or |S| = |R|, then only a set of indices of size at most t is
broadcast, for an amount of up to tn field elements;

– if a 6= t and |S| 6= |R| then up to bt vectors of length n and up to
t indices are broadcast, for an amount of btn2 + tn field elements.

Therefore in total nγ+1+nγ+t(b+1)n2+3tn field elements were sent in order
to send a message of size L = bnγ. Hence, the information rate becomes

n

b
+

1

b
+

1

2nγ−3
+

3

2bnγ−2
=
n+ 1

b
+O

(
1

nγ−3

)
.

It is clear that as γ grows, this quantity asymptotically tends to n+1
b

= n+1
n−2t ,

nearly reaching optimality in this case as well.

41

4 A Nearly Optimal 2-Round Protocol

In Section 3 we presented a 3-round protocol which asymptotically meets the
lower bound for the communication overhead of n

n−2t . This lower bound for
the case n ≥ 2t + 1 holds for any number of rounds which is larger than 2,
hence it is worth asking whether we can meet the lower bound tightly in a
2-round setting as well.

Just as for the 3-round case, a 2-round protocol with a communication
overhead of n

n−2t (or asymptotically close) has never been presented. The best
result currently known is due to Kurosawa and Suzuki [KS08]. In their paper
they reach cn

n−2t overhead, up to a multiplicative constant c. This constant
c can be shown to be 25. In this section we introduce some new ideas to
improve this constant, and present a 2-round protocol that as the message
size increases reaches a (asymptotic) communication overhead 6n

n−2t . That is,
we improve the multiplicative constant from 25 to 6.

First we present a version of the protocol that holds for n = 2t + 1. We
open with an overview and then prove privacy, reliability and communication
overhead. Next, in Section 4.4, we generalize this protocol for the n = 2t+ b
case.

4.1 Graph Matching

In this section we explain in detail a technique that was presented by Narayanan
et al. in [NPRS04] and then used in [ACH06] and [KS08].

Let C be a linear code of length n over Fq with minimum distance at
least t + 1. Assume that during the initial communication round a party
(here we assume, without loss of generality, R) sends n vectors ~c(k) ∈ C for

k ∈ {1, . . . , n} by sending the element c
(k)
i through each channel i. Assume

moreover that he also transmits through each channel i the vector ~c(i).
Suppose that A corrupts the transmission. Hence, the other party (here

we assume S) received the vectors ~d(k), and moreover a vector ~v(i) from each
channel i.

It is easy to see that for each i ∈ {1, . . . , n} the received vector ~v(i) can
differ from the vector ~c(i) originally sent by R only if i is controlled by the
adversary.

Definition 4.1. A conflict is a vector ((i, `), ui,`) with the following proper-
ties:

� i ∈ {1, . . . , n},

� ` ∈ {1, . . . , n} \ {i},

42

� ui,` ∈ Fq,

� ui,` = v
(i)
` and

� d
(i)
` 6= v

(i)
` .

In other words, a conflict is a vector which contains information about a
position in which ~v(i) and ~d(i) differ. With the data that he received, S is
able to determine all such conflicts between the vectors ~v(i) and the ~d(i).

First, assume without loss of generality that for every i ∈ {1, . . . , n}
we have ~v(i) ∈ C. Indeed, the case ~v(i) /∈ C can happen only in the case
of a corruption of A. Since we are interested in worst-case adversaries, we
therefore assume that whenever A controls a channel i he transmits a vector
~v(i) ∈ C.

Also assume, again without loss of generality, that d(~v(i), ~d(i)) ≤ t. Indeed,

if d(~v(i), ~d(i)) > t, then since A can corrupt at most t entries of ~d(i) it is clear
that ~v(i) 6= ~c(i) and that channel i is controlled by A. Since again we are
interested in worst-case adversaries, we therefore assume that A, for any
channel i he controls, causes at most t conflicts with respect to ~v(i).

Two other observations are important. The first is that there cannot be
a conflict of type ((i, i), ui,i). Indeed, the existence of such a conflict would
trivially imply that channel i is corrupted and we consider only worst-case
adversaries. The second is that if ~d(i) 6= ~c(i), then ~d(i) /∈ C and in particular
~d(i) 6= ~v(i). This implies that at least one conflict will be generated in this
case.

Suppose that S wants to send to R all the conflicts he computed from
the received data. We need a method to limit the amount of data he has to
transmit and this method is given by the maximal matching. Let G = (V,E)
be the undirected graph defined as follows:

� the vertex set is V = {1, . . . , n};

� a pair (i, `) belongs to the edge set E if and only if there is a conflict
((i, `), ui,`).

It is clear that if (i, `) ∈ E then at least one of the channels i and ` is
corrupted by the adversary.

Definition 4.2. A matching M of a graph G is a set M ⊆ E such that if
(i1, `1), (i2, `2) ∈M then i1, i2, `1, `2 are pairwise distinct.

We are interested in a maximal matching, i.e., a matching M for which
there does not exist a matching M ′ with M ⊂ M ′ ⊆ E. Such a maximal
matching can easily be computed in polynomial time (see [KS08]).

43

Each edge is given by a conflict. The following proposition states how
a maximal matching gives an upper bound on the total number of conflicts
that S computes. A similar result can be found in [KS08], but here directly
we apply it to our purposes.

Proposition 4.3. |E| ≤ 2|M |t.

Proof. Define:

V (M) = {i ∈ V | ∃` ∈ {1, . . . , n} s.t. (i, `) ∈M}.

Then, since M is a maximal matching, for each (i, `) ∈ E we have that either
i or ` lies in V (M). Moreover, |V (M)| = 2|M |, and for each i ∈ V we assume
without loss of generality that |{` | (i, `) ∈ E or (`, i) ∈ E}| ≤ t. Indeed:

� Let i be a channel which is not controlled by A. Then the data that is
sent through i is received correctly, and hence it generates no conflict
between any other channel j which is not controlled by A. Similarly,
any channel j which is not controlled by A generates no conflict with i.
Since the number of channels which are not controlled by A (including
i) is n− t, we have that indeed |{` | (i, `) ∈ E or (`, i) ∈ E}| ≤ t.

� If for a channel i we have that |{` | (i, `) ∈ E or (`, i) ∈ E}| > t, it
follows from the argument above that i must be controlled by A. It
follows that in particular S can deduce this. Since we are interested in
worst-case adversaries we therefore assume that for any channel i which
is controlled by A we have that |{` | (i, `) ∈ E or (`, i) ∈ E}| ≤ t as
well.

Therefore:

|E| ≤
∑

i∈V (M)

|{` | (i, `) ∈ E or (`, i) ∈ E}| ≤ 2|M |t.

Another very important property is that if M is a maximal matching,
then at least |M | channels were corrupted by the adversary. Indeed, as we
saw before, for each (i, `) ∈M either i or ` (or both) is corrupted by A.

4.2 Generalized Broadcasting

Before we present the protocol we need to introduce another technique that is
used during its execution, which is generalized broadcasting. The purpose of

44

this technique is to efficiently send information reliably in one communication
round without requiring privacy.

Let n = 2t + b for some 1 ≤ b ≤ t. Suppose that the adversary controls
t channels and that the receiver knows w ≤ t of them. Finally, let C be an
[n, k]-linear code over Fq with minimum distance d ≥ w+ 2(t−w) + 1. Then
generalized broadcasting based on C consists of encoding k elements of Fq
into a codeword ~x ∈ C and then sending over each channel i ∈ {1, . . . , n}
the value xi.

We prove that generalized broadcasting can be used to send information
reliably. Assume that A during the transmission corrupts some values of ~x in
the t− w positions which are not known by the receiver. Then the received
vector has at most t errors, of which w are marked by the receiver as erasures.
Since d ≥ w + 2(t− w) + 1 the receiver can therefore correct the w erasures
and in addition t − w more errors. Hence, not only does the receiver learn
the original vector, but he can also spot all the channels that were corrupted
by A during transmission of the codeword ~x.

It is worthwhile to note that for b = 1 this is the description of the
broadcasting that is introduced in Section 2.2.1, where we choose the code
C = {(a, . . . , a) ∈ Fnq | a ∈ Fq}. We note also that if k ∈ Ω(n) then this
technique allows to send reliably a linear amount of information.

4.3 The Nearly Optimal 2-Round Protocol

4.3.1 Overview of the Protocol

In this section we present our nearly-optimal 2-round protocol. It is based
on the protocol presented by Kurosawa and Suzuki in [KS08], but we use
some different techniques aiming to minimize the amount of data which is
sent during the protocol execution.

Let γ ≥ 3, n = 2t+ 1 and let q be such that qn � nγ−1. The latter is the
only restriction we need to place on q and it is easy to see that n does not
need to be very large to allow any q ≥ 2.

Remark. By the isomorphism of vector spaces Fqn ∼= Fnq we may view each
field element that is sent as a vector in Fnq . In fact, each element of Fqn is
transmitted via n elements of Fq. This turns out to be very useful for the
efficiency of the protocol.

In this protocol three Reed-Solomon codes are used, namely C, C2 and
C3. They have the following properties:

� The secret sharing scheme associated with C is a t-threshold scheme.
Indeed, each share associated with a codeword of C will be sent through

45

a different channel and since A is a t-adversary we need t-privacy. The
(t+ 1)-reconstruction is required in the information reconciliation part
of the protocol.

� The ramp sharing scheme associated with C3 encodes secrets of size
t+1 and has t-privacy and n-reconstruction. C3 is used for the privacy
amplification part of the protocol.

� Unlike the codes C and C3, the code C2 is defined during protocol
execution and its parameters depend on the strategy of the adversary.
C2 is used to reliably send information with generalized broadcasting
(see Section 4.2).

The main idea in this protocol is to apply some additional techniques to
the protocol of Kurosawa and Suzuki. As in the optimal 3-round protocol
presented in Section 3 the message has size L = Ω(nγ) over Fqn and is divided
into nγ−1 message blocks. Furthermore, the property that qn � nγ−1 allows
to decrease the communication overhead for the conflict sending part of the
protocol.

4.3.2 The Protocol

Let C be an [n+1, t+1]-Reed-Solomon code over the field Fqn . By Example 2.37
the secret sharing scheme associated with C is a t-threshold scheme.

As we did for the 3-round protocol in Section 3.2, we also define an
[n, t + 1]-Reed-Solomon code C ′ by considering the first n positions of each
codeword of C. As demonstrated earlier, the secret sharing scheme associated
with C ′ is a t-threshold scheme as well.

Let γ ∈ Z, γ ≥ 3 and suppose that S wants to send to R a message of
size L = (t + 1)nγ−1 over Fqn . In the first communication round, R acts as
in Figure 4.9.

In other words, firstR selects nγ+tn codewords of C uniformly at random.
The reason for the “+tn” is that up to t vector blocks are discarded during
the protocol execution. Then, he divides them into nγ + t vector blocks
consisting of n vectors each.

Now, for every ~c(j,k) let fj,k ∈ Fqn be the defining polynomial of the
codeword. In general we have:

fj,k(x) = a
(j,k)
0 + a

(j,k)
1 x+ · · ·+ a

(j,k)
t xt;

R defines ~a(j,k) to be the vector:

~a(j,k) = (a
(j,k)
0 , . . . , a

(j,k)
t) ∈ Ft+1

qn .

46

R acts as follows.

� He selects nγ + tn codewords of C uniformly at random;

� He divides them into nγ−1 + t blocks of n codewords each, labelling
each block with an index j. From here on ~c(j,k) denotes the k-th
codeword in the j-th block.

� For each pair (j, k) he initializes the vectors ~a(j,k) ∈ Ft+1
qn as the vector

containing the coefficients of the defining polynomial of the codeword
~c(j,k).

� For every j ∈ {1, . . . , n2 + t}, k ∈ {1, . . . , n} and i ∈ {1, . . . , n} R
sends through channel i the element c

(j,k)
i , keeping secret the element

c
(j,k)
n+1 . In addition, he sends through each channel i the vector ~a(j,i).

Figure 4.9: First communication round.

It is clear that for any (j, k) the vector ~a(j,k) uniquely defines the polynomial
fj,k, and hence uniquely defines the codeword ~c(j,k). Note that the vector
~a(j,i) that is sent through channel i uniquely defines a codeword which is
equal to the vector ~c(j,k) with k = i. From here on, we call ~c(j,k)

′
the vector

(c
(j,k)
1 , . . . , c

(j,k)
n) ∈ Fnqn . By definition we have that ~c(j,k)

′ ∈ C ′.
The table below shows how encoding and sending are performed in this

step for each vector block j. Also here we omit the index “j” in the notation
for simplicity.

a
(1)
0 a

(2)
0 . . . a

(n−1)
0 a

(n)
0

a
(1)
1 a

(2)
1 . . . a

(n−1)
1 a

(n)
1

...
...

. . .
...

...

a
(1)
t−1 a

(2)
t−1 . . . a

(n−1)
t−1 a

(n)
t−1

a
(1)
t a

(2)
t . . . a

(n−1)
t a

(n)
t

c
(1)
1 c

(1)
2 . . . c

(1)
n−1 c

(1)
n c

(1)
n+1

c
(2)
1 c

(2)
2 . . . c

(2)
n−1 c

(2)
n c

(2)
n+1

...
...

. . .
...

...
...

c
(n−1)
1 c

(n−1)
2 . . . c

(n−1)
n−1 c

(n−1)
n c

(n−1)
n+1

c
(n)
1 c

(n)
2 . . . c

(n)
n−1 c

(n)
n c

(n)
n+1

n shares and n vectors 1 secret

Now, suppose that S after the first communication round received for
each block j the vectors ~d(j,k) ∈ Fnqn and ~w(j,i) ∈ Fnqn , where R transmitted

47

~c(j,k)
′

and ~a(j,i) respectively. In the second communication round S acts as in
Figure 4.10.

S does the following.

� He computes a maximal set B of linearly independent vectors modulo
C ′ for the whole error-vector space and the set R = R(B).

� He broadcasts B and R.

� For each vector block j ∈ J he acts as follows.

– He computes the vectors ~v(j,i) ∈ C ′ as the unique codewords
defined by the vectors ~a(j,i).

– He computes all the conflicts ((i, `), ui,`) generated by the vectors
~d(j,i) and ~v(j,i), as defined in Section 4.1.

� He defines a graph G as in Section 4.1 from all the computed conflicts,
and finds a maximal matching M .

� He defines w = |M |.

� He defines an [n,w + 1]-Reed-Solomon code C2 over Fqn .

� He defines the set J = {j1, . . . , jnγ−1} with the first nγ−1 indices
j, according to the usual order on the natural numbers, of the set
{1, . . . , nγ + t} \R.

� For every j ∈ J he encodes all the conflicts into m codewords of C2,
say ~x(j,1), . . . , ~x(j,m).

� For each j ∈ J and each channel i he sends to R the elements
x
(j,1)
i , . . . , x

(j,m)
i through channel i.

Figure 4.10: Second communication round.

S during this step computes a maximal set B of linearly independent
vectors modulo C ′ for the whole error-vector space spanned by all the errors
carried by the vectors ~d(j,k) and then broadcasts it. As we saw in Section 3.1,
the set B allows R to recover all the channels that were corrupted by A
during the first communication round.

In addition S computes all the conflicts generated by the vectors ~v(j,i)

and ~d(j,k) with k = i. He then encodes them into codewords of a code C2

whose parameters depend on the size of the maximal matching of the conflict

48

graph. In Section 4.3.4 we prove that S is able to send data reliably with
C2. Note that from this point on the blocks j with j ∈ R are not considered
anymore in the protocol execution.

Now, S applies privacy amplification and sends the message to R, as
described in Figure 4.11.

S does the following.

� For each j ∈ J he defines a vector ~y(j) ∈ Fnqn , where for each i ∈
{1, . . . , n} we have that y

(j)
i is the secret corresponding to the set of

shares expressed by ~v(j,i).

� He defines an [n+ t, n]-Reed-Solomon code C3 over Fqn .

� For each j ∈ J he considers ~y(j) as the first n elements of a codeword
(~y(j), ~z(j)) ∈ C3, where ~z(j) ∈ Ft+1

qn .

� He joins all the ~z(j) together in order to obtain a private key K ∈ FLqn .

� S encrypts the message with K and broadcasts it to R.

Figure 4.11: Privacy amplification and sending of the message

For each block j S considers the secret elements carried by the vectors
~v(j,k), obtaining a vector of n field elements. He then extracts t+ 1 field ele-
ments from them using C3. In Section 4.3.3 we prove that these elements are
perfectly private. In total S has L = (t + 1)nγ−1 perfectly private field ele-
ments, which are used as a key for a one-time pad encryption. This concludes
the second communication round.

Finally R reconciles his information with S and computes the message
with the procedure listed in Figure 4.12.

R does the following.

� He uses all the conflicts received to recover all the codewords ~v(j,i).

� He applies privacy amplification to the secrets carried by these code-
words as S did in Figure 4.11, and therefore obtains K.

� He subtracts K from the encrypted message.

Figure 4.12: Message reconstruction for R

First, R uses the conflicts received during the second communication

49

round to recover all the vectors ~v(j,i). In Section 4.3.4 we explain in detail
how this works. He then applies privacy amplification to these vectors and
obtains K. Finally he uses K to decrypt the message.

This ends the description of the protocol. In the next two sections we
discuss respectively the privacy and the reliability of the protocol.

4.3.3 Privacy of the Protocol

In this section we analyze the privacy of our 2-round protocol. We recall that
a protocol is perfectly private when the secret message is independent of the
view of the adversary A, or in other words if A at the end of the protocol
execution has not even a partial knowledge about the message.

First, we study the first communication round. Suppose that channel i is
not controlled by A. Then, after the first communication round A knows t
positions for each codeword ~c(j,i). Since C is a t-threshold scheme, it follows
that A does not have enough information to recover the secret c

(j,i)
n+1.

Suppose, instead, that channel i is controlled by A. Then in addition to
t entries of the codeword ~c(j,i), A learns also the vector ~a(j,i). Hence, he can
recover the full codeword ~c(j,i) and therefore the secret c

(j,i)
n+1.

During the sending of B A learns some additional information about the
blocks j with j ∈ R; this additional information, though, does not change
his view since S and R will not use the blocks j with j ∈ R any further in
the protocol.

It is straightforward to see that encoding all the conflicts into the code-
words ~x(j,1), . . . , ~x(j,m) ∈ C2 and then sending these vectors is equivalent to
sending the conflicts using a generalized broadcasting based on C2. We there-
fore need to prove that the sending of all the conflicts does not change the
view of A.

The vectors encoded into codewords of C2 consist of the conflicts that S
computed in every block j with j /∈ R. Suppose that the conflict ((i, `), ui,`)
was sent. Then:

� if A controls channel i, then he already knows the element ui,`;

� if A does not control channel i, then he controls channel ` and the
value d

(j,i)
` was corrupted by him; but in particular this means that he

already knew the value ui,` = v
(j,i)
` = c

(j,i)
` .

Hence, the conflicts can even be computed independently by A before they
are transmitted by S.

Finally, we must prove that the extracted key K is perfectly private.
The ramp sharing scheme associated with C3 with secrets of size t+ 1 has

50

t-privacy and n-reconstruction. Now, consider the vector ~y(j). By the prop-
erties of C3, these are enough to extract the latter t+ 1 entries, which are
used for privacy amplification. Indeed, from Example 2.41 with ` = t+ 1 we
know that C3 has t-privacy for secrets of size (t+ 1) and A learns at most t
values.

4.3.4 Reliability of the Protocol

In this section we prove that our 2-round protocol has perfect reliability, i.e.,
that at the end of the protocol execution R is able to output the message
correctly. As for privacy, we analyze the reliability for each round.

Suppose that S after the first communication round received the vectors
~d(j,k) ∈ Fnqn and the vector ~w(j,i) ∈ Ft+1

qn from each channel i. Since every

~c(j,k)
′ ∈ C ′, if A corrupted some entries of this vector then d(~c(j,k)

′
, ~d(j,k)) ≤

t < d(C ′), and ~d(j,k) /∈ C ′.
If A controls channel i however, he can corrupt the vector ~a(j,i) and for-

ward to S a vector ~w(j,i) 6= ~a(j,i). In this case A can modify any number of
entries in this vector. On the other hand, when channel i is not controlled
by A, we have ~w(j,i) = ~a(j,i).

Now, during the second communication round the maximal set B of lin-
early independent vectors modulo C ′ is sent. We know from Section 3.1 that
B allows R to determine all the channels that were corrupted by A during
the first round and in particular on the blocks j /∈ R. Since |R| ≤ t there are
more than nγ−1 such blocks by definition. This means that J is well defined.
The blocks j with j ∈ R are discarded.

It remains to prove that R is also able to compute the secret key K.
Since privacy amplification runs deterministically on the elements to which
it is applied, it suffices to prove that R can recover all the nγ secrets used
by S. For this, he needs to know all the vectors ~v(j,i).

We can assume that R received B and R correctly. We can also assume
that for each j ∈ J he received the vectors ~x(j,1), . . . , ~x(j,m) correctly. Indeed,
suppose that A corrupted some of their entries. From B R is able to deter-
mine all the channels that were corrupted by A during the first round on the
blocks j with j /∈ R (and, in particular, for j ∈ J). As we saw in Section 4.1,
these channels are in total at least w. On the other hand, there are at most
t − w channels that A controls which are still unknown to R. Now, R can
erase the corrupted channels that he knows from the communication. Since

d(C2) = n− (w + 1) + 1 = n− w = (2t+ 1)− w = 2(t− w) + w + 1,

he can correct w erasures and t − w random errors from each codeword,
and in this way he recovers the vectors ~x(j,1), . . . , ~x(j,m) with perfect correct-

51

ness. As we remarked in Section 4.3.3 this is equivalent to use a generalized
broadcasting based on C2.

Suppose that channel i was not corrupted by the adversary. Then S and
R share the vector ~c(j,i). S obtains it from the vector ~a(j,i).

Suppose, instead, that channel i was corrupted by the adversary. Then
R considers a set of t + 1 channels which were not corrupted by the adver-
sary during the first phase. Let ` be one of these indices. There are two
possibilities:

� either there is not a conflict ((i, `), ui,`), and hence ~v(j,i) = ~c(j,i);

� or there is a conflict ((i, `), ui,`), and hence ~v(j,i) = ui,`.

Therefore, R knows t+1 entries of the vector ~v(j,i) and this is enough for him
to recover the entire vector. This implies that R can compute all the vectors
~v(j,i) and this concludes our analysis on the reliability of the protocol.

4.3.5 Communication Overhead of the Protocol

Now we analyze the communication overhead of the Protocol. We recall that
S effectively sends a message in FLqn with L = (t+ 1)nγ−1.

� During the first communication round R sends to S nγ + tn codewords
of C ′, for a total of nγ+1 + tn2 field elements. Moreover, nγ + tn vectors
~a(j,i) are sent, for a total of nγ+1 + (t+ 1)nγ + (3t+ 2)tn field elements.

� B has size at most t, hence up to t codewords are broadcast, for a total
of tn2 field elements. The set R contains at most t indices and each
index requires at most logq(n

γ−1 + t) elements of Fq to be sent. This
can be considered a negligible cost.

� As we saw in Section 4.1 for each j ∈ J at most 2wt conflicts are sent.
Each conflict ((i, `), ui,`) requires 2 logq(n) + n elements over Fq, which
for n large enough can be simplified to n. Hence, 2wt elements of Fqn
are sent with the generalized broadcasting, which then has a cost of
2wt · n

w+1
≤ n2. This holds for each j ∈ J , so in total S sends about

nγ+1 field elements.

� Finally, S broadcasts its encrypted message of size L, which requires
(t+ 1)nγ field elements.

Hence in total 2nγ+1 + 2(t+ 1)nγ + (5t+ 3)tn field elements were sent (up to
negligible differences), for sending a message of size L = (t+1)nγ−1 over Fqn .

52

Therefore, as γ grows asymptotically the information rate of the protocol is

2nγ+1 + 2(t+ 1)nγ + (5t+ 3)tn

(t+ 1)nγ−1
≤ 6n+

6

nγ−3
= 6n+O

(
1

nγ−3

)
,

as promised.

Remark. We can make two small improvements to the protocol, which were
not included in the protocol description because they do not influence the
performance much, while on the other hand would have made the analysis
on the overhead more complicated.

� Since we assumed that qn � nγ−1, it is not too restrictive to assume
that qn ≥ nγ + (t+ 1)nγ−1 + n2 − t2 − n− t. Hence, we can decide not
to discard any vector block. Indeed, in total S and R share nγ + tn
secrets, of which tnγ−1 + t2 + t are known by A. Then they can apply
privacy amplification to the whole vector using a Reed-Solomon code
with parameters [nγ + (t+ 1)nγ−1 +n2− t2−n− t, nγ + tn]; this would
allow them to generate a vector of size (t+1)nγ−1 +(t+1)n− t2−n− t
which is perfectly private.

� During the sending of the message, S can actually use generalized
broadcasting instead of the normal broadcasting. The efficiency of this
modification however depends on w, and there are optimal adversarial
strategies which allow an adversary to minimize the improvement of
the overhead.

4.4 Case n = 2t+ b

We can generalize our protocol for n = 2t + 1 to the more relaxed case
n = 2t+ b, where b ∈ Z. Note that b can be linear in n, i.e., b = εt for some
0 < ε ≤ 1.

As before, we pick a q for which qn � nγ−1. We define the code C to be
an [n+ b, t+ b]-Reed-Solomon code over Fqn . As we saw in Example 2.41 the
ramp sharing scheme associated with C with secrets of size b is a (t, t + b)-
ramp scheme.

Pick, as for the case n = 2t + 1, the [n, t + b]-Reed-Solomon code C ′

consisting of the vectors formed by first n positions of the codewords in C.
The secret sharing scheme associated with C ′ has also t-privacy and (t+ b)-
reconstruction.

Suppose that S wants to send to R a message of size L = b(t + b)nγ−1

over Fqn . The protocol runs precisely as for the case n = 2t + 1, with the
following differences.

53

� At the beginning of the first communication round R selects nγ + tn
codewords of C as before. This time, however, each codeword carries b
secrets instead of 1.

� The vectors ~a(j,i) belong to Ft+bqn , since the defining polynomials of the
codewords of C ′ have degree at most t+ b.

� The Reed-Solomon code C2 that is used for generalized broadcasting
during the second communication round has parameters [n,w+ b]. In-
deed, with such parameters the minimum distance of C2 is:

d(C2) = n− (w + b) + 1 = 2t+ b− w − b+ 1 = 2(t− w) + w + 1.

Therefore, C2 can handle w erasures and up to t− w random errors.

� Note that if b = Ω(n) then S is able to send a linear amount of data
with C2 even if w = 0, i.e., if no conflicts are found.

� The vectors ~v(j,i) give a total of bnγ secrets, of which btnγ−1 are known
by A.

� The Reed-Solomon code C3 used for privacy amplification has param-
eters [n + t + b, n]. Indeed, the privacy threshold of the ramp sharing
scheme associated with this code with secrets of size t+b is t = n−(t+b),
hence A has no partial knowledge about the secrets.

� After privacy amplification S and R share a common secret key K of
size b(t+ b)nγ−1.

� S sends the message using generalized broadcasting. This is now es-
sential to keep communication low.

Observe how this version of the protocol is exactly equal to the protocol for
n = 2t+ 1 when we set b = 1.

Now we analyze the communication overhead of this protocol.

� During the first communication round nγ + tn codewords of C ′ and
nγ + tn vectors ~a(j,i) ∈ Ft+bqn , for an amount of nγ+1 + (t+ b)nγ + tn2 +
(t+ b)tn field elements.

� The broadcasting of the maximal set of linearly independent vectors
modulo C ′ has the cost of the broadcasting of t codewords of length n,
which is tn2. The communication costs of R and S are negligible.

54

� As for the case n = 2t + 1, S for each j ∈ J must send at most
2wt conflicts. Hence, the communication cost for this part, thanks to
generalized broadcasting, is of 2wtnγ−1 · n

w+b
≤ nγ+1.

� Finally, S broadcasts its encrypted message of size L = b(t + b)nγ−1

using generalized broadcasting, which has a cost of b(t+ b)nγ−1 · n
w+b
≤

(t+ b)nγ.

Everything was sent in order to send a message of size b(t+b)nγ−1. Therefore,
applying to the denominator the inequality t + b ≥ n

2
where needed, the

communication overhead of this protocol is:

2nγ+1 + 2(t+ b)nγ + 2tn2 + (t+ b)tn

b(t+ b)nγ−1
≤ 4n

b
+

2n

b
+

2

bnγ−3
+

1

bnγ−3
=

=
6n

b
+

3

bnγ−3
= 6

n

b
+O

(
1

bnγ−3

)
,

as expected.

55

References

[ACH06] S. Agarwal, R. Cramer, and R. de Haan, Asyptotically Optimal
Two-Round Perfectly Secure Message Transmission, Advances
in Cryptology—CRYPTO ’06, Lecture Notes in Computer Sci-
ence, vol. 4117, Springer-Verlag, Berlin, 2006, pp. 389–401.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung, Perfectly Secure
Message Transmission, Journal of the ACM 40 (1993), no. 1,
17–47.

[FFGHV07] M. Fitzi, M. Franklin, J. Garay, and S. Harsha Vardhan, To-
wards Optimal and Efficient Perfectly Secure Message Trans-
mission, Theory of Cryptography Conference: TCC ’07, Lec-
ture Notes in Computer Science, vol. 4392, Springer, Berlin,
2007, pp. 311–322.

[Haa09] R. de Haan, Algebraic Techniques for Low Communication Se-
cure Protocols, Ph.D. thesis, 2009, URL: https://openaccess.
leidenuniv.nl/handle/1887/13603.

[KS08] K. Kurosawa and K. Suzuki, Truly Efficient 2-Round Per-
fectly Secure Message Transmission Scheme, Advances in
Cryptology—EUROCRYPT ’08, Lecture Notes in Computer
Science, vol. 4965, Springer-Verlag, Berlin, 2008, pp. 324–340.

[NPRS04] A. Narayanan, C. Pandu Rangan, and K. Srinathan, Op-
timal Perfectly Secure Message Transmission, Advances in
Cryptology—CRYPTO ’04, Lecture Notes in Computer Science,
vol. 3152, Springer-Verlag, Berlin, 2004, pp. 545–561.

[Sha48] C. E. Shannon, A Mathematical Theory of Communication, Bell
System Technical Journal 27 (1948), 379–423, 623–656.

[Sha79] A. Shamir, How to Share a Secret, Communications of the ACM
22 (1979), no. 11, 612–613.

56

https://openaccess.leidenuniv.nl/handle/1887/13603
https://openaccess.leidenuniv.nl/handle/1887/13603

A Appendix: A 2-Round Protocol Using Generic

Codes

Until now, all the linear codes that have been used for defining protocols
were Reed-Solomon codes. The reason for this is that Reed-Solomon codes
have optimal parameters, they can be defined for every length n (given a
large enough field) and are equipped with fast decoding algorithms.

One may ask, however, if protocols for PSMT can be defined using other
kinds of codes, for example generic codes. What we show in this appendix is
that the answer is yes, but we lose both communication and computational ef-
ficiency. While the fact that Reed-Solomon codes are MDS-codes allowed pre-
vious protocols to work with t-threshold schemes, the secret sharing schemes
associated with generic codes are not in general threshold schemes. Hence,
the approach given in this appendix is not possible for the case n = 2t + 1.
Therefore, we must assume that n = (2 + ε)t where, as usual, n is the num-
ber of channels, t is the number of channels controlled by the adversary and
0 < ε ≤ 1 with εt ∈ Z.

Here we give an overview of all the issues that come up when we weaken
our assumptions on the field size and on the structures of the codes that we
use, and present some ideas to overcome them. We present a 2-round protocol
based on the protocol we gave in Section 4.4. Even though it is structured in
the same way, some techniques are adapted to the use of generic codes. For
this reason this protocol is only sketched Section A.2, as we mainly focus on
the different technical solutions.

A.1 Uniformity Property for Codes

In this section we analyze an important property for secret sharing schemes
associated with a linear code. If a code C has length n, then it can have
s-uniformity for some s ≤ n.

Definition A.1. Let s ∈ Z, s ≤ n and C ∈ Fnq be a linear code of length
n. Then the secret sharing scheme associated with C has s-uniformity if for
every subset {i1, . . . , is} ⊆ {1, . . . , n} and for every choice of a1, . . . , as ∈ Fq
there exists a codeword ~c ∈ C s.t. for every j ∈ {1, . . . , s} we have cij = aj.

s-uniformity is very important, for example, when in the privacy ampli-
fication step of a perfectly secure message transmission protocol we need to
see a random vector as a part of a codeword of a bigger code which allows
us to extract the secret encryption key.

The following theorem proves a very simple sufficiency condition for a
linear code to have s-uniformity.

57

Theorem A.2. Let C be a linear code over Fq with dual C∗ and suppose
that d(C∗) ≥ s+ 1. Then C has s-uniformity.

Proof. Let G ∈ Mk×n(Fq) be a generator matrix for C. Then GT is a check
matrix for C∗. d(C∗) ≥ s + 1, so by Lemma 2.7 every set of s rows of GT

(i.e., columns of G) is linearly independent. This implies that for every s
columns Gi1 , . . . , Gis of G the map:

ϕ : Fkq → Fsq
~v 7→ ~v · (Gi1 , . . . , Gis)

is surjective. Hence, for every set of values a1, . . . , as ∈ Fq in the positions
i1, . . . , is, one finds a ~v that is mapped there by ϕ. Therefore, the codeword ~v·
G contains a1, . . . , as on the positions i1, . . . , is. This proves s-uniformity.

In this appendix n-uniformity is required as a property of the code used
for privacy amplification, as we see below in Section A.3.3. Theorem A.2 is
used in Section A.5 for the discussion on the existence of the code that is
used.

A.2 Sketch of the Protocol

In this section we introduce a sketch of the 2-round protocol that is based
on the use of generic codes. We also give an overview of the issues that come
up when the lack of structure that characterizes generic codes does not allow
the use of the standard techniques. As stated in the introduction of this
appendix, this protocol is mainly based on the protocol given in Section 4.4.

Let n = (2 + ε)t and Fq be a finite field whose size does not depend on n.
Suppose furthermore that S wants to send to R a message M of size Ω(n4).

During the first communication round n3 + tn codewords are randomly
sampled by R and then divided into n2 + t blocks consisting of n vectors. R
then sends these vectors component-wise through the n channels. In addition,
for each of these codewords he defines a vector which uniquely defines it and
sends it through a corresponding channel. Therefore this is in concept the
same first communication round that is performed in our 2-round protocol
using Reed-Solomon codes. However, the use of Reed-Solomon codes allows
us to encode an optimal amount of secret values, namely εt, while keeping
the properties of t-privacy and (n − t)-reconstruction. When using generic
codes this optimality is not certain anymore, so we use a construction that
allows for these properties. This construction is explained in Section A.3.1.

The second communication round now proceeds as follows. First S, from
all the vectors that he received during the first round, computes a maximal

58

set of linearly independent vectors modulo the code used for the error-vector
space and broadcasts it to R. In Section 3.1 we show that this part can
be executed efficiently with generic codes as well. He then defines the set
of all conflicts generated by the received vectors. These conflicts however
cannot be defined as in Section 4.1 because their size depends on n. Hence,
a different way for defining the conflicts is used. This approach is introduced
in Section A.4.

Furthermore, all these conflicts are sent with generalized broadcasting in
order to keep the overhead constant. While with Reed-Solomon codes we
can encode exactly an amount of n− d+ 1 field elements for each codeword
(where d is the minimum distance of the code that is used), this is not trivial
for generic codes. In fact, such an optimal amount is not reached in gen-
eral. Hence, in Section A.3.2 we briefly explain how to perform generalized
broadcasting with a suitable generic code.

Now, S applies privacy amplification and sends the message across. First,
he extracts the secrets that are encoded by all the received codewords and
he arranges them into vectors in Fnq . Privacy amplification now proceeds
differently from that introduced in the 2-round protocol using Reed-Solomon
codes. Indeed, the optimal parameters of Reed-Solomon codes allowed to
meet two important requirements. The first is that each of the secret vectors
could be seen as part of a codeword of a suitable code, so that privacy
amplification could be applied. The second is that a key of maximal size
(1 + ε)t could be extracted while keeping the properties of t-privacy and n-
reconstruction. These two requirements are not met in general by generic
codes. Therefore, in Section A.3.3 we analyze how privacy amplification is
performed in this step.
S then sends the encrypted message across. R performs information

reconciliation and mimics the privacy amplification performed by S. After
this he is able to output the original message. This concludes the protocol.

A.3 Perfectly Secure Message Transmission Over Fi-
nite Fields

In this section we analyze the issues that come up when we define a 2-round
protocol using generic codes that were pointed out in Section A.2. In this
setting we let n = 2t+ b = (2 + ε)t with 0 < ε ≤ 1 and b = εt ∈ Z≥1 and we
let Fq be the fixed finite field that is used. In the end it turns out that we
need generic codes with specific parameters that are given throughout the
section. The existence of such codes is discussed in Section A.5.

59

A.3.1 Establishment of Correlations

In the protocol given in Section 4.4 an [n+b, t+b]-Reed-Solomon code is used
for encoding b secrets and sending n shares. The ramp scheme associated
with this code has t-privacy and n − t = t + b = (1 + ε)t-reconstruction.
When we use generic codes however we have the following considerations.

� We still require t-privacy and (1+ε)t-reconstruction for the code that is
used during protocol execution. Indeed, the need for t-privacy follows
from the fact that each component of any of its codewords is sent
through a different channel. Moreover, this scheme requires (n − t)-
reconstruction for the information reconciliation part of the protocol.

� In general a generic code does not meet the Singleton-bound. We can-
not therefore in general encode the optimal amount of εt elements in
each codeword. Hence, we relax the hypothesis on the size of the se-
cret and we require that δt secrets instead of εt are encoded, for some
0 < δ ≤ ε.

� When we consider the first n positions of a Reed-Solomon code we
obtain another Reed-Solomon code. This in the protocol presented
in Section 4.4 allow us to encode b = εt field elements as the last b
positions of a codeword, while the first n positions are treated as shares
and still belong to a secret sharing scheme with suitable properties.
However, even though when we pick the first n positions of a linear code
we indeed obtain a linear code, in general no assumption can safely be
made on the parameters of such a shortened code. The construction for
ramp schemes given by Theorem 2.42 is therefore used to get a proper
encoding.

Hence, for this part of the protocol we use a linear code Ĉ1 with the following
two properties, using the construction given in Theorem 2.42.

� There exists a subcode C1 ⊂ Ĉ1 such that dim(Ĉ1) − dim(C1) = δt
with δ as described above.

� The resulting ramp sharing scheme associated with the code Ĉ1 with
the subcode C1 has t-privacy and (1 + ε)t-reconstruction.

Furthermore, in the protocol given in Section 4.4 for each codeword a vector
containing the coefficients of its defining polynomial is sent. In this setting
such “defining polynomials” do not exist, because codewords of generic codes
in general do not have that structure. We therefore define for each of these

60

codewords a vector of size (1 + ε)t over Fq which does not require any par-
ticular structure, but still uniquely defines it. This may be, for example, the
vector containing the first (1 + ε)t elements of the codeword.

A.3.2 Generalized Broadcasting

In the protocol given in Section 4.4 we perform generalized broadcasting
in order to send reliably information about the conflicts while keeping a
constant overhead. This requires a Reed-Solomon code whose parameters
depend on the strategy of the adversary. In the protocol based on generic
codes a generalized broadcasting is performed as well.

If we however let the parameters of the generic code that is used depend
on the strategy of the adversary then the analysis on the existence of such a
code becomes too difficult. Hence, we define it a priori, independently of the
adversary strategy. This implies that we should set the minimum distance
to be at least 2t+ 1, so that it can correct up to t errors for each codeword.

Since we are in the setting where n = (2+ε)t, by the Singleton-bound we
have that the dimension of such a code can be at most εt. Our parameters
are not tight in general, so as in Section A.3.1 we relax our hypothesis on
the parameters and we require that the dimension is αt for some 0 < α ≤ ε.

Hence, for this protocol using generic codes we define a linear code C2

with the following properties:

� d(C2) ≥ 2t+ 1, and

� dim(C2) = k2 = αt with α as described above.

Remark. Currently no algorithm for efficient decoding with generic codes
is known. Hence, the part of the protocol which involves generalized broad-
casting is computationally inefficient.

A.3.3 Privacy Amplification

The protocol given in Section 4.4 uses for privacy amplification an [n+b+t, n]-
Reed-Solomon code. As for the establishment of correlations (Section A.3.1)
and for generalized broadcasting (Section A.3.2), the fact that parameters
for generic codes are not tight forces us to make further assumptions. We
have the following considerations:

� First of all we need to be able to apply privacy amplification to any
possible random vector in Fnq . For this we require for the linear code
that we use in this step to have the following property: every possible
vector in Fnq consists in the first n positions of a codeword of this code.

61

This is closely related to n-uniformity, so by Theorem A.2 we require
the minimum distance of the code to be at least n+ 1.

� Since the parameters are not tight we cannot in general set the recon-
struction threshold to be n. Hence, we relax the hypothesis on the
reconstruction threshold and require for it to be strictly larger than n,
say n+ µt for some 0 < µ ≤ ε.

� If we set n + µt as reconstruction threshold then the vector in Fnq to
which we want to apply privacy amplification does not contain enough
information for reconstruction. A vector in Fµtq should hence be defined
and appended to the original vector in order to allow reconstruction.
S and R must share this vector in order to both perform privacy am-
plification, so in the protocol description we require that S defines it
and then broadcasts it to R during the second communication round.
The adversary hence knows this vector. For this reason we also require
(1 + µ)t-privacy for this step.

� When we use a Reed-Solomon code for privacy amplification we can
encode a secret of maximal length (1 + ε)t. Again, though, our pa-
rameters are not tight. On the one hand, we saw above that we need
(1 + µ)t-privacy. On the other hand we require n-uniformity. This
implies that given the (1 + µ)t values known by the adversary, at most
n−(1+µ)t = (1+ε−µ)t more values are uncorrelated to them. Hence,
this is the maximal size of a secret that can be encoded. As for code
Ĉ1 in Section A.3.1 we therefore relax the hypothesis on the size of the
secret and we assume that we can encode a secret of size λt for some
0 < λ ≤ 1 + ε− µ.

� Similar to the Reed-Solomon code of Section 4.4, which has length
n+ t+ b, we require the length of our generic code to be n+ µt+ λt =
(2 + ε+ µ+ λ)t.

� As for the code Ĉ1, in order to get a proper encoding we use the con-
struction given in Theorem 2.42 to define our ramp sharing scheme.

In conclusion, for the privacy amplification part of our protocol we define a
linear code Ĉ3 with the following properties:

� Its length is (2 + ε+ µ+ λ)t.

� There exists a subcode C3 ⊂ Ĉ3 such that dim(Ĉ3) − dim(C3) = λt
with λ as described above.

62

� The resulting ramp sharing scheme associated with the code Ĉ3 with
the subcode C3 has (1 + µ)t-privacy and (2 + ε + µ)t-reconstruction
with µ as described above.

A.4 Conflicts

During the second communication round of the 2-round protocol a graph is
computed from all the conflicts generated by the received vectors. In this new
setting these conflicts cannot be transmitted in the same manner. Indeed, a
vector ((i, `), ui,`) has size Ω(log(n)) over Fq, and therefore the whole set of
conflicts cannot be sent without having an overhead of Ω(log(n)). Hence each
set of conflicts contained in a codeword is encoded into a vector of different
form.

Assume that during the first communication round a set of n vectors
~c(1), . . . ,~c(n) ∈ Ĉ1 is sent by one party (that we here assume is R) in such a

way that for every i ∈ {1, . . . , n} and for every k ∈ {1, . . . , n} the value c
(k)
i

is sent through channel i. Assume moreover that for every k a vector ~a(k) ∈
Ft+εtq is defined, such that ~a(k) uniquely defines ~c(k) by the reconstruction

property of Ĉ1. Suppose finally that for every i the vector ~a(k) with k = i is
sent through channel i.

Assume that for i ∈ {1, . . . , n} respectively ~d(i) ∈ Fnq and ~w(i) ∈ Ft+εtq are
received. Then, initially the other party (that we here assume is S) computes
the vectors ~v(i) as the unique codewords of Ĉ1 defined by the vectors ~w(i).

Suppose that S needs to send all the information about the values v
(i)
`

with v
(i)
` 6= d

(i)
` . This would allow R to recover all the vectors ~v(i), as we saw

in the 2-round protocol based on Reed-Solomon codes. As remarked above
S cannot encode the conflicts in the same way here. Hence, he defines for
every i ∈ {1, . . . , n} the vector ~z(i) ∈ F2n

q as follows:

� z
(i)
` = z

(i)
n+` = 0 if v

(i)
` = d

(i)
` ;

� z
(i)
` = v

(i)
` , z

(i)
n+` = d

(i)
` if v

(i)
` 6= d

(i)
` .

The length of these vectors is linear in n, hence they can be sent reliably
using generalized broadcasting with an overhead of Ω(1).

On the one hand this technique for sending conflicts does not require
graphs and their matchings and allows for a constant communication over-
head. On the other hand since these vectors must be sent with the gener-
alized broadcasting they represent a computationally inefficient part of the
protocol.

63

A.5 Existence of Suitable Generic Codes

In this section we discuss the existence of the codes Ĉ1, C2 and Ĉ3 which
are used in the protocol. In general, bounds from Coding Theory state that
there do not exist codes for all combinations of parameters. Reed-Solomon
codes have optimal parameters, but they cannot be defined for q < n.

We treat each of the three cases separately, even though the procedure is
basically the same for each. First of all, we need the following definition.

Definition A.3. Let 0 < λ < q−1
q

. Then the q-ary entropy function Hq is
defined as:

Hq(λ) = λ logq(q − 1)− λ logq(λ)− (1− λ) logq(1− λ).

For our purposes, we express the q-ary entropy function in the following
equivalent form:

Hq(λ) = logq

(
(q − 1)λ

λλ(1− λ)(1−λ)

)
.

A result which is very important for this analysis is the following.

Theorem A.4 ([Haa09]). Let C be an [n, k]-linear code over Fq, d(C) be the
minimum distance of C and let d = λn with 0 < λ < q−1

q
. Then:

P (d(C) < d) < qk+n(Hq(λ)−1).

We prove that our codes Ĉ1, C2, Ĉ3 exist with a non-zero probability for
appropriate choices of q, ε, δ, α, µ and λ.

First we analyze the existence of Ĉ1. We note that the ramp sharing
scheme associated with Ĉ1 and C1 has (at least) t-privacy and (1 + ε)t re-
construction, while encoding secrets of size δt with 0 < δ ≤ ε. Hence, these
two codes must have the following properties:

� n− d(Ĉ1) + 1 ≤ t+ εt ⇒ d(Ĉ1) ≥ t+ 1 = n
(

1
2+ε

)
+ 1;

� d(C∗1)− 1 ≥ t ⇒ d(C∗1) ≥ t+ 1 = n
(

1
2+ε

)
+ 1;

� dim(Ĉ1)− dim(C1) = k̂1 − k1 = δt.

By Theorem A.4, we have:

P
(
d(Ĉ1) ≤ n

(
1

2+ε

))
≤ qk̂1+n(Hq(

1
2+ε)−1)

P
(
d(C∗1) ≤ n

(
1

2+ε

))
≤ qnHq(

1
2+ε)−k1

64

hence we study the inequalities:

1− P
(
d(Ĉ1) ≤ n

(
1

2+ε

))
≥ 1− qk̂1+n(Hq(

1
2+ε)−1) > 0

1− P
(
d(C∗1) ≤ n

(
1

2+ε

))
≥ 1− qnHq(

1
2+ε)−k1 > 0

For the first, we have:

1− qk̂1+n(Hq(
1

2+ε)−1) > 0 ⇐⇒

qk̂1+n(Hq(
1

2+ε)−1) < 1 ⇐⇒

qk̂1 <

(
q(1 + ε)

1+ε
2+ε

(2 + ε)(q − 1)
1

2+ε

)n

.

Since

(
q(1 + ε)

1+ε
2+ε

(2 + ε)(q − 1)
1

2+ε

)n

>

(
q

1+ε
2+ε

3

)n

= qn(
1+ε
2+ε
−logq(3)),

the inequality is satisfied for k̂1 < n
(
1+ε
2+ε
− logq(3)

)
.

For the second we have:

1− qnHq(
1

2+ε)−k1 > 0 ⇐⇒

qnHq(
1

2+ε)−k1 < 1 ⇐⇒

qk1 >

(
(2 + ε)(q − 1)

1
2+ε

(1 + ε)
1+ε
2+ε

)n

.

Since

(
(2 + ε)(q − 1)

1
2+ε

(1 + ε)
1+ε
2+ε

)n

<
(

3q
1

2+ε

)n
= qn(

1
2+ε

+logq(3)),

the inequality is satisfied for k1 > n
(

1
2+ε

+ logq(3)
)
.

Combining the two inequalities and requiring that:

k̂1 − k1 = δt = n

(
δ

2 + ε

)
we get that codes with parameters compatible with those of Ĉ1 and C1 exist
with probability greater than 0 for sufficiently large n when q, ε and δ satisfy
the following property:

ε− δ
2 + ε

> logq(9).

Now, we study the existence of the code C2. We recall that the code C2

should have the following property: d(C2) ≥ 2t + 1 = n
(
2+ε
2

)
+ 1, with

65

k2 ≥ αt = n
(

α
2+ε

)
. We want that:

1− P
(
d(C2) ≤ n

(
2 + ε

2

))
> 0,

hence applying Theorem A.4 we study the inequality:

1− qk2+n(Hq(
2

2+ε)−1) > 0.

Now,

1− qk2+n(Hq(
2

2+ε)−1) > 0 ⇐⇒

qk2+n(Hq(
2

2+ε)−1) < 1 ⇐⇒

qk2 <

(
2

2
2+ε ε

ε
2+ε q

(2 + ε)(q − 1)
2

2+ε

)n

.

Since

(
2

2
2+ε ε

ε
2+ε q

(2 + ε)(q − 1)
2

2+ε

)n

>

(
2

2
3 εq

ε
2+ε

3

)n

= q
n

(
ε

2+ε
+logq

(
3√4ε
3

))
,

the inequality is satisfied for k2 < n
(

ε
2+ε

+ logq

(
3√4ε
3

))
. Hence, for suffi-

ciently large n and parameters q, ε and α with:

α

2 + ε
<

ε

2 + ε
+ logq

(
3
√

4ε

3

)
i.e.,

ε− α
2 + ε

> logq

(
3

3
√

4ε

)
a code C2 with the desired parameters exists with probability greater than
0.

Finally, we study the existence of the codes Ĉ3 and C3. The codes Ĉ3

and C3 used in our protocol have the following properties:

� Their length is N = n + (µ + λ)t = (2 + ε + µ + λ)t, with 0 < µ ≤ ε,
0 < λ ≤ 1 + ε− µ;

� The reconstruction threshold of the ramp sharing scheme based on

them is at most n+µt = (2+ε+µ)t, hence d(Ĉ3) > λt = N
(

λ
2+ε+µ+λ

)
;

� The privacy threshold is at least (1 + µ)t, hence d(C∗3) > (1 + µ)t =

N
(

1+µ
2+ε+µ+λ

)
;

66

� dim(Ĉ3)− dim(C3) = k̂3 − k3 = λt.

We follow a similar approach to the one we used for the codes Ĉ1 and C1.
We want to prove that such codes Ĉ3 and C3 exists with probability greater
than 0, hence we study the two inequalities:

1− qk̂3+N(Hq(λ
2+ε+µ+λ)−1) > 0

1− qNHq(
1+µ

2+ε+µ+λ)−k3 > 0

For the first, we have:

1− qk̂3+N(Hq(λ
2+ε+µ+λ)−1) > 0 ⇐⇒

qk̂3+N(Hq(λ
2+ε+µ+λ)−1) < 1 ⇐⇒

qk̂3 <

(
qλ

λ
2+ε+µ+λ (2 + ε+ µ)

2+ε+µ
2+ε+µ+λ

(2 + ε+ µ+ λ)(q − 1)
λ

2+ε+µ+λ

)N

.

Since

(
qλ

λ
2+ε+µ+λ (2 + ε+ µ)

2+ε+µ
2+ε+µ+λ

(2 + ε+ µ+ λ)(q − 1)
λ

2+ε+µ+λ

)N

>

(
5
√

4 min(1, λ)q
2+ε+µ

2+ε+µ+λ

5

)N

=

= q
N

(
2+ε+µ

2+ε+µ+λ
+logq

(
5√4min(1,λ)

5

))
,

the inequality holds for:

k̂3 < N

(
2 + ε+ µ

2 + ε+ µ+ λ
+ logq

(
5
√

4 min(1, λ)

5

))
.

For the second inequality we have:

1− qNHq(
1+µ

2+ε+µ+λ)−k3 > 0 ⇐⇒

qNHq(
1+µ

2+ε+µ+λ)−k3 < 1 ⇐⇒

qk3 >

(
(2 + ε+ µ+ λ)(q − 1)

1+µ
2+ε+µ+λ

(1 + µ)
1+µ

2+ε+µ+λ (1 + ε+ λ)
1+ε+λ

2+ε+µ+λ

)N

.

Since

(
(2 + ε+ µ+ λ)(q − 1)

1+µ
2+ε+µ+λ

(1 + µ)
1+µ

2+ε+µ+λ (1 + ε+ λ)
1+ε+λ

2+ε+µ+λ

)N

<
(

5q
1+µ

2+ε+µ+λ

)N
=

= qN(1+µ
2+ε+µ+λ

+logq(5)),

the inequality holds for:

k3 > N

(
1 + µ

2 + ε+ µ+ λ
+ logq(5)

)
.

67

Combining the two inequalities and requiring that:

k̂3 − k3 = λt = N

(
λ

2 + ε+ µ+ λ

)
,

we obtain that a code with parameters compatible with those of C3 exist
with probability greater than 0 for sufficiently large n when q, ε, µ and λ
satisfy the following property:

1 + ε− λ
2 + ε+ µ+ λ

> logq

(
25

5
√

4 min(1, λ)

)
.

Furthermore, we require that Ĉ3 has n-uniformity. By Theorem A.2 we have
that for Ĉ3 having n-uniformity it suffices that:

d(Ĉ3

∗
) ≥ n+ 1 = N

(
2 + ε

2 + ε+ µ+ λ

)
+ 1.

Hence, after applying Theorem A.4 we study the inequality:

1− qNHq(
2+ε

2+ε+µ+λ)−k̂3 > 0.

We have:

1− qNHq(
2+ε

2+ε+µ+λ)−k̂3 > 0 ⇐⇒

qNHq(
2+ε

2+ε+µ+λ)−k̂3 < 1 ⇐⇒

qk̂3 >

(
(2 + ε+ µ+ λ)(q − 1)

2+ε
2+ε+µ+λ

(2 + ε)
2+ε

2+ε+µ+λ (µ+ λ)
µ+λ

2+ε+µ+λ

)N

.

Since

(
(2 + ε+ µ+ λ)(q − 1)

2+ε
2+ε+µ+λ

(2 + ε)
2+ε

2+ε+µ+λ (µ+ λ)
µ+λ

2+ε+µ+λ

)N

<

(
5q

2+ε
2+ε+µ+λ

min(1, µ+ λ)

)N

=

= qN(2+ε
2+ε+µ+λ

+logq(5
min(1,µ+λ))),

the inequality holds for:

k̂3 > N

(
2 + ε

2 + ε+ µ+ λ
+ logq

(
5

min(1, µ+ λ)

))
.

Combining this inequality with the upper bound for k̂3 obtained previously,
we have that Ĉ3 has n-uniformity with probability bigger than 0 if the fol-
lowing condition on q, ε, µ and λ holds:

µ

2 + ε+ µ+ λ
> logq

(
25

5
√

4 min(1, λ) min(1, µ+ λ)

)
.

68

It is easy to see that the four conditions for the existence of the codes Ĉ1,
C2 and Ĉ3 are compatible with each other, i.e., for sufficiently large n there
exist q, ε, δ, α, µ and λ which satisfy all the three conditions. This concludes
our analysis.

69

	Introduction
	Preliminary Theory
	Coding Theory
	Perfectly Secure Message Transmission
	The model
	Complexity
	Known Results

	Secret Sharing
	Definitions
	Error-Correcting Codes
	High Information Rate Ramp Schemes

	An Asymptotically Optimal 3-Round Protocol
	Linear Dependence Modulo a Code
	A basic 3-Round Protocol
	Overview
	The Protocol
	Proofs

	Block-Maximal Sets of Linearly Independent Vectors Modulo a Code
	The Optimal 3-Round Protocol
	Overview of the Protocol
	The Protocol
	Privacy of the Protocol
	Reliability of the Protocol
	Communication Overhead of the Protocol
	The Case n=2t+b

	A Nearly Optimal 2-Round Protocol
	Graph Matching
	Generalized Broadcasting
	The Nearly Optimal 2-Round Protocol
	Overview of the Protocol
	The Protocol
	Privacy of the Protocol
	Reliability of the Protocol
	Communication Overhead of the Protocol

	Case n=2t+b

	Appendix: A 2-Round Protocol Using Generic Codes
	Uniformity Property for Codes
	Sketch of the Protocol
	Perfectly Secure Message Transmission Over Finite Fields
	Establishment of Correlations
	Generalized Broadcasting
	Privacy Amplification

	Conflicts
	Existence of Suitable Generic Codes

